1
|
Garcia FM, de Sousa VP, Silva-Dos-Santos PPE, Fernandes IS, Serpa FS, de Paula F, Mill JG, Bueno MRP, Errera FIV. Copy Number Variation in Asthma: An Integrative Review. Clin Rev Allergy Immunol 2025; 68:4. [PMID: 39755867 DOI: 10.1007/s12016-024-09015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
Abstract
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma. In this context, an integrative review was conducted to identify the genes and pathways involved, the location, size, and classes of CNVs, as well as their contribution to asthma risk, severity, control, and response to treatment. As a result of the review, 16 articles were analyzed, from different types of observational studies, such as case-control, cohort studies and genotyped-proband or trios design, that have been carried out in populations from different countries, ethnicities, and ages. Chromosomes 12 and 17 were the most studied in three publications each. CNVs located on 12 chromosomes were associated with asthma, the majority being found on chromosome 6p and 17q, of the deletion type, encompassing 30 different coding-protein genes and one pseudogene region. Six genes with CNVs were identified as significant expression quantitative locus (eQTLs) with mean expression in asthma-related tissues, such as the lung and whole blood. The phenotypic variability of asthma may hinder the clinical application of these findings, but the research shows the importance of investigating these genetic variations as possible biomarkers in asthma patients.
Collapse
Affiliation(s)
- Fernanda Mariano Garcia
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Priscila Pinto E Silva-Dos-Santos
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Faradiba Sarquis Serpa
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
| | - Flávia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Maria Rita Passos Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Dehghani A, Wang L, Garssen J, Styla E, Leusink-Muis T, Van Ark I, Folkerts G, Van Bergenhenegouwen J, Braber S. Synbiotics, a promising approach for alleviating exacerbated allergic airway immune responses in offspring of a preclinical murine pollution model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104591. [PMID: 39577477 DOI: 10.1016/j.etap.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Exposure to pollutants like environmental cigarette smoke (CS) poses a major global health risk, affecting individuals from an early age. Therefore, this study explores how postnatal synbiotic supplementation affects allergic asthma symptoms in house-dust-mite (HDM)- challenged offspring maternally exposed to CS. In HDM-allergic offspring of CS-exposed dams, lung resistance was elevated, but synbiotic supplementation effectively reduced this resistance. Elevated eosinophil BALF counts following HDM challenge were intensified in pups maternally exposed to CS. Similarly, Th2 cell activation and serum IgE and IgG1 levels were more pronounced in HDM-allergic offspring of CS-exposed mothers. Synbiotics reduced eosinophil numbers and serum IgE and IgG1, and tended to decrease Th2 cell infiltration and activation. Synbiotics promoted beneficial gut bacteria like Bifidobacterium and Akkermansia. In conclusion, early-life synbiotic intervention mitigated allergic asthma associated with maternal air pollution exposure, highlighting the potential of synbiotics for clinical evaluation as a strategy to prevent allergy development in offspring.
Collapse
Affiliation(s)
- Ali Dehghani
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Department of Public and Occupational Health, Amsterdam University of Medical Science, Amsterdam, Netherlands
| | - Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Danone Nutricia Research, Utrecht, Netherlands
| | - Eirini Styla
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ingrid Van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen Van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Danone Nutricia Research, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Danone Nutricia Research, Utrecht, Netherlands.
| |
Collapse
|
3
|
Daëron M. The function of antibodies. Immunol Rev 2024; 328:113-125. [PMID: 39180466 DOI: 10.1111/imr.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies have multiple biological activities. They can both recognize and act on specific antigens. They can protect against and cause serious diseases, enhance and inhibit antibody responses, enable survival, and threaten life. Which among their many, often antagonistic properties explains that antibodies were selected half a billion years ago and transmitted to mammals across millions of generations? In other words, what is the function of antibodies? Here I examine how their structure endows antibodies with unique cognitive and effector properties that contribute to their multiple biological activities. I show that rather than specific properties, antibodies have large functional repertoires. They have a cognitive repertoire and an effector repertoire that are selected from larger available repertoires, themselves drawn at random from even larger virtual repertoires. These virtual repertoires provide the adaptive immune system with immense, constantly renewed, reservoirs of cognitive and effector functions that can be actualized at any time according to the context. I propose that such a flexibility, which enables living individuals to adapt to a rapidly changing environment, and even deal with an unknown future, may provide a better selective advantage than any particular function.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d'histoire et de philosophie des sciences et des techniques (IHPST), Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
| |
Collapse
|
4
|
Shen L, Bai X, Zhao L, Zhou J, Chang C, Li X, Cao Z, Li Y, Luan P, Li H, Zhang H. Integrative 3D genomics with multi-omics analysis and functional validation of genetic regulatory mechanisms of abdominal fat deposition in chickens. Nat Commun 2024; 15:9274. [PMID: 39468045 PMCID: PMC11519623 DOI: 10.1038/s41467-024-53692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Chickens are the most abundant agricultural animals globally, with controlling abdominal fat deposition being a key objective in poultry breeding. While GWAS can identify genetic variants associated with abdominal fat deposition, the precise roles and mechanisms of these variants remain largely unclear. Here, we use male chickens from two lines divergently selected for abdominal fat deposition as experimental models. Through the integration of genomic, epigenomic, 3D genomic, and transcriptomic data, we build a comprehensive chromatin 3D regulatory network map to identify the genetic regulatory mechanisms that influence abdominal fat deposition in chickens. Notably, we find that the rs734209466 variant functions as an allele-specific enhancer, remotely enhancing the transcription of IGFBP2 and IGFBP5 by the binding transcription factor IRF4. This interaction influences the differentiation and proliferation of preadipocytes, which ultimately affects phenotype. This work presents a detailed genetic regulatory map for chicken abdominal fat deposition, offering molecular targets for selective breeding.
