1
|
Bala AA, Bedraoui A, El Mejjad S, Willard NK, Hatcher JD, Iliuk A, Curran JE, Sanchez EE, Suntravat M, Salazar E, El Fatimy R, Daouda T, Galan JA. Bioinformatics-Guided Identification and Quantification of Biomarkers of Crotalus atrox Envenoming and its Neutralization by Antivenom. Mol Cell Proteomics 2025:100956. [PMID: 40147718 DOI: 10.1016/j.mcpro.2025.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Quantitative mass spectrometry-based proteomics of extracellular vesicles (EVs) provides systems-level exploration for the analysis of snakebite envenoming (SBE) as the venom progresses, causing injuries such as hemorrhage, trauma, and death. Predicting EV biomarkers has become an essential aspect of this process, offering an avenue to explore the specific pathophysiological changes that occur after envenoming. As new omics approaches emerge to advance our understanding of SBE, further bioinformatics analyses are warranted to incorporate the use of antivenom or other therapeutics to observe their global impact on various biological processes. Herein, we used an in vivo BALB/c mouse model and proteomics approach to analyze the physiological impacts of SBE and antivenom neutralization in intact animals; this was followed by bioinformatics methods to predict potential EV biomarkers. Groups of mice (n=5) were intramuscularly injected with Saline or Crotalus atrox venom. After 30 minutes, the mice received saline or antivenom (ANTIVIPMYN®) by intravenous injection. After 24 hours, blood was collected to extract the plasma to analyze the EV content and determine the exposome of C. atrox venom as well as the neutralizing capabilities of the antivenom. The predicted biomarkers consistently and significantly sensitive to antivenom treatment are Slc25a4, Rps8, Akr1c6, Naa10, Sult1d1, Hadha, Mbl2, Zc3hav, Tgfb1, Prxl2a, Coro1c, Tnni1, Ryr3, C8b, Mycbp, and Cfhr4. These biomarkers pointed towards specific physiological alterations, causing significant metabolic changes in mitochondrial homeostasis, lipid metabolism, immunity, and cytolysis, indicating hallmarks of traumatic injury. Here, we present a more comprehensive view of murine plasma EV proteome and further identify significant changes in abundance for potential biomarkers associated with antivenom treatment. The predicted biomarkers have the potential to enhance current diagnostic tools for snakebite management, thereby contributing significantly to the evolution of treatment strategies in the diagnosis and prognosis of SBE.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Anas Bedraoui
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Salim El Mejjad
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Nicholas K Willard
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Joseph D Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, USA
| | - Joanne E Curran
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tariq Daouda
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Jacob A Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
2
|
Padilla-Pantoja FD, Fakih-Gomez N, Muñoz-Gonzalez C, Prazeres S, Galindo-Ferreiro A. Temporary Delayed Hypersensitivity Reaction to Botulinum Toxin-A After COVID-19 Vaccination: A Case Series. Aesthetic Plast Surg 2024; 48:5162-5170. [PMID: 39046483 DOI: 10.1007/s00266-024-04274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The occurrence of a hypersensitivity reaction with the injection of botulinum toxin type A (BTX-A) in cosmetic use is a rare complication. We report the largest case series of temporary delayed hypersensitivity reaction (DHR) with BTX-A following COVID-19 vaccination and the first cases to incobotulinum toxin A (incoBTX-A). METHODS A retrospective multicentric case series of patients who developed a DHR to BTX-A after COVID-19 vaccination. RESULTS Twelve patients were treated with BTX-A injections for the management of facial rhytids. The age range was between 29 and 45 years. Ten (83.3%) were female. Ten (83.3%) patients received incoBTX-A, and two received onabotulinum toxin A (onaBTX-A). All patients had COVID-19 vaccination (mRNA vaccine) between 1 and 7 months before. Within an average time of 24 h after BTX-A injection, all patients developed progressive facial swelling and erythema that were more prominent at the injection points. Intradermal allergic tests to BTX-A were performed in six (50%) patients, and the results were all negative. Adequate clinical control was achieved with systemic corticosteroids and antihistamines. After 1 year with no further vaccination, a new BTX-A treatment (provocation test) was performed in all patients with no secondary effects. CONCLUSION Previous COVID-19 vaccination and the absence of new adverse events with further BTX-A injections suggest a temporary DHR. Clinicians should be aware of the importance of immunization history and its potential post-vaccine immunogenic effects with BTX-A. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Nabil Fakih-Gomez
- Department of Facial Plastic & Cranio-Maxillo-Facial Surgery, Fakih Hospital, Khaizaran, Lebanon
| | - Cristina Muñoz-Gonzalez
- Department of Facial Plastic & Cranio-Maxillo-Facial Surgery, Fakih Hospital, Khaizaran, Lebanon
| | - Sandra Prazeres
- Department of Ophthalmology, Hospital CUF Porto, Porto, Portugal
| | - Alicia Galindo-Ferreiro
- Department of Ophthalmology, Hospital Universitario Rio Hortega, C/Dulzaina 2, 47012, Valladolid, Spain.
