1
|
Yang Z, Wen P, Chen J, Kang J, Xiang Y, Ding S, Gao L, Tong X, Guo A. DNA methylation regulatory patterns and underlying pathways behind the co-pathogenesis of allergic rhinitis and chronic spontaneous urticaria. Front Immunol 2023; 13:1053558. [PMID: 36713372 PMCID: PMC9875140 DOI: 10.3389/fimmu.2022.1053558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background Allergic rhinitis (AR) and chronic spontaneous urticaria (CSU) are often concurrent in patients. Changes in DNA methylation affect T cell biological processes, which may explain the occurrence and progression of comorbidity. However, downstream regulatory pathways of DNA methylation in two diseases and the underlying mechanisms have not been fully elucidated. Methods The GSE50101, GSE72541, GSE50222 and OEP002482 were mined for the identification of differentially expressed genes (DEGs) or co-expressed genes and differentially methylated genes (DMGs) in AR and CSU patients. We applied GO analysis and consensus clustering to study the potential functions and signal pathways of selected genes in two diseases. GSVA and logistic regression analysis were used to find the regulatory pathway between DNA methylation and activation patterns of CD4+ T cells. Besides, we used the Illumina 850k chip to detect DNA methylation expression profiles and recognize the differentially methylated CpG positions (DMPs) on corresponding genes. Finally, we annotated the biological process of these genes using GO and KEGG pathway analysis. Result The AR-related DEGs were found closely related to the differentiation and activation of CD4+ T cells. The DEGs or co-expressed genes of CD4+ T cells in AR and CSU patients were also clustered using GO and KEGG analysis and we got 57 co-regulatory pathways. Furthermore, logistic regression analysis showed that the regulation of cellular component size was closely related to the activation of CD4+ T cells regulated by DNA methylation. We got self-tested data using the Illumina 850k chip and identified 98 CpGs that were differentially methylated in patients. Finally, we mapped the DMPs to 15 genes and found that they were mainly enriched in the same CD4+T cell regulating pathway. Conclusion Our study indicated that DNA methylation affected by pollen participated in the activation patterns of CD4 + T cells, providing a novel direction for the symptomatic treatment of the co-occurrence of AR and CSU.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Puqiao Wen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Xiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aiyuan Guo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Aiyuan Guo,
| |
Collapse
|
2
|
Kilanowski A, Merid SK, Abrishamcar S, Feil D, Thiering E, Waldenberger M, Melén E, Peters A, Standl M, Hüls A. DNA methylation and aeroallergen sensitization: The chicken or the egg? Clin Epigenetics 2022; 14:114. [PMID: 36114581 PMCID: PMC9482323 DOI: 10.1186/s13148-022-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses.
Methods Using prospectively collected data from the German LISA birth cohort from two time windows (6–10 years: N = 234; 10–15 years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E > 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort.
Results Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p < 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two). None of these CpGs could be replicated in BAMSE. The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7–49.6%), suggesting changes in DNAm occurred post-sensitization. Conclusion The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01332-5.
Collapse
|
3
|
Sesé L, Mahay G, Barnig C, Guibert N, Leroy S, Guilleminault L. [Markers of severity and predictors of response to treatment in severe asthma]. Rev Mal Respir 2022; 39:740-757. [PMID: 36115752 DOI: 10.1016/j.rmr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Asthma is a multifactorial disease with complex pathophysiology. Knowledge of its immunopathology and inflammatory mechanisms is progressing and has led to the development over recent years of increasingly targeted therapeutic strategies. The objective of this review is to pinpoint the different predictive markers of asthma severity and therapeutic response. Obesity, nasal polyposis, gastroesophageal reflux disease and intolerance to aspirin have all been considered as clinical markers associated with asthma severity, as have functional markers such as bronchial obstruction, low FEV1, small daily variations in FEV1, and high FeNO. While sinonasal polyposis and allergic comorbidities are associated with better response to omalizumab, nasal polyposis or long-term systemic steroid use are associated with better response to antibodies targeting the IL5 pathway. Elevated total IgE concentrations and eosinophil counts are classic biological markers regularly found in severe asthma. Blood eosinophils are predictive biomarkers of response to anti-IgE, anti-IL5, anti-IL5R and anti-IL4R biotherapies. Dupilumab is particularly effective in a subgroup of patients with marked type 2 inflammation (long-term systemic corticosteroid therapy, eosinophilia≥150/μl or FENO>20 ppb). Chest imaging may help to identify severe patients by seeking out bronchial wall thickening and bronchial dilation. Study of the patient's environment is crucial insofar as exposure to tobacco, dust mites and molds, as well as outdoor and indoor air pollutants (cleaning products), can trigger asthma exacerbation. Wider and more systematic use of markers of severity or response to treatment could foster increasingly targeted and tailored approaches to severe asthma.