Collapse
Affiliation(s)
- Linyong Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xue Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Liru Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Jiamei Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Cheng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xinquan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Zhiping Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Yumao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Fang H. Missing regulatory effects and viral triggers explored for childhood-onset asthma. CELL GENOMICS 2024; 4:100652. [PMID: 39265526 PMCID: PMC11480830 DOI: 10.1016/j.xgen.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Missing regulatory effects of asthma genetic risks might be hidden within specific cell states. In this issue of Cell Genomics, Djeddi et al.1 uncover how airway epithelial cells, when activated by rhinovirus, influence genetic susceptibility to childhood-onset asthma, and this preview emphasizes the need to address these missing regulatory effects across diverse cell states.
Collapse
Affiliation(s)
- Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
7
|
Kaviany P, Shah A. Current Practices in Pediatric Asthma Care. Clin Chest Med 2024; 45:611-623. [PMID: 39069325 DOI: 10.1016/j.ccm.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This article is a comprehensive review of the latest knowledge and developments on pediatric asthma. It serves as a guide for general practitioners and subspecialists who treat asthma. The pathophysiology and critical features of asthma that should be addressed and the latest therapies available are discussed. The areas where further investigation is needed are also highlighted.
Collapse
Affiliation(s)
- Parisa Kaviany
- Division of Pulmonary & Sleep Medicine, Children's National Hospital, George Washington University School of Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Avani Shah
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 155 East Superior Street, Box #48, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Rupar N, Šelb J, Košnik M, Zidarn M, Andrejević S, Čulav L, Grivčeva-Panovska V, Korošec P, Rijavec M. The CC2D2B is a novel genetic modifier of the clinical phenotype in patients with hereditary angioedema due to C1 inhibitor deficiency. Gene 2024; 919:148496. [PMID: 38679185 DOI: 10.1016/j.gene.2024.148496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Hereditary angioedema due to C1 inhibitor deficiency (HAE-C1-INH) is a rare genetic disorder caused by pathogenic variants in the SERPING1 gene and characterised by swelling and a highly variable clinical phenotype. We aimed to identify novel modifying genetic factors predisposing to the clinical symptoms. We performed whole exome sequencing (WES) and comprehensive bioinformatic analysis in symptomatic and asymptomatic (three duos) family members with HAE-C1-INH. Selected variants identified using WES (present in all asymptomatic and absent in symptomatic patients) were determined using Sanger sequencing. We included 88 clinically well-characterised HAE-C1-INH patients from south-eastern Europe (nine asymptomatic) from 42 unrelated families. We identified 39 variants in 23 genes (ANKRD36C, ARGFX, CC2D2B, IL5RA, IRF2BP2, LGR6, MRPL45, MUC3A, NPIPA1, NRG1, OR5M1, OR5M3, OR5M10, OR8U3, PLCL1, PRSS3, PSKH2, PTPRA, RTP4, SEZ6, SLC25A5, VWA3A, and ZNF790). We selected variants in CC2D2B and PLCL1, which were analysed using Sanger sequencing in the entire group of HAE-C1-INH. We found significant differences in the frequencies of the CC2D2B c.190A>G (rs17383738) variant between symptomatic and asymptomatic patients, where heterozygotes were more common in asymptomatic HAE-C1-INH patients in comparison to symptomatic patients (55 % vs 23%; P = 0.049, OR = 4.24, 95% CI 1.07-14.69). Our study identified novel genetic factors that modify the clinical variability of HAE-C1-INH. We further demonstrated, in a large cohort, the importance of the CC2D2B gene as a disease-modifying factor. Based on linkage disequilibrium analysis, the CCNJ and ZNF518A genes might also be involved in the clinical variability of HAE-C1-INH.
