1
|
Sharma R, Mendez K, Begum S, Chu S, Prince N, Hecker J, Kelly RS, Chen Q, Wheelock CE, Celedón JC, Clish C, Gertszen R, Tantisira KG, Weiss ST, Lasky-Su J, McGeachie M. miRNAome-metabolome wide association study reveals effects of miRNA regulation in eosinophilia and airflow obstruction in childhood asthma. EBioMedicine 2025; 112:105534. [PMID: 39740296 PMCID: PMC11750448 DOI: 10.1016/j.ebiom.2024.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma. METHODS We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (NBaseline = 312 and NEnd of trial = 454). We conducted a meta-analysis of the two cohorts to identify common contemporaneous associations between CAMP and GACRS (false-discovery rate (FDR) = 0.05). We assessed persistent miRNA-metabolome associations using baseline miRNAs and metabolomic profiling in CAMP at the end of the trial. The relation between miRNAs, metabolites and clinical phenotypes, including airway hyper-responsiveness (AHR), peripheral blood eosinophilia, and airflow obstruction, were then assessed via. Mediation analysis with 1000 bootstraps at an FDR significance level of 0.05. FINDINGS The meta-analysis yielded a total of 369 significant contemporaneous associations, involving 133 miRNAs and 60 metabolites. We identified 13 central hub metabolites (taurine, 12,13-diHOME, sebacate, 9-cis-retinoic acid, azelate, asparagine, C5:1 carnitine, cortisol, 3-methyladipate, inosine, NMMA, glycine, and Pyroglutamic acid) and four hub miRNAs (hsa-miR-186-5p, hsa-miR-143-3p, hsa-miR-192-5p, and hsa-miR-223-3p). Nine of these associations, between eight miRNAs and eight metabolites, were persistent in CAMP from baseline to the end of trial. Finally, five central hub metabolites (9-cis-retinoic acid, taurine, sebacate, azelate, and 12,13-diHOME) were identified as primary mediators in over 100 significant indirect miRNA-metabolite associations, with a collective influence on peripheral blood eosinophilia, AHR, and airflow obstruction. INTERPRETATION The robust association between miRNAs and metabolites, along with the substantial indirect impact of miRNAs via 5 hub metabolites on multiple clinical asthma metrics, suggests important integrated effects of miRNAs and metabolites on asthma. These findings imply that the indirect regulation of metabolism and cellular functions by miRNA influences Th2 inflammation, AHR, and airflow obstruction in childhood asthma. FUNDING Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Chemistry, Edith Cowan University, Perth, Australia
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Robert Gertszen
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sharma R, Tiwari A, Kho AT, Wang AL, Srivastava U, Piparia S, Desai B, Wong R, Celedón JC, Peters SP, Smith LJ, Irvin CG, Castro M, Weiss ST, Tantisira KG, McGeachie MJ. Circulating microRNAs associated with bronchodilator response in childhood asthma. BMC Pulm Med 2024; 24:553. [PMID: 39497092 PMCID: PMC11536898 DOI: 10.1186/s12890-024-03372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology. OBJECTIVE The purpose of this study is to identify circulating miRNAs associated with bronchodilator response in asthma and decipher possible mechanism of bronchodilator response variation. METHODS We used available small RNA sequencing on blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into the highest and lowest bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N = 277) vs. low (N = 278) BDR group. Replication was carried out in the Leukotriene modifier Or Corticosteroids or Corticosteroid-Salmeterol trial (LOCCS), an adult asthma cohort. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. RESULTS We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR = 2.26) between high and low BDR group. These were assessed for replication in the LOCCS cohort, where two miRNAs (miR-200b-3p and miR-1246) were associated. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways. CONCLUSION MiRNAs miR-1246 and miR-200b-3p are associated with both childhood and adult asthma BDR. Our findings add to the growing body of evidence that miRNAs play a significant role in the difference of asthma treatment response among patients as it points to genomic regulatory machinery underlying difference in bronchodilator response among patients. TRIAL REGISTRATION LOCCS cohort [ClinicalTrials.gov number NCT00156819, Registration date 20050912], GACRS cohort [ClinicalTrials.gov number NCT00021840].