Collapse
Affiliation(s)
- L Sesé
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - G Mahay
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Rouen, Rouen, France
| | - C Barnig
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France; Service de pneumologie, oncologie thoracique et allergologie respiratoire, CHRU Besançon, Besançon, France
| | - N Guibert
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - S Leroy
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, CNRS UMR 7275-FHU OncoAge, service de pneumologie oncologie thoracique et soins intensifs respiratoires, CHU de Nice, hôpital Pasteur, Nice, France
| | - L Guilleminault
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France; Institut Toulousain des maladies infectieuses et inflammatoires (Infinity) inserm UMR1291-CNRS UMR5051-université Toulouse III, CRISALIS F-CRIN, Toulouse, France.
| |
Collapse
|
4
|
Kilanowski A, Chen J, Everson T, Thiering E, Wilson R, Gladish N, Waldenberger M, Zhang H, Celedón JC, Burchard EG, Peters A, Standl M, Hüls A. Methylation risk scores for childhood aeroallergen sensitization: Results from the LISA birth cohort. Allergy 2022; 77:2803-2817. [PMID: 35437756 PMCID: PMC9437118 DOI: 10.1111/all.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Epigenomic (e.g., DNA methylation [DNAm]) changes have been hypothesized as intermediate step linking environmental exposures with allergic disease. Associations between individual DNAm at CpGs and allergic diseases have been reported, but their joint predictive capability is unknown. METHODS Data were obtained from 240 children of the German LISA cohort. DNAm was measured in blood clots at 6 (N = 234) and 10 years (N = 227) using the Illumina EPIC chip. Presence of aeroallergen sensitization was measured in blood at 6, 10, and 15 years. We calculated six methylation risk scores (MRS) for allergy-related phenotypes, like total and specific IgE, asthma, or any allergies, based on available publications and assessed their performances both cross-sectionally (biomarker) and prospectively (predictor of the disease). Dose-response associations between aeroallergen sensitization and MRS were evaluated. RESULTS All six allergy-related MRS were highly correlated (r > .86), and seven CpGs were included in more than one MRS. Cross-sectionally, we observed an 81% increased risk for aeroallergen sensitization at 6 years with an increased MRS by one standard deviation (best-performing MRS, 95% confidence interval = [43%; 227%]). Significant associations were also seen cross-sectionally at 10 years and prospectively, though the effect of the latter was attenuated when restricted to participants not sensitized at baseline. A clear dose-response relationship with levels of aeroallergen sensitization could be established cross-sectionally, but not prospectively. CONCLUSION We found good classification and prediction capabilities of calculated allergy-related MRS cross-sectionally, underlining the relevance of altered gene-regulation in allergic diseases and providing insights into potential DNAm biomarkers of aeroallergen sensitization.
