1
|
Virkud YV, Styles JN, Kelly RS, Patil SU, Ruiter B, Smith NP, Clish C, Wheelock CE, Celedón JC, Litonjua AA, Bunyavanich S, Weiss ST, Baker ES, Lasky-Su JA, Shreffler WG. Immunomodulatory metabolites in IgE-mediated food allergy and oral immunotherapy outcomes based on metabolomic profiling. Pediatr Allergy Immunol 2024; 35:e14267. [PMID: 39530396 PMCID: PMC11756372 DOI: 10.1111/pai.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. OBJECTIVE To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multiethnic cohorts and responses to OIT. METHODS Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N = 384), a Costa Rican cohort of children with asthma (N = 1040), and a peanut OIT trial (N = 20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterward). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. RESULTS Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q = 2.4 × 10-20) and linoleic acid derivatives (q = 3.8 × 10-5) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q = 4.1 × 10-8), eicosanoids (q = 7.9 × 10-7), and histidine pathways (q = .015). In particular, the bile acid lithocholate (4.97 [1.93, 16.14], p = .0027), the eicosanoid leukotriene B4 (3.21 [1.38, 8.38], p = .01), and the histidine metabolite urocanic acid (22.13 [3.98, 194.67], p = .0015) were higher in SU. CONCLUSIONS We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy.
Collapse
Affiliation(s)
- Yamini V. Virkud
- Department of Pediatrics, Division of Allergy and Immunology, Food Allergy Initiative, University of North Carolina, Chapel Hill, North Carolina, USA
- Massachusetts General Hospital for Children, Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Jennifer N. Styles
- Department of Pediatrics, Division of Allergy and Immunology, Food Allergy Initiative, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel S. Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Sarita U. Patil
- Massachusetts General Hospital for Children, Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Bert Ruiter
- Massachusetts General Hospital for Children, Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Neal P. Smith
- Massachusetts General Hospital for Children, Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clary Clish
- Broad Institute, Cambridge, Massachusetts, USA
| | - Craig E. Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juan C. Celedón
- Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center. Division of Pulmonary Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Augusto A. Litonjua
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Supinda Bunyavanich
- Icahn School of Medicine at Mount Sinai, Department of Genetics & Genomic Sciences and Department of Pediatrics, New York, New York, USA
| | - Scott T. Weiss
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Erin S. Baker
- University of North Carolina, Chapel Hill, Department of Chemistry, Chapel Hill, North Carolina, USA
| | - Jessica A. Lasky-Su
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Wayne G. Shreffler
- Massachusetts General Hospital for Children, Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
3
|
Dong J, Su D, Zhao B, Han J, Tu M, Zhang K, Wang F, An Y. Potential Protective Factors for Allergic Rhinitis Patients Infected with COVID-19. Curr Issues Mol Biol 2024; 46:6633-6645. [PMID: 39057037 PMCID: PMC11275266 DOI: 10.3390/cimb46070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
At the beginning of the 2019 coronavirus disease (COVID-19) pandemic, airway allergic diseases such as asthma and allergic rhinitis (AR) were considered as risk factors for COVID-19, as they would aggravate symptoms. With further research, more and more literature has shown that airway allergic disease may not be a high-risk factor, but may be a protective factor for COVID-19 infection, which is closely related to its low-level expression of the ACE2 receptor and the complex cytokines network as underlying molecular regulatory mechanisms. In addition, steroid hormones and age factors could not be ignored. In this review, we have summarized some current evidence on the relationship between COVID-19 and allergic rhinitis to highlight the underlying mechanisms of COVID-19 infection and provide novel insights for its prevention and treatment. The key findings show that allergic rhinitis and its related molecular mechanisms may have a protective effect against COVID-19 infection.