Collapse
Affiliation(s)
- Nina Rupar
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
| | - Julij Šelb
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mihaela Zidarn
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Slađana Andrejević
- Clinic of Allergology and Immunology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljerka Čulav
- General Hospital Šibenik, 22000 Šibenik, Croatia
| | - Vesna Grivčeva-Panovska
- Dermatology Clinic, School of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Stikker B, Trap L, Sedaghati-Khayat B, de Bruijn MJW, van Ijcken WFJ, de Roos E, Ikram A, Hendriks RW, Brusselle G, van Rooij J, Stadhouders R. Epigenomic partitioning of a polygenic risk score for asthma reveals distinct genetically driven disease pathways. Eur Respir J 2024; 64:2302059. [PMID: 38901884 PMCID: PMC11358516 DOI: 10.1183/13993003.02059-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Individual differences in susceptibility to developing asthma, a heterogeneous chronic inflammatory lung disease, are poorly understood. Whether genetics can predict asthma risk and how genetic variants modulate the complex pathophysiology of asthma are still debated. AIM To build polygenic risk scores for asthma risk prediction and epigenomically link predictive genetic variants to pathophysiological mechanisms. METHODS Restricted polygenic risk scores were constructed using single nucleotide variants derived from genome-wide association studies and validated using data generated in the Rotterdam Study, a Dutch prospective cohort of 14 926 individuals. Outcomes used were asthma, childhood-onset asthma, adulthood-onset asthma, eosinophilic asthma and asthma exacerbations. Genome-wide chromatin analysis data from 19 disease-relevant cell types were used for epigenomic polygenic risk score partitioning. RESULTS The polygenic risk scores obtained predicted asthma and related outcomes, with the strongest associations observed for childhood-onset asthma (2.55 odds ratios per polygenic risk score standard deviation, area under the curve of 0.760). Polygenic risk scores allowed for the classification of individuals into high-risk and low-risk groups. Polygenic risk score partitioning using epigenomic profiles identified five clusters of variants within putative gene regulatory regions linked to specific asthma-relevant cells, genes and biological pathways. CONCLUSIONS Polygenic risk scores were associated with asthma(-related traits) in a Dutch prospective cohort, with substantially higher predictive power observed for childhood-onset than adult-onset asthma. Importantly, polygenic risk score variants could be epigenomically partitioned into clusters of regulatory variants with different pathophysiological association patterns and effect estimates, which likely represent distinct genetically driven disease pathways. Our findings have potential implications for personalised risk mitigation and treatment strategies.
Collapse
Affiliation(s)
- Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- L. Trap and B. Sedaghati-Khayat made an equal contribution to this study
| | - Bahar Sedaghati-Khayat
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- L. Trap and B. Sedaghati-Khayat made an equal contribution to this study
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emmely de Roos
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- J. van Rooij and R. Stadhouders contributed equally to this article as lead authors and supervised the work
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- J. van Rooij and R. Stadhouders contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
10
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
11
|
Kumagai T, Iwata A, Furuya H, Kato K, Okabe A, Toda Y, Kanai M, Fujimura L, Sakamoto A, Kageyama T, Tanaka S, Suto A, Hatano M, Kaneda A, Nakajima H. A distal enhancer of GATA3 regulates Th2 differentiation and allergic inflammation. Proc Natl Acad Sci U S A 2024; 121:e2320727121. [PMID: 38923989 PMCID: PMC11228505 DOI: 10.1073/pnas.2320727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.
Collapse
Affiliation(s)
- Takashi Kumagai
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Hiroki Furuya
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Kodai Kato
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba260-8670, Japan
| | - Yosuke Toda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Mizuki Kanai
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba260-8670, Japan
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Masahiko Hatano
- Biomedical Research Center, Chiba University, Chiba260-8670, Japan
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Health and Disease Omics Center, Chiba University, Chiba260-8670, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba260-8670, Japan
| |
Collapse
|
12
|
Miculinić A, Mrkić Kobal I, Kušan T, Turkalj M, Plavec D. Current Challenges in Pediatric Asthma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:632. [PMID: 38929213 PMCID: PMC11201822 DOI: 10.3390/children11060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Asthma is a chronic lung disease characterized by reversible bronchoconstriction and inflammation of the bronchi. Its increasing prevalence in childhood as well as different triggers make asthma a challenging disease in several ways: defining its phenotype/endotype, the diagnostic approach (especially in younger children), therapeutic options, and systematic follow-up. Considering these problems, this review approaches the current status and limitations of guidelines used for asthma management in children. It also emphasizes the key points which could lead to a better understanding and the direction to take in future studies.