Collapse
Affiliation(s)
- Anna Kilanowski
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Institute for Medical Information Processing, Biometry, and Epidemiology; Pettenkofer School of Public Health, LMU Munich, Munich, Germany,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Todd Everson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh
| | | | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377 Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany.,Corresponding Author Dr. Anke Huels (for methodologic requests), Rollins School of Public Health, Emory University, Department of Epidemiology, 1518 Clifton Rd NE, Atlanta, GA 30322, Phone: 404-727-4103, ; Dr. Marie Standl (for data related requests), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epidemiology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Phone: +49 89 3187-2952,
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Corresponding Author Dr. Anke Huels (for methodologic requests), Rollins School of Public Health, Emory University, Department of Epidemiology, 1518 Clifton Rd NE, Atlanta, GA 30322, Phone: 404-727-4103, ; Dr. Marie Standl (for data related requests), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epidemiology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Phone: +49 89 3187-2952,
| |
Collapse
|
5
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
6
|
Tovo P, Monti G, Daprà V, Montanari P, Calvi C, Alliaudi C, Sardo A, Galliano I, Bergallo M. Enhanced expression of endogenous retroviruses and of TRIM28 and SETDB1 in children with food allergy. Clin Transl Allergy 2022; 12:e12124. [PMID: 35344298 PMCID: PMC8967271 DOI: 10.1002/clt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background Human endogenous retroviruses (HERVs) represent 8% of our genome. They originate from ancestral infections and although no longer contagious they can regulate transcription of adjacent cellular genes, produce viral RNAs sensed as non‐self by pattern recognition receptors, and encode viral proteins, such as Syncytin (SYN) 1 and 2, that exhibit potent immunomodulatory properties. Based on this, HERVs have been studied and proposed as relevant cofactors in several chronic inflammatory and immune‐mediated diseases. HERV transcription is regulated by host TRIM28 and SET domain bifurcated histone lysine methyltransferase 1 (SETDB1), which in turn exert crucial regulatory functions on the host immune system. No studies explored the expression of HERVs, TRIM28, and SETDB1 in allergic patients. Methods We assessed, through a polymerase chain reaction real time Taqman amplification assay, the transcription levels of pol genes of HERV‐H, HERV‐K, HERV‐W, and of env genes of SYN1 and SYN2, as well as of TRIM28 and SETDB1 in whole blood from 32 children with IgE‐mediated food allergy, 19 with food protein‐induced enterocolitis syndrome (FPIES), and in healthy control children. Results The expression levels of pol genes of HERV‐H, ‐K, and ‐W were significantly enhanced in patients with IgE‐mediated FA or FPIES as compared to control subjects, while the mRNA concentrations of SYN1 and SYN2 were comparable in each group of children. Both TRIM28 and SETDB1 mRNA levels were significantly higher in allergic patients. Conclusions Given the influence of HERVs and of TRIM28 and SETDB1 on innate and adaptive immune responses, their transcriptional activation in children with food allergies suggest that they might play important roles in the development of these diseases.
Collapse
Affiliation(s)
- Pier‐Angelo Tovo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Giovanna Monti
- Pediatric Allergy Unit Regina Margherita Children's Hospital Turin Italy
| | - Valentina Daprà
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Paola Montanari
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Cristina Calvi
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Carla Alliaudi
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Allegra Sardo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| |
Collapse
|
7
|
Venter C, Palumbo MP, Sauder KA, Glueck DH, O'Mahony L, Yang I, Davidson EJ, Brough HA, Holloway JW, Fleischer DM, Ben-Abdallah M, Dabelea D. Associations between child filaggrin mutations and maternal diet with the development of allergic diseases in children. Pediatr Allergy Immunol 2022; 33:e13753. [PMID: 35338739 PMCID: PMC9621095 DOI: 10.1111/pai.13753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Filaggrin (FLG) loss-of-function mutations in children and maternal diet in pregnancy have been implicated in child allergy outcomes. This paper studies the questions: "do FLG mutations modify the effect of maternal diet on the odds of development of allergic diseases?" and "which factor leads to the highest rate of diagnosis allergic diseases over time, maternal diet, or FLG mutations?". METHODS Exact logistic regressions studied effect modification. Cox proportional hazard models compared the rate of allergic disease development in three groups (N = 624): (1) children with FLG mutation, (2) children