Collapse
Affiliation(s)
- Jiaoyue Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Dingyuan Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Virkud YV, Styles JN, Kelly RS, Patil SU, Ruiter B, Smith NP, Clish C, Wheelock CE, Celedón JC, Litonjua AA, Bunyavanich S, Weiss ST, Baker ES, Lasky-Su JA, Shreffler WG. Metabolomics of IgE-Mediated Food Allergy and Oral Immunotherapy Outcomes based on Metabolomic Profiling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308233. [PMID: 38952781 PMCID: PMC11216533 DOI: 10.1101/2024.05.31.24308233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Background The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. Objective To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multi-ethnic cohorts and responses to OIT. Methods Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N=384), a Costa Rican cohort of children with asthma (N=1040), and a peanut OIT trial (N=20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterwards). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. Results Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q=2.4×10 -20 ) and linoleic acid derivatives (q=3.8×10 -5 ) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q=4.1×10 -8 ), eicosanoids (q=7.9×10 -7 ), and histidine pathways (q=0.015). In particular, the bile acid lithocholate (4.97[1.93,16.14], p=0.0027), the eicosanoid leukotriene B4 (3.21[1.38,8.38], p=0.01), and the histidine metabolite urocanic acid (22.13[3.98,194.67], p=0.0015) were higher in SU. Conclusions We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy. Key Messages - Compared with unaffected controls, children with food allergy demonstrated higher levels of bile acids and distinct histidine/urocanic acid profiles, suggesting a potential role of these metabolites in food allergy. - In participants receiving oral immunotherapy for food allergy, those who were able to maintain tolerance-even after stopping therapyhad lower overall levels of bile acid and histidine metabolites, with the exception of lithocholic acid and urocanic acid, two metabolites that have roles in T cell differentiation that may increase the likelihood of remission in immunotherapy. Capsule summary This is the first study of plasma metabolomic profiles of responses to OIT in individuals with IgE-mediated food allergy. Identification of immunomodulatory metabolites in allergic tolerance may help identify mechanisms of tolerance and guide future therapeutic development.
Collapse
|
5
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
7
|
Castenmiller C, Nagy NA, Kroon PZ, Auger L, Desgagnés R, Martel C, Mirande L, Morel B, Roberge J, Stordeur V, Tropper G, Vézina LP, van Ree R, Gomord V, de Jong EC. A novel peanut allergy immunotherapy: Plant-based enveloped Ara h 2 Bioparticles activate dendritic cells and polarize T cell responses to Th1. World Allergy Organ J 2023; 16:100839. [PMID: 38020282 PMCID: PMC10679945 DOI: 10.1016/j.waojou.2023.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived eBioparticles (eBPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific eBPs. Methods Route and kinetics of eBP uptake were studied by (imaging) flow cytometry using monocyte-derived DCs incubated with fluorescently-labelled Ara h 2 eBPs or natural Ara h 2 (nAra h 2) in the presence or absence of inhibitors that block pathways involved in macropinocytosis, phagocytosis, and/or receptor-mediated uptake. DC activation was monitored by flow cytometry (maturation marker expression) and ELISA (cytokine production). T cell polarization was assessed by co-culturing DCs exposed to Ara h 2 eBPs or nAra h 2 with naïve CD4+ T cells, followed by flow cytometry assessment of intracellular IFNγ+ (Th1) and IL-13+ (Th2), and CD25+CD127-Foxp3+ regulatory T cells (Tregs). The suppressive activity of Tregs was tested using a suppressor assay. Results Ara h 2 eBPs were taken up by DCs through actin-dependent pathways. They activated DCs demonstrated by an induced expression of CD83 and CD86, and production of TNFα, IL-6, and IL-10. eBP-treated DCs polarized naïve CD4+ T cells towards Th1 cells, while reducing Th2 cell development. Furthermore, eBP-treated DCs induced reduced the frequency of Foxp3+ Tregs but did not significantly affect T cell IL-10 production or T cells with suppressive capacity. In contrast, DC activation and Th1 cell polarization were not observed for nAra h 2. Conclusion Ara h 2 eBPs activate DCs that subsequently promote Th1 cell polarization and reduce Th2 cell polarization. These characteristics mark Ara h 2 eBPs as a promising novel candidate for peanut AIT.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Zion Kroon
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Esther Christina de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Wanniang N, Boehm TM, Codreanu-Morel F, Divaret-Chauveau A, Assugeni I, Hilger C, Kuehn A. Immune signatures predicting the clinical outcome of peanut oral immunotherapy: where we stand. FRONTIERS IN ALLERGY 2023; 4:1270344. [PMID: 37849958 PMCID: PMC10577271 DOI: 10.3389/falgy.2023.1270344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Peanut allergy is a growing health concern that can cause mild to severe anaphylaxis as well as reduced quality of life in patients and their families. Oral immunotherapy is an important therapeutic intervention that aims to reshape the immune system toward a higher threshold dose reactivity and sustained unresponsiveness in some patients. From an immunological point of view, young patients, especially those under 3 years old, seem to have the best chance for therapy success. To date, surrogate markers for therapy duration and response are evasive. We provide a comprehensive overview of the current literature state regarding immune signatures evolving over the course of oral immunotherapy as well as baseline immune conditions prior to the initiation of treatment. Although research comparing clinical and immune traits in the first years of life vs. later stages across different age groups is limited, promising insights are available on immunological endotypes among peanut-allergic patients. The available data call for continued research to fill in gaps in knowledge, possibly in an integrated manner, to design novel precision health approaches for advanced therapeutic interventions in peanut allergy.