Collapse
Affiliation(s)
- Andrija Miculinić
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia (M.T.)
| | - Iva Mrkić Kobal
- Clinic for Pediatric Medicine Helena, Ulica Kneza Branimira 71, 10000 Zagreb, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Tin Kušan
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia (M.T.)
| | - Mirjana Turkalj
- Children’s Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia (M.T.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Davor Plavec
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Prima Nova, Healthcare Institution, Zagrebačka Cesta 132A, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Hwang SH, Shin H, Stybayeva G, Kim DH. Perinatal Risk Factors for Asthma and Allergic Rhinitis in Children and Adolescents. Clin Exp Otorhinolaryngol 2024; 17:168-176. [PMID: 38584131 DOI: 10.21053/ceo.2024.00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVES In this study, we evaluated the associations between birth-related exposures, postnatal factors, and the risk of allergic rhinitis and asthma in children and adolescents. METHODS We performed a comprehensive search of five literature databases up to May 2023. To quantify the associations of birth-related exposures (birth weight, delivery mode, prematurity, sex, maternal age, and parental allergy history) and postnatal factors (birth order, number of siblings, breastfeeding exclusivity, and breastfeeding duration) with allergic disease, we calculated pooled odds ratios and 95% confidence intervals. We conducted subgroup analyses for allergic disease type, birth order, number of siblings, and parental allergy history. The methodological quality of the identified studies was evaluated using the Newcastle-Ottawa Scale. RESULTS This meta-analysis included 31 studies, encompassing 218,899 patients in total. The birth-related exposures of low birth weight, maternal age, and prematurity (less than 37 weeks gestation) were not significantly associated with the risk of asthma or allergic rhinitis during childhood or adolescence. Male sex, family history of allergy, and cesarean delivery were linked to an elevated risk of asthma or allergic rhinitis. Among postnatal factors, exclusive breastfeeding, breastfeeding for longer than 6 months, second or later birth order, and having siblings exhibited protective effects against allergic diseases in offspring. CONCLUSION The risks of allergic rhinitis and asthma were elevated in male patients, those delivered by cesarean section, and those with a family history of allergy. Conversely, exclusive breastfeeding, breastfeeding for longer than 6 months, and having siblings corresponded to a reduced risk of respiratory allergic diseases.
Collapse
Affiliation(s)
- Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Hyesoo Shin
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
15
|
Kaur S, Arpna, Jha D, Khosla R, Kaur M, Parkash J, Sharma A, Changotra H. Autophagy related gene 5 polymorphism rs17587319 (C/G) in asthmatic patients in North Indian population. J Asthma 2024; 61:472-478. [PMID: 38009708 DOI: 10.1080/02770903.2023.2289156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
Objective: Genetic background and environmental stimuli play an important role in asthma, which is an individual's hyper-responsiveness to these stimuli leading to airway inflammation. Autophagy Related Gene 5 (ATG5) plays a critical role in the autophagy pathway and has been shown to be involved in asthma. The genetic polymorphisms in the ATG5 have been reported to predispose individuals to asthma. The role of single nucleotide polymorphism rs17587319 (C/G) of ATG5 in asthma has not been studied so far. Materials and methods: In this study, we in silico analysed rs17587319 (C/G) using web-based tools Human Splice Finder (HSF) and RegulomeDB and further a case-control study was conducted that included 187 blood samples (94 asthmatic and 93 healthy controls). Results: In silico analysis suggested alteration of splicing signals by this intronic variant. The samples were genotyped by applying the PCR-RFLP method. The MAF obtained was 0.022 and 0.043 in healthy controls and asthmatic individuals, respectively. The statistical analysis revealed no association (allelic model, OR = 2.02, 95%CI = 0.59-6.83, p = 0.25; co-dominant model, OR = 2.06, 95%CI = 0.6-7.12, p = 0.24) of rs17587319 (C/G) with the susceptibility to asthma in the north Indian population. Conclusions: In conclusion, rs17587319 (C/G) of ATG5 does not predispose individuals to asthma in our part of the world. Further studies are needed including more number of samples to ascertain the role of this polymorphism in asthma.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Arpna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Durga Jha
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College Jalandhar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
16
|