without FLG mutation whose mothers did not eat an allergy preventive diet, and (3) children without FLG mutation whose mothers ate an allergy preventive diet. Maternal diet was classified using a validated index. RESULTS Cox models showed the development of atopic dermatitis, asthma, and wheeze was significantly higher for children in group 1 versus 3 (HR = 2.40 [1.32, 4.37], HR = 2.29 [1.05, 4.97], and HR 2.10 [1.004, 4.38], respectively), but not significantly higher for children in group 1 versus 2 (HR = 1.30 [0.74, 2.29], HR = 1.27 [0.61, 2.63], and HR = 1.29 [0.65, 2.58], respectively). Development of allergic rhinitis was significantly higher for group 1 versus 2 and 3 (1 vs. 2: HR = 2.29 [1.10, 4.76]; 1 vs. 3: HR = 3.21 [1.46, 7.08]). There was no significant effect modification for any outcome. CONCLUSION Children with FLG mutation had similar risk of atopic dermatitis, asthma, and wheeze as children without an FLG mutation whose mothers did not eat an allergy preventive diet during pregnancy. Child FLG mutation did not modify the effect of maternal diet. The results suggest that maternal diet in pregnancy, a modifiable risk factor, could be a target for preventive interventions.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy & Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michaela P Palumbo
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA
| | - Katherine A Sauder
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ivana Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Davidson
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Helen A Brough
- Paediatric Allergy Group, Department Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.,Paediatric Allergy Group, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St, Thomas's NHS Foundation Trust, London, UK
| | - John W Holloway
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - David M Fleischer
- Section of Allergy & Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Miriam Ben-Abdallah
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
8
|
Rathod A, Zhang H, Arshad SH, Ewart S, Relton CL, Karmaus W, Holloway JW. DNA Methylation and Asthma Acquisition during Adolescence and Post-Adolescence, an Epigenome-Wide Longitudinal Study. J Pers Med 2022; 12:202. [PMID: 35207690 PMCID: PMC8877984 DOI: 10.3390/jpm12020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The role of epigenetics in the pathogenesis of asthma acquisition in adolescence and post-adolescence has been unknown. We carried out a longitudinal epigenome-wide association study, using data from the Isle of Wight Birth Cohort (IOWBC). To improve statistical power, we first screened CpGs based on associations of DNA methylation (DNAm) at an age of 10 years (pre-adolescence) with asthma acquisition at 10-18 years (during adolescence). A logistic regression with repeated measures was applied to CpGs that passed screening to examine the associations of pre-adolescence DNAm with asthma acquisition from 10-18 years and 18-26 years, with an interaction term to evaluate transition period specificity. Findings were further tested in an independent birth cohort, ALSPAC. In total, 205 CpGs (with 150 being females) showed associations with asthma acquisition (main or interaction effects) at FDR = 0.05 in IOWBC, of which 112 (90 being females) showed consistent associations in the ALSPAC. Genes that the identified CpGs were mapped to, e.g., AKAP1 and ENO1, have been shown to be associated with the risk of asthma. Our findings indicated that DNAm at specific CpGs was associated with asthma acquisition. CpGs showing such associations were likely to be different between males and females and, at certain CpGs, were unique to a specific transition period.
Collapse
Affiliation(s)
- Aniruddha Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK;
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol BS8 2BN, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (A.R.); (W.K.)
| | - John W. Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Hayashi K, Anzai N. L-type amino acid transporter 1 as a target for inflammatory disease and cancer immunotherapy. J Pharmacol Sci 2021; 148:31-40. [PMID: 34924127 DOI: 10.1016/j.jphs.2021.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Ingestion of amino acids is fundamental for cellular activity. Amino acids are important components for protein synthesis but are also crucial for intracellular metabolic reactions and signal transduction. Following activation, immune cells induce metabolic reprogramming to generate adequate energy and constitutive substances. Hence, the delivery of amino acids by transporters is necessary for the progression of metabolic rewiring. In this review, we discuss how amino acids and their transporters regulate immune cell functions, with emphasis on LAT1, a transporter of large neutral amino acids. Furthermore, we explore the possibility of targeting amino acid transporters to improve immune disorders and cancer immune therapies.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan.