Collapse
Affiliation(s)
- Naphisabet Wanniang
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Theresa-Maria Boehm
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children’s Hospital, University of Nancy, Vandœuvre-lès-Nancy, France
- EA3450 DevAH, Faculty of Medecine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Isabela Assugeni
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Locke A, Hung L, Upton JEM, O'Mahony L, Hoang J, Eiwegger T. An update on recent developments and highlights in food allergy. Allergy 2023; 78:2344-2360. [PMID: 37087637 DOI: 10.1111/all.15749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
While both the incidence and general awareness of food allergies is increasing, the variety and clinical availability of therapeutics remain limited. Therefore, investigations into the potential factors contributing to the development of food allergy (FA) and the mechanisms of natural tolerance or induced desensitization are required. In addition, a detailed understanding of the pathophysiology of food allergies is needed to generate compelling, enduring, and safe treatment options. New findings regarding the contribution of barrier function, the effect of emollient interventions, mechanisms of allergen recognition, and the contributions of specific immune cell subsets through rodent models and human clinical studies provide novel insights. With the first approved treatment for peanut allergy, the clinical management of FA is evolving toward less intensive, alternative approaches involving fixed doses, lower maintenance dose targets, coadministration of biologicals, adjuvants, and tolerance-inducing formulations. The ultimate goal is to improve immunotherapy and develop precision-based medicine via risk phenotyping allowing optimal treatment for each food-allergic patient.
Collapse
Affiliation(s)
- Arielle Locke
- School of Medicine, University of Galway, Galway, Ireland
| | - Lisa Hung
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julia E M Upton
- Division of Immunology and Allergy, SickKids Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jennifer Hoang
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| |
Collapse
|
10
|
Ma CS. T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Curr Opin Immunol 2023; 81:102298. [PMID: 36870225 DOI: 10.1016/j.coi.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Inborn errors of immunity (IEI) are caused by monogenic variants that affect the host response to bacterial, viral, and fungal pathogens. As such, individuals with IEI often present with severe, recurrent, and life-threatening infections. However, the spectrum of disease due to IEI is very broad and extends to include autoimmunity, malignancy, and atopic diseases such as eczema, atopic dermatitis, and food and environmental allergies. Here, I review IEI that affect cytokine signaling pathways that dysregulate CD4+ T-cell differentiation, resulting in increased T-helper-2 (Th2) cell development, function, and pathogenicity. These are elegant examples of how rare IEI can provide unique insights into more common pathologies such as allergic disease that are impacting the general population at increased frequency.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Australia.