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Upasna Srivastava
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
- Department of MEDCSC Neurodevelopment (Child Study Center), Yale University School of Medicine, New Haven, CT, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Brinda Desai
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Richard Wong
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen P Peters
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Lewis J Smith
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles G Irvin
- Pulmonary and Critical Care Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, KS, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Rodrigo-Muñoz JM, Gil-Martínez M, Naharro-González S, Del Pozo V. Eosinophil-derived extracellular vesicles: isolation and classification techniques and implications for disease pathophysiology. J Leukoc Biol 2024; 116:260-270. [PMID: 38836652 DOI: 10.1093/jleuko/qiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Eosinophils are leukocytes characterized by their ability to release granule content that is highly rich in enzymes and proteins. Besides the antihelminthic, bactericidal, and antiviral properties of eosinophils and their secretory granules, these also play a prominent role in the pathophysiology of diseases such as asthma, eosinophilic esophagitis, and other hypereosinophilic conditions by causing tissue damage and airway hyperresponsiveness. Although this cell was first recognized mainly for its capacity to release granule content, nowadays other capabilities such as cytokine secretion have been linked to its physiology, and research has found that eosinophils are not only involved in innate immunity, but also as orchestrators of immune responses. Nearly 10 yr ago, eosinophil-derived extracellular vesicles (EVs) were first described; since then, the EV field has grown exponentially, revealing their vital roles in intracellular communication. In this review, we synthesize current knowledge on eosinophil-derived EVs, beginning with a description of what they are and what makes them important regulators of disease, followed by an account of the methodologies used to isolate and characterize EVs. We also summarize current understanding of eosinophil-derived vesicles functionality, especially in asthma, the disease in which eosinophil-derived EVs have been most widely studied, describing how they modulate the role of eosinophils themselves (through autocrine signaling) and the way they affect airway structural cells and airway remodeling. Deeper understanding of this cell type could lead to novel research in eosinophil biology, its role in other diseases, and possible use of eosinophil-derived EVs as therapeutic targets.
Collapse
Affiliation(s)
- José Manuel Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sara Naharro-González
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
| | - Victoria Del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Su H, Song Y, Yang S, Zhang Z, Shen Y, Yu L, Chen S, Gao L, Chen C, Hou D, Wei X, Ma X, Huang P, Sun D, Zhou J, Qian K. Plasmonic Alloys Enhanced Metabolic Fingerprints for the Diagnosis of COPD and Exacerbations. ACS CENTRAL SCIENCE 2024; 10:331-343. [PMID: 38435520 PMCID: PMC10906255 DOI: 10.1021/acscentsci.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024]
Abstract
Accurate diagnosis of chronic obstructive pulmonary disease (COPD) and exacerbations by metabolic biomarkers enables individualized treatment. Advanced metabolic detection platforms rely on designed materials. Here, we design mesoporous PdPt alloys to characterize metabolic fingerprints for diagnosing COPD and exacerbations. As a result, the optimized PdPt alloys enable the acquisition of metabolic fingerprints within seconds, requiring only 0.5 μL of native plasma by laser desorption/ionization mass spectrometry owing to the enhanced electric field, photothermal conversion, and photocurrent response. Machine learning decodes metabolic profiles acquired from 431 individuals, achieving a precise diagnosis of COPD with an area under the curve (AUC) of 0.904 and an accurate distinction between stable COPD and acute exacerbations of COPD (AECOPD) with an AUC of 0.951. Notably, eight metabolic biomarkers identified accurately discriminate AECOPD from stable COPD while providing valuable information on disease progress. Our platform will offer an advanced nanoplatform for the management of COPD, complementing standard clinical techniques.