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
10
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
11
|
Zhang Y, Lan F, Zhang L. Advances and highlights in allergic rhinitis. Allergy 2021; 76:3383-3389. [PMID: 34379805 DOI: 10.1111/all.15044] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Allergic rhinitis (AR) is a growing public health, medical and economic problem worldwide. The current review describes the major discoveries related to AR during the past 2 years, including risk factors for the prevalence of AR, the corresponding diagnostic strategy, precise underlying immunological mechanisms, and efficient therapies for AR during the ongoing global "coronavirus disease 2019" (COVID-19) pandemic. The review further attempts to highlight future research perspectives. Increasing evidence suggests that environmental exposures, climate changes, and lifestyle are important risk factors for AR. Consequently, detailed investigation of the exposome and the connection between environmental exposures and health in the future should provide better risk profiles instead of single predictors, and also help mitigate adverse health outcomes in allergic diseases. Although patients with dual AR, a newly defined AR phenotype, display perennial and seasonal allergens-related nasal symptoms, they are only allergic to seasonal allergens, indicating the importance of measuring inflammation at the local sites. Herein, we suggest that a combination of precise diagnosis in local sites and traditional diagnostic methods may enhance the precision medicine-based approach for management of AR; however, this awaits further investigations. Apart from traditional treatments, social distancing, washing hands, and disinfection are also required to better manage AR patients in the ongoing global COVID-19 pandemic. Despite recent advances in understanding the immune mechanisms underlying the effects of allergen immunotherapy (AIT), further understanding changes of cell profiles after AIT and accurately evaluate the efficacy of AIT are required.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Luo Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| |
Collapse
|
12
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
13
|
Wawrzyniak P, Krawczyk K, Acharya S, Tan G, Wawrzyniak M, Karouzakis E, Dreher A, Jakiela B, Altunbulakli C, Sanak M, O‘Mahony L, Nadeau K, Akdis CA. Inhibition of CpG methylation improves the barrier integrity of bronchial epithelial cells in asthma. Allergy 2021; 76:1864-1868. [PMID: 33210726 DOI: 10.1111/all.14667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Krzysztof Krawczyk
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Cellular Immunology Faculty of Biology and Environmental Protection Lodz Poland
| | - Swati Acharya
- Departament of Medicine Stanford University Stanford CA USA
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Functional Genomics Center Zurich ETH Zurich/University of Zurich Zurich Switzerland
| | - Marcin Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | | | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Bogdan Jakiela
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Liam O‘Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Department of Medicine and School of Microbiology APC Microbiome IrelandUniversity College Cork Cork Ireland
| | - Kari Nadeau
- Departament of Medicine Stanford University Stanford CA USA
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
14
|
Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol 2021; 20:48-55. [PMID: 31633569 DOI: 10.1097/aci.0000000000000598] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms are known to play a crucial role in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, food allergy, and other allergic disorders, especially through mediating the effects of the environmental factors, well recognized allergy-risk modifiers. The aim of this work was to provide a concise but comprehensive review of the recent progress in the epigenetics of allergic diseases. RECENT FINDINGS Recent few years have substantially expanded our knowledge on the role of epigenetics in the pathogenesis and clinical picture of allergies. Specifically, it has been shown that epigenetic marks, especially DNA methylation, possess a diagnostic potential for atopic sensitization, asthma, allergic rhinitis, and food allergy. DNA methylation can be a predictor of clinical responses in controlled allergen challenges, including oral food challenges. Furthermore, direct or indirect targeting epigenetic mechanisms, this time especially histone modifications, was able to favorably affect expression of the genes underlying allergies and generally improve airway biology in allergic diseases or their animal models. SUMMARY Further studies are needed to explore the diagnostic and therapeutic potential of epigenetic modifications in allergies and to develop respective clinical tools.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA.,College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Andreas Ruhl