| |
Collapse
|
11
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
13
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
14
|
Dai H, Zheng R, Wang L, Wan J, Tong Y, Zhao W, Zhang W. ICS/LABA Combined With Subcutaneous Immunotherapy Modulates the Th17/Treg Imbalance in Asthmatic Children. Front Immunol 2022; 13:779072. [PMID: 35355985 PMCID: PMC8960042 DOI: 10.3389/fimmu.2022.779072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Rationale The imbalance of T helper (Th17) cell and regulatory T (Treg) cell are involved in allergic asthma pathogenesis. We hypothesized that ICS/LABA could modulate the Th17/Treg imbalance and that subcutaneous immunotherapy (SCIT) could coordinate with ICS/LABA to rebalance the dysfunction of Th17/Treg. Methods Thirty house dust mites (HDM) allergic asthmatic children and fifteen healthy control subjects were enrolled in this study. Fifteen asthmatic children were treated by ICS/LABA powder inhalation, while the other fifteen asthmatic children were treated by ICS/LABA powder inhalation combined with HDM-SCIT. Asthmatic subjects were followed up for 6 months, but 2 asthmatics treated with ICS/LABA were lost to follow-up. Flow cytometry was used to determine the proportions of Th17 and Treg in CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Serum levels of IL-17A and IL-10 were assessed by ELISA. Result ICS/LABA treatment significantly reduced the percentage of Th17 cells (1.252 ± 0.134% vs. 2.567 ± 0.386%), serum IL-17A (49.42 ± 2.643 pg/ml vs. 66.75 ± 3.442 pg/ml) and Th17/Treg ratio (0.194 ± 0.025 vs. 0.439 ± 0.072) compared to baseline (P<0.01). The ICS/LABA+HDM-SCIT treatment group showed similar reduction in the percentage of Th17 cells (1.11 ± 0.114% vs. 2.654 ± 0.276%), serum IL-17A (49.23 ± 2.131 pg/ml vs. 66.41 ± 2.616 pg/ml) and the Th17/Treg ratio (0.133 ± 0.015 vs. 0.4193 ± 0.050) (P<0.01). ICS/LABA+HDM-SCIT treatment group demonstrated elevated Treg percentages (8.483 ± 0.408% vs. 6.549 ± 0.299%) and serum IL-10 levels (127.4 ± 4.423 pg/ml vs. 93.15 ± 4.046 pg/ml), resulting in a lower Th17/Treg ratio than the ICS/LABA group. Conclusion ICS/LABA treatment regulates Th17/Treg imbalance mainly by mitigating Th17-induced inflammation in asthma patients. The addition of SCIT further enhanced such effect by upregulating Treg cells.
Collapse
Affiliation(s)
- Huan Dai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongying Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Like Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyi Wan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Tong
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhao
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Bordas‐Le Floch V, Berjont N, Batard T, Varese N, O’Hehir RE, Canonica WG, Zelm MC, Mascarell L. Coordinated IgG2 and IgE responses as a marker of allergen immunotherapy efficacy. Allergy 2022; 77:1263-1273. [PMID: 34551124 DOI: 10.1111/all.15107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/01/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND IgG2 responses are associated with repeated antigen exposure and display highly mutated variable domains. A recent study highlighted a role of IgG2+ memory B cells and allergen-specific IgG2 levels after a 3rd consecutive pre-seasonal sublingual allergen immunotherapy (AIT) with grass pollen tablet. Herein, we aim to explore changes in allergen-specific IgG2 in individuals undergoing house dust mite immunotherapy (HDM-AIT) and explore whether the interrelationship with other humoral responses (i.e., IgG4 and IgE) may discriminate between high and low responders. METHODS Levels of serum Dermatophagoides pteronyssinus and Dermatophagoides farinae-specific IgG2, IgG4, and IgE antibodies were measured by ELISA or ImmunoCap in a sub-group of individuals enrolled in a randomized, double-blind, placebo-controlled, sublingual AIT study evaluating the safety and efficacy of a 300 IR HDM tablet. RESULTS After 1-year sublingual AIT, HDM-specific serum IgG2 responses increase mostly in high versus low responders and are distinctive according to the clinical benefit. Higher correlation between HDM-specific IgG2, IgE, and/or IgG4 responses is seen in subjects benefiting the most from HDM-AIT as indicated by changes in Average Total Combined Scores. More strikingly, statistically significant correlation between HDM-specific IgG2 and IgE responses is only observed in individuals stratified as high responders. CONCLUSIONS We provide evidence for coordinated serum immune responses upon AIT in HDM-allergic subjects exhibiting high clinical benefit when compared with low responders. Assessing HDM-specific IgE, IgG2, and IgG4 in serum could be used as follow-up combined markers to support decision as to AIT continuation and/or adaptation.