Collapse
Affiliation(s)
- Haiyang Su
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yuanlin Song
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Shouzhi Yang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ziyue Zhang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yao Shen
- Department
of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P. R. China
| | - Lan Yu
- Clinical
Medical Research Center, Inner Mongolia
People’s Hospital, Hohhot 010017, Inner Mongolia, P. R. China
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Inner
Mongolia Academy of Medical Sciences, Inner
Mongolia People’s Hospital, Hohhot 010017, Inner
Mongolia, P. R. China
| | - Shujing Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Lei Gao
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Cuicui Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Dongni Hou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Xinping Wei
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Xuedong Ma
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Pengyu Huang
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Dejun Sun
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Department
of Respiratory and Critical Care Medicine, Inner Mongolia People’s Hospital, Hohhot 010017, P. R. China
| | - Jian Zhou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Kun Qian
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai
Key Laboratory of Gynecologic Oncology, Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
5
|
Advances and Highlights of miRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021628. [PMID: 36675145 PMCID: PMC9862966 DOI: 10.3390/ijms24021628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Collapse
|
6
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
7
|
Rodrigo-Muñoz JM, Cañas JA, Sastre B, Gil-Martínez M, García Latorre R, Sastre J, Del Pozo V. Role of miR-185-5p as modulator of periostin synthesis and smooth muscle contraction in asthma. J Cell Physiol 2021; 237:1498-1508. [PMID: 34698372 PMCID: PMC9298424 DOI: 10.1002/jcp.30620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Asthma is a chronic respiratory disease produced by an aberrant immune response that originates with breathing difficulties and cough, through airway remodeling. The above pathophysiological events of asthma emerge the regulators of effectors, like epigenetics, which include microRNAs (miRNAs) who perform post‐transcriptional regulation, controlling diverse pathways in respiratory diseases. The objective of the study was to determine how miR‐185‐5p regulates the secretion of periostin by airway structural cells, and smooth muscle cells contraction, both related to airway remodeling in asthma. We used miR‐185‐5p mimic and inhibitors in bronchial smooth muscle cells (BSMCs) and small airway epithelial cells (SAECs) from healthy subjects. Gene expression and protein levels of periostin (POSTN), CDC42, and RHOA were analyzed by RT‐PCR and ELISA/Western blot, respectively. BSMC contractility was analyzed using cell‐embedded collagen gels and measurement of intracellular calcium was performed using Fura‐2. Additionally, miR‐185‐5p and periostin expression were evaluated in sputum from healthy and asthmatics. From these experiments, we observed that miR‐185‐5p modulation regulates periostin mRNA and protein in BSMCs and SAECs. A tendency for diminished miR‐185‐5p expression and higher periostin levels was seen in sputum cells from asthmatics compared to healthy, with an inverse correlation observed between POSTN and miR‐185‐5p. Inhibition of miR‐185‐5p produced higher BSMCs contraction induced by histamine. Calcium mobilization was not modified by miR‐185‐5p, showing that miR‐185‐5p role in BSMC contractility is performed by regulating CDC42 and RhoA pro‐contractile factors instead. In conclusion, miR‐185‐5p is a modulator of periostin secretion by airway structural cells and of smooth muscle contraction, which can be related to asthma pathophysiology, and thus, might be a promising therapeutic target.