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA.,John Paul II Hospital, Krakow, Poland
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, New Jersey, USA
| |
Collapse
|
15
|
Zhang Y, Tan M, Qian X, Li C, Yue L, Liu Y, Shi S. Interaction between early-life pet exposure and methylation pattern of ADAM33 on allergic rhinitis among children aged 3-6 years in China. Allergy Asthma Clin Immunol 2021; 17:44. [PMID: 33933154 PMCID: PMC8088023 DOI: 10.1186/s13223-021-00526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background Recent research has pointed out the important roles of epigenetic modifications in the development and persistence of allergic rhinitis (AR), especially in relation to DNA methylation of disease-associated genes. We investigated whether AR susceptibility genes were epigenetically regulated, and whether methylation modulation of these genes in response to early-life environment could be a molecular mechanism underlying the risk for AR onset in a cohort of children aged 3–6 years in China. Methods Peripheral blood mononuclear cell (PBMC) samples were collected from 130 children patients, aged 3–6 years and diagnosed with AR; and 154 matched controls to detect promoter methylation in 25 AR susceptibility genes with the MethylTarget approach. Methylation levels were compared for each CpG site, each amplified region, and each gene. In addition, the relationship among DNA methylation, early-life environmental risk factors and AR onset were assessed. Results Maternal allergic history (P = 0.0390) and pet exposure (P = 0.0339) were significantly associated with increased AR risk. Differential methylation analyses were successfully performed for 507 CpG sites, 34 amplified regions and 17 genes and significant hypomethylation was observed in the promoter region of ADAM33 in AR patients [multiple test-corrected (FDR) P-value < 0.05]. Spearman correlation analysis revealed that the hypomethylation of ADAM33 was significantly associated with higher eosinophil counts (Spearman’s ρ: − 0.187, P-value = 0.037). According to the results of the multiple regression analysis, after adjusting for cofounders, the interaction of early-life pet exposure with methylation level of ADAM33 increased the risk for AR onset 1.423 times more in children (95% CI = 0.0290–4.109, P-value = 0.005). Conclusion This study provides evidence that early-life pet exposure and low methylation level of ADAM33 increase AR risk in children, and the interaction between pet exposure and methylation level of ADAM33 may play an important role in the development of AR.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Meiyu Tan
- Department of Laboratory Diagnosis, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoqiong Qian
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Cong Li
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lei Yue
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuehong Liu
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
16
|
Watanabe H, Miyake K, Matsuoka T, Kojima R, Sakurai D, Masuyama K, Yamagata Z. LPCAT2 Methylation, a Novel Biomarker for the Severity of Cedar Pollen Allergic Rhinitis in Japan. Am J Rhinol Allergy 2020; 35:631-639. [PMID: 33356413 DOI: 10.1177/1945892420983646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the role of the epigenome in allergies has been receiving increasing attention. Although several genes that are methylated in relation to serum immunoglobulin E (IgE) concentration have been reported by epigenome-wide association studies, little is known about the DNA methylation sites associated with the symptoms and severity of cedar pollinosis (CP). OBJECTIVE Our aim was to analyze the association between DNA methylation and the symptoms and severity of CP in peripheral blood mononuclear cells (PBMCs) and nasal mucosa scraping cells (NMSCs). METHODS We recruited 70 participants during the cedar pollen dispersal season. IgE levels were measured by a fluorescence enzyme immunoassay. We analyzed DNA methylation of acyl-CoA thioesterase 7 (ACOT7), mucin 4 (MUC4), schlafen 12 (SLFN12), lysophosphatidylcholine acyltransferase 2 (LPCAT2), and interleukin-4 (IL4) in PBMCs and NMSCs using bisulfite next-generation sequencing; the correlation of DNA methylation with non-specific IgE and cedar pollen-specific IgE levels in peripheral blood samples was also investigated. Symptom severity and DNA methylation were investigated in 15 untreated CP patients. RESULTS Non-specific IgE levels showed a significant negative correlation with average IL4 methylation in PBMCs (r = -0.46, P < 0.0001) but not with methylation of ACOT7, MUC4, SLFN12, and LPCAT2. Cedar pollen-specific IgE levels showed a significant negative correlation with average IL4 and MUC4 methylation in PBMCs (r = -0.31, P = 0.01 and r = -0.241, P = 0.046, respectively) but not with methylation of ACOT7, SLFN12, and LPCAT2. The methylation of some genes in NMSCs was not significantly correlated with IgE levels. The mean methylation of LPCAT2 in NMSCs showed a decreasing trend with increasing severity of CP (P = 0.027). CONCLUSION LPCAT2 methylation in NMSCs may reflect the severity of CP and could be used as a novel biomarker to identify suitable treatment options for CP.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Tomokazu Matsuoka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Reiji Kojima