| |
Collapse
|
3
|
Fernandez-Santamaria R, Ariza A, Bogas G, Salas M, Calvo-Serrano S, Frecha C, Mayorga C, Torres MJ, Fernandez TD. Involvement of autologous myeloid dendritic cells in the evaluation of immediate hypersensitivity reactions to betalactams. Clin Immunol 2024; 262:110166. [PMID: 38432423 DOI: 10.1016/j.clim.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Amoxicillin (AX) and clavulanic acid (CLV) are the betalactam antibiotics (BLs) most used to treat bacterial infections, although they can trigger immediate hypersensitivity reactions (IDHRs). The maturation analysis of monocyte-derived dendritic cells (moDCs) and their capacity to induce proliferative response of lymphocytes are useful to test the sensitisation to a drug, although without optimal sensitivity. Nevertheless, this can be improved using directly isolated DCs such as myeloid DCs (mDCs). METHODS mDCs and moDCs were obtained from 28 allergic patients (AP), 14 to AX, 14 to CLV and from 10 healthy controls (HC). The expression of CCR7, CD40, CD80, CD83, and CD86 was analysed after stimulation with both BLs. We measured the capacity of these pre-primed DCs to induce drug-specific activation of different lymphocyte subpopulations, CD3+, CD4+, CD8+, CD4+Th1, and CD4+Th2, by flow cytometry. RESULTS Higher expression of CCR7, CD40, CD80, CD83, and CD86 was observed on mDCs compared to moDCs from AP after stimulating with the culprit BL. Similarly, mDCs induced higher proliferative response, mainly of CD4+Th2 cells, compared to moDCs, reaching up to 67% of positive results with AX, whereas of only 25% with CLV. CONCLUSIONS mDCs from selective AP efficiently recognise the culprit drug which trigger the IDHR. mDCs also trigger proliferation of lymphocytes, mainly those with a Th2 cytokine pattern, although these responses depend on the nature of the drug, mimicking the patient's reaction.
Collapse
Affiliation(s)
- Ruben Fernandez-Santamaria
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Departamento de Medicina, Universidad de Málaga-UMA, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain.
| | - Gador Bogas
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - Maria Salas
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - Silvia Calvo-Serrano
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Departamento de Medicina, Universidad de Málaga-UMA, Málaga, Spain
| | - Cecilia Frecha
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - Maria Jose Torres
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Departamento de Medicina, Universidad de Málaga-UMA, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - Tahia Diana Fernandez
- Allergy Research Group, IBIMA Plataforma BIONAND, Málaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga-UMA, Málaga, Spain
| |
Collapse
|
4
|
Luo L, Chen N, Li Z, Zhao C, Dong Y, Wang L, Li X, Zhou W, Li Y, Gao C, Guo X. Knowledge mapping and global trends of drug hypersensitivity from 2013 to 2023: A bibliometric analysis. Immun Inflamm Dis 2024; 12:e1245. [PMID: 38629759 PMCID: PMC11022627 DOI: 10.1002/iid3.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Drug hypersensitivity is a major global public health issue with a significant increase in prevalence in populations. Here, we provide a deep insight into the frontier hotspot and future direction in the field of drug hypersensitivity. METHODS A knowledge map is portrayed based on publications related to drug hypersensitivity from Web of Science Core Collection using CiteSpace. Co-occurrence relationships of countries, institutes, authors, journals, references, and keywords are constructed. According to the co-occurrence relationships, hotspots and future trends are overviewed. RESULTS The United States ranked first in the world and China with the second highest publications was the only developing country. Torres, Mayorga, and Blanca were highly productive authors. Harvard University was the institution with the most research publications. Keywords co-occurrence analysis suggested applications in emerging causes, potential mechanisms, and clinical diagnosis as the research hotspots and development frontiers. CONCLUSION Research on drug hypersensitivity is in a rapid development stage and an emerging trend in reports of anaphylaxis to polyethylene glycols is identified. Developing algorithms for understanding the standardization process of culprit drugs, clinical manifestations, and diagnostic methods will be the focus of future direction. In addition, a better understanding of the mechanisms to culprit drugs with immunological precise phenotypic definitions and high-throughput platforms is needed.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Niannian Chen
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Zhanpeng Li
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Chunmei Zhao
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Yiming Dong
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Likai Wang
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Xiaoqian Li
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Wenchao Zhou
- School of Public Health, Academy of Medical ScienceShanxi Medical UniversityTaiyuanChina
| | - Yingna Li
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
| | - Cairong Gao
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
| | - Xiangjie Guo
- Department of Pathology, School of Forensic MedicineShanxi Medical UniversityTaiyuanChina
- Translational Medicine Research CenterShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Doña I, Torres MJ, Celik G, Phillips E, Tanno LK, Castells M. Changing patterns in the epidemiology of drug allergy. Allergy 2024; 79:613-628. [PMID: 38084822 DOI: 10.1111/all.15970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 03/01/2024]
Abstract
Drug allergy (DA) remains a complex and unaddressed problem worldwide that often deprives patients of optimal medication choices and places them at risk for life-threatening reactions. Underdiagnosis and overdiagnosis are common and due to the lack of standardized definitions and biomarkers. The true burden of DA is unknown, and recent efforts in data gathering through electronic medical records are starting to provide emerging patterns around the world. Ten percent of the general population engaged in health care claim to have a DA, and the most common label is penicillin allergy. Up to 20% of emergency room visits for anaphylaxis are due to DA and 15%-20% of hospitalized patients report DA. It is estimated that DA will increase based on the availability and use of new and targeted antibiotics, vaccines, chemotherapies, biologicals, and small molecules, which are aimed at improving patient's options and quality of life. Global and regional variations in the prevalence of diseases such as human immunodeficiency virus and mycobacterial diseases, and the drugs used to treat these infections have an impact on DA. The aim of this review is to provide an update on the global impact of DA by presenting emerging data on drug epidemiology in adult and pediatric populations.
Collapse
Affiliation(s)
- Immaculada Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Maria Jose Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
- Departamento de Medicina, Universidad de Málaga, Malaga, Spain
| | - Gulfem Celik
- Division of Immunology and Allergy, Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Elizabeth Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Luciana Kase Tanno
- Division of Allergy, Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11 University of Montpellier-INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|