Zhou X, Sampath V, Nadeau KC. Effect of air pollution on asthma. Ann Allergy Asthma Immunol 2024; 132:426-432. [PMID: 38253122 PMCID: PMC10990824 DOI: 10.1016/j.anai.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms, variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Exposure to air pollution has been linked to an increased risk of asthma development and exacerbation. This review aims to comprehensively summarize recent data on the impact of air pollution on asthma development and exacerbation. Specifically, we reviewed the effects of air pollution on the pathogenic pathways of asthma, including type 2 and non-type 2 inflammatory responses, and airway epithelial barrier dysfunction. Air pollution promotes the release of epithelial cytokines, driving TH2 responses, and induces oxidative stress and the production of proinflammatory cytokines. The enhanced type 2 inflammation, furthered by air pollution-induced dysfunction of the airway epithelial barrier, may be associated with the exacerbation of asthma. Disruption of the TH17/regulatory T cell balance by air pollutants is also related to asthma exacerbation. As the effects of air pollution exposure may accumulate over time, with potentially stronger impacts in the development of asthma during certain sensitive life periods, we also reviewed the effects of air pollution on asthma across the lifespan. Future research is needed to better characterize the sensitive period contributing to the development of air pollution-induced asthma and to map air pollution-associated epigenetic biomarkers contributing to the epigenetic ages onto asthma-related genes.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
17
|
Wang J, Zhou Y, Zhang M, Wu Y, Wu Q, Su W, Xu M, Wu J, Zhang M, Shuai J, Tang W, Lv J, Wu M, Xia Z. YTHDF1-CLOCK axis contributes to pathogenesis of allergic airway inflammation through LLPS. Cell Rep 2024; 43:113947. [PMID: 38492220 DOI: 10.1016/j.celrep.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
N6-methyladenosine (m6A) modification has been implicated in many cell processes and diseases. YTHDF1, a translation-facilitating m6A reader, has not been previously shown to be related to allergic airway inflammation. Here, we report that YTHDF1 is highly expressed in allergic airway epithelial cells and asthmatic patients and that it influences proinflammatory responses. CLOCK, a subunit of the circadian clock pathway, is the direct target of YTHDF1. YTHDF1 augments CLOCK translation in an m6A-dependent manner. Allergens enhance the liquid-liquid phase separation (LLPS) of YTHDF1 and drive the formation of a complex comprising dimeric YTHDF1 and CLOCK mRNA, which is distributed to stress granules. Moreover, YTHDF1 strongly activates NLRP3 inflammasome production and interleukin-1β secretion leading to airway inflammatory responses, but these phenotypes are abolished by deleting CLOCK. These findings demonstrate that YTHDF1 is an important regulator of asthmatic airway inflammation, suggesting a potential therapeutic target for allergic airway inflammation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Wu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Wu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wu
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Shuai
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiajia Lv
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Wu
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Wu C, Hu X, Jiang Y, Tang J, Ge H, Deng S, Li X, Feng J. Involvement of ERK and Oxidative Stress in Airway Exposure to Cadmium Chloride Aggravates Airway Inflammation in Ovalbumin-Induced Asthmatic Mice. TOXICS 2024; 12:235. [PMID: 38668459 PMCID: PMC11054730 DOI: 10.3390/toxics12040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Inhalation represents a significant route of cadmium (Cd) exposure, which is associated with an elevated risk of lung diseases. This research study aims to evaluate the impact of repeated low-dose cadmium inhalation on exacerbating airway inflammation induced by ovalbumin (OVA) in asthma-afflicted mice. Mice were grouped into four categories: control (Ctrl), OVA, cadmium chloride (CdCl2), and OVA + cadmium chloride (OVA + CdCl2). Mice in the OVA group displayed increased airway mucus secretion and peribronchial and airway inflammation characterized by eosinophil cell infiltration, along with elevated levels of Th2 cytokines (IL-4, IL-5, IL-13) in bronchoalveolar lavage fluids (BALFs). These parameters were further exacerbated in the OVA + CdCl2 group. Additionally, the OVA + CdCl2 group exhibited higher levels of the oxidative stress marker malondialdehyde (MDA), greater activity of glutathione peroxidase (GSH-Px), and higher phosphorylation of extracellular regulated kinase (ERK) in lung tissue. Treatment with U0126 (an ERK inhibitor) and α-tocopherol (an antioxidant) in the OVA + CdCl2 group resulted in reduced peribronchial and airway inflammation as well as decreased airway mucus secretion. These findings indicate that CdCl2 exacerbates airway inflammation in OVA-induced allergic asthma mice following airway exposure. ERK and oxidative stress are integral to this process, and the inhibition of these pathways significantly alleviates the adverse effects of CdCl2 on asthma exacerbation.