Collapse
Affiliation(s)
| | - Nathalie Berjont
- Innovation & Science Department Stallergenes Greer Antony France
| | - Thierry Batard
- Innovation & Science Department Stallergenes Greer Antony France
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne Vic Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne Vic Australia
| | - Walter G Canonica
- Personalized Medicine, Asthma and Allergy Humanitas Clinical and Research Center IRCCS Rozzano Milan Italy
- Department of Biomedical Sciences Humanitas University Milan Italy
| | - Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne Vic Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne Vic Australia
| | | |
Collapse
|
16
|
Cao S, Nagler CR. Interpreting success or failure of peanut oral immunotherapy. J Clin Invest 2022; 132:155255. [PMID: 35040441 PMCID: PMC8759774 DOI: 10.1172/jci155255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oral immunotherapy (OIT) was recently approved by the US FDA. However, not all patients respond to OIT, and there is a high likelihood of regaining sensitization to peanuts after cessation of treatment. It is important, therefore, to identify biomarkers that impact and predict OIT outcomes. In this issue of the JCI, Monian, Tu, and colleagues describe distinct subsets of peanut-reactive CD4+ Th cell phenotypes and gene signatures with relevance to OIT outcomes using single-cell RNA-Seq and paired T cell receptor (TCR) α/β sequencing. The insights obtained will inform the development of therapeutics that target these Th cell phenotypes or deplete peanut-specific Th2 cells to achieve sustained nonresponsiveness in food allergy.
Collapse
Affiliation(s)
- Shijie Cao
- Pritzker School of Molecular Engineering and
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering and.,Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
18
|
Single-cell characterization of dog allergen-specific T cells reveals T H2 heterogeneity in allergic individuals. J Allergy Clin Immunol 2021; 149:1732-1743.e15. [PMID: 34863852 DOI: 10.1016/j.jaci.2021.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Allergen-specific type 2 CD4+ TH2 cells are critically involved in the pathogenesis of IgE-mediated allergic diseases. However, the heterogeneity of the TH2 response has only recently been appreciated. OBJECTIVE We sought to characterize at the single-cell level the ex vivo phenotype, transcriptomic profile, and T-cell receptor (TCR) repertoire of circulating CD4+ T cells specific to the major dog allergens Can f 1, Can f 4, and Can f 5 in subjects with and without dog allergy. METHODS Dog allergen-specific memory CD4+ T cells were detected ex vivo by flow cytometry using a CD154-based enrichment assay and single-cell sorted for targeted gene expression analysis and TCR sequencing. RESULTS Dog allergen-specific T-cell responses in allergic subjects were dominantly of TH2 type. TH2 cells could be phenotypically further divided into 3 subsets, which consisted of TH2-like (CCR6-CXCR3-CRTH2-), TH2 (CCR6-CXCR3-CRTH2+CD161-), and TH2A (CCR6-CXCR3-CRTH2+CD161+CD27-) cells. All these subsets were nonexistent within the allergen-specific T-cell repertoire of healthy subjects. Single-cell transcriptomic profiling confirmed the TH2-biased signature in allergen-specific T cells from allergic subjects and revealed a TH1/TH17 signature in nonallergic subjects. TCR repertoire analyses showed that dog allergen-specific T cells were diverse and allergic subjects demonstrated less clonality compared to nonallergic donors. Finally, TCR and transcriptomic analyses revealed a close relationship between TH2-like, TH2, and TH2A cells, with the last ones representing the most terminally differentiated and highly polarized subtype. CONCLUSIONS Our study demonstrates heterogeneity within allergen-specific TH2 cells at the single-cell level. The results may be utilized for improving immune monitoring after allergen immunotherapy and for designing targeted immunomodulatory approaches.
Collapse
|
19
|
Monian B, Tu AA, Ruiter B, Morgan DM, Petrossian PM, Smith NP, Gierahn TM, Ginder JH, Shreffler WG, Love JC. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J Clin Invest 2021; 132:150634. [PMID: 34813505 PMCID: PMC8759778 DOI: 10.1172/jci150634] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
Food allergy affects an estimated 8% of children in the United States. Oral immunotherapy (OIT) is a recently approved treatment, with outcomes ranging from sustained tolerance to food allergens to no apparent benefit. The immunological underpinnings that influence clinical outcomes of OIT remain largely unresolved. Using single-cell RNA-Seq and paired T cell receptor α/β (TCRα/β) sequencing, we assessed the transcriptomes of CD154+ and CD137+ peanut-reactive T helper (Th) cells from 12 patients with peanut allergy longitudinally throughout OIT. We observed expanded populations of cells expressing Th1, Th2, and Th17 signatures that further separated into 6 clonally distinct subsets. Four of these subsets demonstrated a convergence of TCR sequences, suggesting antigen-driven T cell fates. Over the course of OIT, we observed suppression of Th2 and Th1 gene signatures in effector clonotypes but not T follicular helper–like (Tfh-like) clonotypes. Positive outcomes were associated with stronger suppression of Th2 signatures in Th2A-like cells, while treatment failure was associated with the expression of baseline inflammatory gene signatures that were present in Th1 and Th17 cell populations and unmodulated by OIT. These results demonstrate that differential clinical responses to OIT are associated with both preexisting characteristics of peanut-reactive CD4+ T cells and suppression of a subset of Th2 cells.