Collapse
Affiliation(s)
- José M Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José A Cañas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Victoria Del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
8
|
Shen HF, Liu Y, Qu PP, Tang Y, Li BB, Cheng GL. MiR-361-5p/ abca1 and MiR-196-5p/ arhgef12 Axis Involved in γ-Sitosterol Inducing Dual Anti-Proliferative Effects on Bronchial Epithelial Cells of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2741-2753. [PMID: 34675500 PMCID: PMC8502110 DOI: 10.2147/copd.s326015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD), a progressive and irreversible respiratory disease, becomes the third leading cause of death and results in enormous economic burden on healthcare costs and productivity loss worldwide by 2020. Thus, it is urgent to develop effective anti-COPD drugs. Materials and Methods In the present study, two published GEO profiles were used to re-analyze and ascertain the relationships between circulating miRNAs and bronchial epithelial cells (BECs) mRNAs in COPD. The microRNA levels of miR-361-5p and miR-196-5p in plasma of COPD patients and healthy volunteers were detected by qRT-PCR. Next, the effects of γ-sitosterol (GS) on the expression of miR-361-5p and miR-196-5p and cell proliferation were investigated in BEC and H292 cell lines. Finally, whether specific miRNA-mRNA pathways involved in the effect of GS on BECs was assayed using Western Blot, real-time PCR and immunofluorescence. Results miR-196-5p and miR-361-5p were, respectively, up- and down-regulated in COPD patients compared with healthy controls. Luciferase assays demonstrated that miR-361-5p and miR-196-5p were, respectively, targeting abca1 and arhgef12 3ʹUTR in BEAS-2B cells. GS significantly suppressed miR-196-5p and promoted miR-361-5p levels in BEAS-2B cells and inhibited BECs proliferation in vitro. GS promoted miR-361-5p expression, which inhibited BCAT1 mRNA and protein levels and weaken mTOR-pS6K pathway, resulted in anti-proliferation in BEAS-2B cells. In addition, RhoA was activated by ARHGEF12 due to the inhibitory effect of miR-196-5p on arhgef12-3ʹUTR which was partially abolished by GS suppressing miR-196-5p expression. Activated RhoA further activated ROCK1-PTEN pathway and finally inhibited mTOR pathway, resulting in induced BECs proliferation. The anti-proliferation effect of GS was not observed in H292 cells. Conclusion These findings indicate that miR-361-5p/abca1 and miR-196-5p/arhgef12 axis mediated GS inducing dual anti-proliferation effects on BECs.
Collapse
Affiliation(s)
- Hui-Fen Shen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Ying Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Ping-Ping Qu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Yu Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, People's Republic of China
| | - Bing-Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, People's Republic of China
| | - Guo-Liang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, People's Republic of China
| |
Collapse
|
9
|
Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Emerging Evidence for Pleiotropism of Eosinophils. Int J Mol Sci 2021; 22:ijms22137075. [PMID: 34209213 PMCID: PMC8269185 DOI: 10.3390/ijms22137075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Medicine Department, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| |
Collapse
|
10
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
11
|
Extracellular Vesicles and Asthma-More Than Just a Co-Existence. Int J Mol Sci 2021; 22:ijms22094984. [PMID: 34067156 PMCID: PMC8124625 DOI: 10.3390/ijms22094984] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.
Collapse
|
12
|
Hirai K, Shirai T, Shimoshikiryo T, Ueda M, Gon Y, Maruoka S, Itoh K. Circulating microRNA-15b-5p as a biomarker for asthma-COPD overlap. Allergy 2021; 76:766-774. [PMID: 32713026 DOI: 10.1111/all.14520] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND It remains unclear how to characterize different subtypes of asthma and chronic obstructive pulmonary disease (COPD). We previously described serum periostin and chitinase-3-like protein 1 (YKL-40) as useful markers for asthma-COPD overlap (ACO). MicroRNAs (miRNAs) are now recognized as markers for identifying the pathophysiological features in several diseases. This study aimed to identify circulating miRNAs that could discriminate patients with ACO from patients with asthma or COPD. METHODS This study included two independent cohorts. First, we screened 84 miRNAs for expression levels in patients with ACO (n = 6) or asthma (n = 6) using a quantitative real-time PCR array. The miRNAs showing at least a 2-fold difference in the discovery phase were analyzed in 30 patients each with asthma, COPD, or ACO in the replication phase. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUROC). RESULTS Nine miRNAs were identified in the discovery phase. Five of these miRNAs (miR-148a-3p, miR-15b-5p, miR-223-3p, miR-23a-3p, and miR-26b-5p) had lower levels in ACO patients and could discriminate between ACO patients and patients with either asthma or COPD. miR-15b-5p was the most accurate miRNA for the discrimination of patients with ACO (AUROC, 0.71). Moreover, the combined assessment of miR-15b-5p, serum periostin, and YKL-40 (AUROC, 0.80) improved diagnostic accuracy for ACO compared with the combined model of periostin and YKL-40 (AUROC, 0.69). CONCLUSIONS Circulating miR-15b-5p is a potential marker for identifying patients with ACO. By elucidating the molecular pathways controlled by miRNAs, we may better understand the pathophysiology of ACO.