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Keisuke Masuyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Otorhinolaryngology, Suwa Central Hospital, Chino, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| |
Collapse
|
17
|
Xu CJ, Gruzieva O, Qi C, Esplugues A, Gehring U, Bergström A, Mason D, Chatzi L, Porta D, Lodrup Carlsen KC, Baïz N, Madore AM, Alenius H, van Rijkom B, Jankipersadsing SA, van der Vlies P, Kull I, van Hage M, Bustamante M, Lertxundi A, Torrent M, Santorelli G, Fantini MP, Hovland V, Pesce G, Fyhrquist N, Laatikainen T, Nawijn MC, Li Y, Wijmenga C, Netea MG, Bousquet J, Anto JM, Laprise C, Haahtela T, Annesi-Maesano I, Carlsen KH, Gori D, Kogevinas M, Wright J, Söderhäll C, Vonk JM, Sunyer J, Melén E, Koppelman GH. Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol 2020; 147:1031-1040. [PMID: 33338541 DOI: 10.1016/j.jaci.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE We sought to identify DNA methylation profiles associated with childhood allergy. METHODS Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Esplugues
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, València, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, València, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Karin C Lodrup Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nour Baïz
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Soesma A Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; HZPC Research BV, Metslawier, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Health Research institute Biodonostia, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Matias Torrent
- Health Research Institute of the Balearic Islands, Spain; ib-salut, Area de Salut de Menorca, Spain
| | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vegard Hovland
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Giancarlo Pesce
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | | | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Program, Medicum, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Finnish Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Josep M Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Isabella Annesi-Maesano
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
19
|
Üzülmez Ö, Kalic T, Breiteneder H. Advances and novel developments in molecular allergology. Allergy 2020; 75:3027-3038. [PMID: 32882057 PMCID: PMC7756543 DOI: 10.1111/all.14579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
Abstract
The continuous search for new allergens and the design of allergen derivatives improves the understanding of their allergenicity and aids the design of novel diagnostic and immunotherapy approaches. This article discusses the recent developments in allergen and epitope discovery, allergy diagnostics and immunotherapy. Structural information is crucial for the elucidation of cross-reactivity of marker allergens such as the walnut Jug r 6 or that of nonhomologous allergens, as shown for the peanut allergens Ara h 1 and 2. High-throughput sequencing, liposomal nanoallergen display, bead-based assays, and protein chimeras have been used in epitope discovery. The binding of natural ligands by the birch pollen allergen Bet v 1 or the mold allergen Alt a 1 increased the stability of these allergens, which is directly linked to their allergenicity. We also report recent findings on the use of component-resolved approaches, basophil activation test, and novel technologies for improvement of diagnostics. New strategies in allergen-specific immunotherapy have also emerged, such as the use of virus-like particles, biologics or novel adjuvants. The identification of dectin-1 as a key player in allergy to tropomyosins and the formyl peptide receptor 3 in allergy to lipocalins are outstanding examples of research into the mechanism of allergic sensitization.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
20
|
Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy 2020; 75:3069-3076. [PMID: 32901931 DOI: 10.1111/all.14586] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) is an upper airway disease with high prevalence in the world, and therefore needs to be thoroughly investigated and treated accordingly. Although the mechanisms underlying the pathology and treatment of AR have been widely studied, many aspects of AR are still unclear and warrant further investigations. The purpose of the present review was therefore to report recently published papers, which highlight the novel mechanisms and treatments of AR. These include role of environment, important proteins and cells, and some other factors in the pathogenesis of AR; as well as the role of immunotherapy and biologics in the treatment of AR.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
21
|
Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol 2020; 42:43-60. [PMID: 32060620 PMCID: PMC7066293 DOI: 10.1007/s00281-019-00777-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
In asthma and allergy genetics, a trend towards a few main topics developed over the last 2 years. First, a number of studies have been published recently which focus on overlapping and/or very specific phenotypes: within the allergy spectrum but also reaching beyond, looking for common genetic traits shared between different diseases or disease entities. Secondly, an urgently needed focus has been put on asthma and allergy genetics in populations genetically different from European ancestry. This acknowledges that the majority of new asthma patients today are not white and asthma is a truly worldwide disease. In epigenetics, recent years have seen several large-scale epigenome-wide association studies (EWAS) being published and a further focus was on the interaction between the environment and epigenetic signatures. And finally, the major trends in current asthma and allergy genetics and epigenetics comes from the field of pharmacogenetics, where it is necessary to understand the susceptibility for and mechanisms of current asthma and allergy therapies while at the same time, we need to have scientific answers to the recent availability of novel drugs that hold the promise for a more individualized therapy.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology and Allergy, St. Hedwig's Hospital of the order of St. John, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, 2 rue Gaston Crémieux, 91000, Evry, France
| |
Collapse
|
22
|
Zelm MC, McKenzie CI, Varese N, Rolland JM, O'Hehir RE. Recent developments and highlights in immune monitoring of allergen immunotherapy. Allergy 2019; 74:2342-2354. [PMID: 31587309 DOI: 10.1111/all.14078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Allergic diseases are the most common chronic immune-mediated disorders and can manifest with an enormous diversity in clinical severity and symptoms. Underlying mechanisms for the adverse immune response to allergens and its downregulation by treatment are still being revealed. As a result, there have been, and still are, major challenges in diagnosis, prediction of disease progression/evolution and treatment. Currently, the only corrective treatment available is allergen immunotherapy (AIT). AIT modifies the immune response through long-term repeated exposure to defined doses of allergen. However, as the treatment usually needs to be continued for several years to be effective, and can be accompanied by adverse reactions, many patients face difficulties completing their schedule. Long-term therapy also potentially incurs high costs. Therefore, there is a great need for objective markers to predict or to monitor individual patient's beneficial changes in immune response during therapy so that efficacy can be identified as early as possible. In this review, we specifically address recent technical developments that have generated new insights into allergic disease pathogenesis, and how these could potentially be translated into routine laboratory assays for disease monitoring during AIT that are relatively inexpensive, robust and scalable.
Collapse
Affiliation(s)
- Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
23
|
Meng Y, Wang C, Zhang L. Recent developments and highlights in allergic rhinitis. Allergy 2019; 74:2320-2328. [PMID: 31571226 DOI: 10.1111/all.14067] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Allergic rhinitis (AR) is a disease with high prevalence all over the world and therefore needs to be thoroughly investigated and treated accordingly. The mechanisms underlying the pathology and treatment of AR have been widely studied, but many aspects remain unclear and warrant further investigations. This review presents an overview of recently published papers highlighting the risk factors, mechanisms, and treatment of AR. Additionally, recent studies discussing the role of single nucleotide polymorphism, DNA methylation, regulatory B cells, group 2 innate lymphoid cells, immunotherapy, and biologics in AR are also covered.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
| |
Collapse
|