Collapse
Affiliation(s)
- Brinda Monian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Ang A Tu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Bert Ruiter
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, United States of America
| | - Duncan M Morgan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Patrick M Petrossian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, United States of America
| | - Todd M Gierahn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Julia H Ginder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, United States of America
| | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| |
Collapse
|
20
|
Luce S, Batard T, Bordas-Le Floch V, Le Gall M, Mascarell L. Decrease in CD38 + TH2A cell frequencies following immunotherapy with house dust mite tablet correlates with humoral responses. Clin Exp Allergy 2021; 51:1057-1068. [PMID: 33938071 DOI: 10.1111/cea.13891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND In line with evidence for a role of pathogenic TH2A in seasonal allergies, we previously showed that individuals suffering from food allergy exhibited a decrease in circulating TH2A cells following multi-food immunotherapy. Herein, we aim to confirm the decline of TH2A cells in individuals undergoing house dust mite immunotherapy (HDM-AIT) and extend our observation to a new subset of CD38 expressing activated TH2A cells. METHODS The frequencies of TH2A and CD38+ TH2A cells were analysed by flow cytometry in blood cells from 182 Japanese HDM-allergic individuals included in a 1-year clinical trial assessing the efficacy of HDM tablets. Interrelationship between these cellular responses and humoral mite-specific IgE and IgG4 levels was further explored. RESULTS A decrease in TH2A cells was observed in both active and placebo groups. Interestingly, CD38+ TH2A cell frequencies significantly decreased only in active groups. In younger individuals (16-30 years), both TH2A and CD38+ TH2A cells were significantly reduced in active groups but not in the placebo group. Significant inverse correlations were observed in the course of HDM-AIT between changes in TH2A or CD38+ TH2A frequencies and IgG4 antibody levels. CONCLUSIONS We confirm the value of monitoring TH2A cell frequencies in allergic individuals and extend this observation to perennial allergy to HDM. We highlight the interest of CD38 to better identify the subset of TH2A cell down-regulated by AIT. Finally, correlated cellular and humoral responses observed in immunoreactive individuals stress that coordinated pathways occur in the adaptive responses during AIT.
Collapse
|
21
|
Andrea M, Susanna B, Francesca N, Enrico M, Alessandra V. The emerging role of type 2 inflammation in asthma. Expert Rev Clin Immunol 2020; 17:63-71. [PMID: 33280431 DOI: 10.1080/1744666x.2020.1860755] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Bronchial asthma (BA) is a chronic airways inflammatory disease. Based on the biological mechanisms that underline the disease, asthma has been classified as type 2 or non-type 2 phenotype.Areas covered: An emerging role has been identified for group 2 innate lymphoid cells (ILC2s) able to produce the classical type 2 cytokines. The role of Th2 cells and IL-4 is crucial in the pathogenesis of allergic BA as supported by asthma models. IL-13, shares many biological functions with IL-4 such as induction of IgE synthesis and regulation of eosinophil trafficking. However, IL-13 does not induce Th2 cell differentiation. The Authors reviewed evidence on the new concept of type 2 inflammation and the cellular and molecular network behind this process. Literature data in the PubMed were analyzed for peer-reviewed articles published until September 2020.Expert opinion: The current trend is to consider Th2- and ILC2-driven pathways as two separate pathogenic mechanisms, recent data underscore that adaptive Th2- and innate cell responses represent two integrated systems in the production of IL-4, IL-5, and IL-13 leading to the current 'concept' of type 2 inflammation. This review highlights the role of Th2 cells and ILC2 in the recent new concept of type 2 inflammation.
Collapse
Affiliation(s)
- Matucci Andrea
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Bormioli Susanna
- Immunology and Cellular Therapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Nencini Francesca
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Maggi Enrico
- Immunology Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Vultaggio Alessandra
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|