Collapse
Affiliation(s)
- Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Xiaozhao Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
19
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Guillien A, Slama R, Andrusaityte S, Casas M, Chatzi L, de Castro M, de Lauzon-Guillain B, Granum B, Grazuleviciene R, Julvez J, Krog NH, Lepeule J, Maitre L, McEachan R, Nieuwenhuijsen M, Oftedal B, Urquiza J, Vafeiadi M, Wright J, Vrijheid M, Basagaña X, Siroux V. Associations between combined urban and lifestyle factors and respiratory health in European children. ENVIRONMENTAL RESEARCH 2024; 242:117774. [PMID: 38036203 DOI: 10.1016/j.envres.2023.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Previous studies identified some environmental and lifestyle factors independently associated with children respiratory health, but few focused on exposure mixture effects. This study aimed at identifying, in pregnancy and in childhood, combined urban and lifestyle environment profiles associated with respiratory health in children. METHODS This study is based on the European Human Early-Life Exposome (HELIX) project, combining six birth cohorts. Associations between profiles of pregnancy (38 exposures) and childhood (84 exposures) urban and lifestyle factors, identified by clustering analysis, and respiratory health were estimated by regression models adjusted for confounders. RESULTS Among the 1033 included children (mean ± standard-deviation (SD) age: 8.2 ± 1.6 years old, 47% girls) the mean ± SD forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were 99 ± 13% and 101 ± 14%, respectively, and 12%, 12% and 24% reported ever-asthma, wheezing and rhinitis, respectively. Four profiles of pregnancy exposures and four profiles of childhood exposures were identified. Compared to the reference childhood exposure profile (low exposures), two exposure profiles were associated with lower levels of FEV1. One profile was characterized by few natural spaces in the surroundings and high exposure to the built environment and road traffic. The second profile was characterized by high exposure to meteorological factors and low levels of all other exposures and was also associated with an increased risk of ever-asthma and wheezing. A pregnancy exposure profile characterized by high exposure levels to all risk factors, but a healthy maternal lifestyle, was associated with a lower risk of wheezing and rhinitis in children, compared to the reference pregnancy profile (low exposures). CONCLUSION This comprehensive approach revealed pregnancy and childhood profiles of urban and lifestyle exposures associated with lung function and/or respiratory conditions in children. Our findings highlight the need to pursue the study of combined exposures to improve prevention strategies for multifactorial diseases such as asthma.
Collapse
Affiliation(s)
- Alicia Guillien
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Rémy Slama
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Berit Granum
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361, Academia, Lithuania
| | - Jordi Julvez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigatió Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Norun Hjertager Krog
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Bente Oftedal
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Valérie Siroux
- University of Grenoble Alpes, French National Institute of Health and Medical Research, French National Center for Scientific Research, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
21
|
Scadding GK, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, Conti DM, De Corso E, Diamant Z, Gray C, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept for prevention and disease-modification? A EUFOREA paper. Part 1-allergic asthma. FRONTIERS IN ALLERGY 2024; 4:1291185. [PMID: 38352244 PMCID: PMC10863454 DOI: 10.3389/falgy.2023.1291185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
Asthma, which affects some 300 million people worldwide and caused 455,000 deaths in 2019, is a significant burden to suffers and to society. It is the most common chronic disease in children and represents one of the major causes for years lived with disability. Significant efforts are made by organizations such as WHO in improving the diagnosis, treatment and monitoring of asthma. However asthma prevention has been less studied. Currently there is a concept of pre- diabetes which allows a reduction in full blown diabetes if diet and exercise are undertaken. Similar predictive states are found in Alzheimer's and Parkinson's diseases. In this paper we explore the possibilities for asthma prevention, both at population level and also investigate the possibility of defining a state of pre-asthma, in which intensive treatment could reduce progression to asthma. Since asthma is a heterogeneous condition, this paper is concerned with allergic asthma. A subsequent one will deal with late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Head of ORL-Deptartment, Clinic Barcelona, Barcelona, Spain
- Chair of ORL, University of Barcelona, Barcelona, Spain
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Deptarment of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Gray
- Paediatric Allergist, Red Cross Children’s Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Division of Applied Health Sciences, Centre of Academic Primary Care, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Former Head of the Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Wang T, Ren Y, Yin X, Sun Y. Editorial: Genetics of inflammatory and immune diseases. Front Genet 2024; 14:1355794. [PMID: 38259613 PMCID: PMC10801178 DOI: 10.3389/fgene.2023.1355794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Tianyu Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yunqing Ren
- Department of Dermatology, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Yonghu Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
23
|
Hendriks RW. Interleukin-10 multitasking in allergic airway inflammation. Cell Mol Immunol 2023; 20:1530-1532. [PMID: 37990033 PMCID: PMC10686977 DOI: 10.1038/s41423-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Plaza V, Domínguez-Ortega J, González-Segura Alsina D, Lo Re D, Sicras-Mainar A. Comprehensive Observational Study in a Large Cohort of Asthma Patients after Adding LAMA to ICS/LABA. Pharmaceuticals (Basel) 2023; 16:1609. [PMID: 38004474 PMCID: PMC10675027 DOI: 10.3390/ph16111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Adding LAMA to LABA/ICS is recommended to improve control in patients with persistent asthma. METHODS This observational, retrospective, before-and-after study considered patients diagnosed with asthma who started LABA/ICS + LAMA treatment (triple therapy, TT) between 1 January 2017 and 31 December 2018 and had been treated with LABA/ICS (dual therapy, DT) in the year before. Changes in lung function and exacerbation rates, healthcare resource utilization, and healthcare and non-healthcare costs (€2019) were estimated in patients with asthma in clinical practices in Spain. Data from computerized medical records from seven Spanish regions were collected ±1 year of LAMA addition. RESULTS 4740 patients (64.1 years old [SD: 16.3]) were included. TT reduced the incidence of exacerbations by 16.7% (p < 0.044) and the number of patients with exacerbations by 8.5% (p < 0.001) compared to previous DT. The rate of patients with severe exacerbations requiring systemic corticosteroids and their hospitalization rates significantly decreased by 22.5% and 29.5%. TT significantly improved FEV1, FVC, and FEV1/FVC, saving €571/patient for society. Younger patients with asthma (18-44 years old) and patients with severe asthma (FEV1 < 60%) performed better upon the initiation of TT. CONCLUSIONS TT reduced asthma exacerbations, improved lung function and reduced healthcare costs vs. DT, particularly in patients requiring systemic corticosteroids to treat severe exacerbations.