Collapse
Affiliation(s)
- Keita Hirai
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
- Laboratory of Clinical Pharmacogenomics Shizuoka General Hospital Shizuoka Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine Shizuoka General Hospital Shizuoka Japan
| | - Takayuki Shimoshikiryo
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
| | - Megumi Ueda
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine Department of Internal Medicine Nihon University School of Medicine Tokyo Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine Department of Internal Medicine Nihon University School of Medicine Tokyo Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics School of Pharmaceutical Sciences University of Shizuoka Shizuoka Japan
- Laboratory of Clinical Pharmacogenomics Shizuoka General Hospital Shizuoka Japan
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are small noncoding RNA molecules that are considered one of the fundamental regulatory mechanisms of gene expression. They are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. The purpose of this review is to present recent knowledge about the role of miRNAs in asthma and outline possible applications of miRNAs. RECENT FINDINGS A core set of miRNAs involved in asthma includes downregulated let-7 family, miR-193b, miR-375 as well as upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b and miR-155. Recently it has been shown that most of the involved miRNAs increase secretion of Th2 cytokines, decrease secretion of Th1 cytokines, promote differentiation of T cells towards Th2 or play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. The profiles of miRNAs correlate with clinical characteristics, including lung function, phenotype and severity of asthma. SUMMARY Recent publications confirmed crucial regulatory role of miRNAs in the pathomechanism of asthma. Some single miRNAs or their sets hold the promise for their use as asthma biomarkers facilitating diagnosis or prediction of treatment outcomes. They are also possible target of future therapies. The studies in this field are lacking though.
Collapse
|
14
|
Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med 2021; 11:jpm11020076. [PMID: 33525548 PMCID: PMC7912443 DOI: 10.3390/jpm11020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Severe eosinophilic asthma poses a serious health and economic problem, so new therapy approaches have been developed to control it, including biological drugs such as benralizumab, which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found between miR-1246 and eosinophil counts, including a number of exacerbations per year in these severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3, DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246, miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as early response markers.
Collapse
|
15
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
16
|
The Effect of Tobacco Smoking and Smoking Cessation on Urinal miRNAs in a Pilot Study. LIFE (BASEL, SWITZERLAND) 2020; 10:life10090191. [PMID: 32927854 PMCID: PMC7554876 DOI: 10.3390/life10090191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
The diseases associated with tobacco smoking affect miRNAs and small single-stranded non-coding RNAs. However, there are no data on urinal miRNAs in healthy smokers. We searched for the possible effect of smoking and smoking cessation on miRNA urine expression. For screening, Affymetrix miRNA 4.0 arrays were used in 33 urine samples obtained from six never smokers and from current smokers in three time-points before smoking cessation (n = 10), after short time abstinence (3–8 weeks), and after long-term abstinence (1 year). For validation, a quantitative (q) polymerase chain reaction (PCR) method was used in 93 urine samples obtained from 18 never smokers and 25 current smokers in three time-points before smoking cessation, after short time abstinence (3–8 weeks), and after long-term abstinence (1 year). In screening analysis, 5 miRNAs (hsa-miR-3620-5p, hsa-miR-3613-5p, hsa-miR-3921, hsa-miR-5094, and hsa-miR-337-3p) were dysregulated in current vs. never smokers after multiple testing corrections. Smoking cessation was accompanied by miRNA dysregulation that did not reach a significant level after a multiple testing correction. In validation analysis, three miRNAs correlated with cotinine, but they were affected neither after smoking cessation nor between current and never smokers. Our whole-genome screening of 2.578 miRNAs and validation suggest that tobacco smoking has no or only a small effect on urinal miRNAs.
Collapse
|