Collapse
Affiliation(s)
- Vicente Plaza
- Servicio de Neumología y Alergia, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
| | - Javier Domínguez-Ortega
- Department of Allergy, La Paz University Hospital, Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
| | | | - Daniele Lo Re
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, Universidad de Granada, 18071 Granada, Spain;
| | | |
Collapse
|
25
|
李 靖. [Recent research on the relationship between pulmonary microbiome and asthma endotypes in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1078-1083. [PMID: 37905767 PMCID: PMC10621051 DOI: 10.7499/j.issn.1008-8830.2304056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 11/02/2023]
Abstract
Bronchial asthma is not considered a singular disease, but rather a collection of syndromes with multiple phenotypes and mechanisms that involve various signaling pathways. It typically emerges during the preschool years, and its etiology is intricate and diverse. In recent years, the advancement of high-throughput sequencing technology has revealed that early alterations in lung microbiota may be associated with asthma incidence and progression. Moreover, significant variations in lung microbiota have been observed among different airway inflammation profiles, known as asthma endotypes. Hence, a comprehensive understanding of the characteristics of lung microbiota in children with asthma can aid in managing disease progression and improving long-term prognosis. Additionally, such insights may spark novel approaches to diagnosing and treating childhood asthma.
Collapse
|
26
|
Cheng Y, Tang Q, Li Y, Xu X, Zhen X, Chang N, Huang S, Zeng J, Luo F, Ouyang Q, Peng L, Ma G, Wang Y. The polymorphisms of miR-146a SNPs are associated with asthma in Southern Chinese Han population. Gene 2023; 879:147587. [PMID: 37364699 DOI: 10.1016/j.gene.2023.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Asthma, a prevalent disease characterized by innate and adaptive immune responses, has been associated with several risk factors including miR-146a. To better understand the potential impact of miR-146a SNPs on asthma susceptibility and clinical features in Southern Chinese Han population, we conducted a case-control to analyze two functional SNPs (rs2910164 and rs57095329) of the miR-146a (394 patients with asthma and 395 healthy controls). Our findings suggest that the rs2910164 C/G genotype may increase the risk for asthma in females, while the rs57095329 G/G genotype may be involved in the regulation of clinical characteristics of males with asthma. In addition, we demonstrated that the SNPs rs2910164 C/G and rs57095329 A/G variations functionally affected the miR-146a levels in patients with asthma, and may alter structure of miR-146a. Our data are the first to suggest that miR-146a SNPs may be significantly associated with onset asthma in Southern Chinese Han population. Our studies may provide new insight into the potential significance of miR-146a SNPs in asthma.
Collapse
Affiliation(s)
- Yisen Cheng
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; School of Pharmaceutical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Qiqi Tang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Yu Li
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Xusan Xu
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Xiangfan Zhen
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Ning Chang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Si Huang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Jieqing Zeng
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Fei Luo
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Liuquan Peng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| | - Guoda Ma
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan 528300, China.
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China.
| |
Collapse
|
27
|
Romero-Tapia SDJ, Guzmán Priego CG, Del-Río-Navarro BE, Sánchez-Solis M. Advances in the Relationship between Respiratory Viruses and Asthma. J Clin Med 2023; 12:5501. [PMID: 37685567 PMCID: PMC10488270 DOI: 10.3390/jcm12175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Several studies have reported that viral infection is closely associated with the onset, progression, and exacerbation of asthma. The purpose of this review is to summarize the role that viral infections have in the pathogenesis of asthma onset and exacerbations, as well as discuss interrelated protective and risk factors of asthma and current treatment options. Furthermore, we present current knowledge of the innate immunological pathways driving host defense, including changes in the epithelial barrier. In addition, we highlight the importance of the genetics and epigenetics of asthma and virus susceptibility. Moreover, the involvement of virus etiology from bronchiolitis and childhood wheezing to asthma is described. The characterization and mechanisms of action of the respiratory viruses most frequently related to asthma are mentioned.
Collapse
Affiliation(s)
- Sergio de Jesús Romero-Tapia
- Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Tabasco, Mexico
| | - Crystell Guadalupe Guzmán Priego
- Cardiometabolism Laboratory, Research Center, Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Tabasco, Mexico;
| | | | - Manuel Sánchez-Solis
- Paediatric Pulmonology Unit, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
28
|
Tibrewal C, Modi NS, Bajoria PS, Dave PA, Rohit RK, Patel P, Gandhi SK, Gutlapalli SD, Gottlieb P, Nfonoyim J. Therapeutic Potential of Vitamin D in Management of Asthma: A Literature Review. Cureus 2023; 15:e41956. [PMID: 37588324 PMCID: PMC10425698 DOI: 10.7759/cureus.41956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Asthma, a prevalent chronic respiratory illness, affects a substantial number of individuals worldwide, with an estimated occurrence of 358 million cases. Evidence for the benefits of vitamin D in treating asthma is ambiguous and contradictory. The goal of this review article is to emphasize the value of vitamin D supplementation for people with asthma. Medical subject headings (MeSH) terminology was used to search the PubMed Central, MEDLINE, and PubMed databases for articles on vitamin D supplementation in asthma patients. We selected a comprehensive range of academic writing examples published in English, encompassing various types of texts. The study included a total of 37 papers, of which 18 were randomized controlled trials (RCTs) and five were meta-analyses. The use of a corticosteroid, with or without the inclusion of an adrenergic receptor agonist, improves the disease's symptoms, but it is unable to halt the long-term decline in lung function. Over the past 20 years, vitamin D has developed into a potent immunomodulator, influencing both immunological and structural cells, most notably airway smooth muscle cells. Among adults with low 25-hydroxyvitamin D levels, the administration of vitamin D supplements was found to have positive effects in a reduction in the likelihood of asthma exacerbations requiring systemic corticosteroids. The provision of vitamin D supplements during pregnancy significantly reduces the risk of asthma in babies. Both children and adults with inadequate vitamin D levels who have been given vitamin D supplements have shown evident preventive effects against asthma. Therefore, we conclude there should be a lower threshold for prescribing vitamin D to patients with asthma who are vitamin D deficient.
Collapse
Affiliation(s)
- Charu Tibrewal
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | | | - Parth S Bajoria
- Department of Internal Medicine, GMERS Medical College Gandhinagar, Gandhinagar, IND
| | | | - Ralph Kingsford Rohit
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Priyansh Patel
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, Shri M.P. Shah Government Medical College, Jamnagar, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Gottlieb
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jay Nfonoyim
- Department of Pulmonary and Critical Care Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
29
|
Chen S, Lv J, Luo Y, Chen H, Ma S, Zhang L. Bioinformatic Analysis of Key Regulatory Genes in Adult Asthma and Prediction of Potential Drug Candidates. Molecules 2023; 28:molecules28104100. [PMID: 37241840 DOI: 10.3390/molecules28104100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a common chronic disease that is characterized by respiratory symptoms including cough, wheeze, shortness of breath, and chest tightness. The underlying mechanisms of this disease are not fully elucidated, so more research is needed to identify better therapeutic compounds and biomarkers to improve disease outcomes. In this present study, we used bioinformatics to analyze the gene expression of adult asthma in publicly available microarray datasets to identify putative therapeutic molecules for this disease. We first compared gene expression in healthy volunteers and adult asthma patients to obtain differentially expressed genes (DEGs) for further analysis. A final gene expression signature of 49 genes, including 34 upregulated and 15 downregulated genes, was obtained. Protein-protein interaction and hub analyses showed that 10 genes, including POSTN, CPA3, CCL26, SERPINB2, CLCA1, TPSAB1, TPSB2, MUC5B, BPIFA1, and CST1, may be hub genes. Then, the L1000CDS2 search engine was used for drug repurposing studies. The top approved drug candidate predicted to reverse the asthma gene signature was lovastatin. Clustergram results showed that lovastatin may perturb MUC5B expression. Moreover, molecular docking, molecular dynamics simulation, and computational alanine scanning results supported the notion that lovastatin may interact with MUC5B via key residues such as Thr80, Thr91, Leu93, and Gln105. In summary, by analyzing gene expression signatures, hub genes, and therapeutic perturbation, we show that lovastatin is an approved drug candidate that may have potential for treating adult asthma.
Collapse
Affiliation(s)
- Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Jiahao Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyuan Luo
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hongjiang Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Shuwei Ma
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| |
Collapse
|