1
|
Kushawaha B, Yadav R, Garg SK, Pelosi E. The impact of mercury exposure on male reproduction: Mechanistic insights. J Trace Elem Med Biol 2025; 87:127598. [PMID: 39827527 DOI: 10.1016/j.jtemb.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Mercury is a pervasive environmental toxin with significant negative effects on human health. In occupational settings, incidents such as the Minamata and Niigata disease in Japan and the large-scale methylmercury poisoning in Iraq have highlighted the severe health impacts of mercury exposure. It is widely accepted that all forms of mercury including methylmercury and mercuric chloride have the potential to induce toxic effects in mammals, and there is increasing concern about the impact of environmentally relevant levels of mercury on reproductive functions. This review summarizes current knowledge on the mechanisms of mercury toxicity, focusing specifically on its impact on male reproductive health across species. We searched the literature and found that mercury exposure is associated with testicular degeneration, altered spermatogenesis, and Leydig cell deformation. In addition, mercury can disrupt sperm motility, steroidogenesis and interfere with the hypothalamic-pituitary-gonadal axis by generation of reactive oxygen species, inducing mitochondrial dysfunction, epigenetic changes, and DNA damage. At the molecular level, mercury has been found to dysregulate the expression of key steroidogenic and spermatogenic genes, significantly reducing overall fertility potential. However, specific mechanisms of action remain to be fully elucidated. Similarly, comprehensive data on the potential transgenerational effects of paternal mercury exposure are lacking. In this review, we discuss both animal and human studies, and highlight the need for further research due to lack of standardization and control for variables such as lifestyle, immune system function, and exposure concentrations.
Collapse
Affiliation(s)
- Bhawna Kushawaha
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA
| | - Rajkumar Yadav
- U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Ansundhan Sansthan (DUVASU), Mathura, India
| | - Satish Kumar Garg
- Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | - Emanuele Pelosi
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA.
| |
Collapse
|
2
|
Akarsu SA, Gür C, Küçükler S, Akaras N, İleritürk M, Kandemir FM. Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride. ENVIRONMENTAL TOXICOLOGY 2024; 39:4803-4814. [PMID: 39096083 DOI: 10.1002/tox.24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Mercury (Hg) is one of the most toxic heavy metals that damage testicular tissue. Mercury chloride (HgCl2) is one of the most toxic forms of mercury that can easily cross biological membranes. Syringic acid (SA) is a natural flavonoid found in many vegetables and fruits. In this study, the effects of SA against HgCl2-induced testicular damage in rats were determined by biochemical, histopathological, and spermatological analyses. For this study, a total of 35 Spraque Dawley rats were used. Rats were divided into five groups as control, HgCl2, SA 50, HgCl2 + SA 25, and HgCl2 + SA 50. HgCl2 was administered intraperitoneal (IP) at a dose of 1.23 mg/kg/bw, while SA was administered by oral gavage at doses of 25 and 50 mg/kg/bw. The rats were then sacrificed, and testicular tissues were removed. HgCl2 caused an increase in MDA level and a decrease in SOD, CAT, and GPx activity and GSH level in the testicular tissue of rats. HgCl2 is involved in the increase of eIF2-α, PERK, ATF-4, ATF-6, CHOP, NF-κB, TNF-α, IL-1β, Apaf-1, Bax, and Caspase-3 mRNA expression. HgCl2 caused a decrease in sperm motility, an increase in the rate of abnormal sperm and sperm DNA fragmentation in rats. However, SA oral administration dose-dependently inhibited endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis and preserved epididymal sperm quality and testicular histoarchitectures. In conclusion, SA had protective effects against HgCl2-induced testicular oxidative damage, inflammation, endoplasmic reticulum stress, and apoptosis.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Laboratory and Veterinary Health, Horasan Vocational School, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Baralić K, Javorac D, Marić Đ, Đukić-Ćosić D, Bulat Z, Antonijević Miljaković E, Anđelković M, Antonijević B, Aschner M, Buha Djordjevic A. Benchmark dose approach in investigating the relationship between blood metal levels and reproductive hormones: Data set from human study. ENVIRONMENT INTERNATIONAL 2022; 165:107313. [PMID: 35635964 DOI: 10.1016/j.envint.2022.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | | | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
4
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Azubuike-Osu SO, Famurewa AC, David JC, Abi I, Ogbu PN, Oparaji CK, Nwaeze KG, Akunna GG. Virgin Coconut Oil Resists Arsenic-Induced Cerebral Neurotoxicity and Cholesterol Imbalance via Suppression of Oxidative Stress, Adenosine Deaminase and Acetylcholinesterase Activities in Rats. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211016962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) is a classic neurotoxicant; its pathogenesis is associated with oxidative stress and oxidative stress-mediated cholinergic deficits. This study explored antioxidant activity of virgin coconut oil (VCO) against sodium arsenite-induced oxidative stress-mediated cerebral neurotoxicity in rats. Eighteen rats were divided into 3 groups- Normal control, As control and VCO + As. The VCO (5 mL/kg) was given once daily by oral gavage from day 1 to day 21, while As (10 mg/kg) was given once daily by oral gavage from day 15 to day 21. Cerebral superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), adenosine deaminase (ADA) and acetylcholinesterase (AchE) activities were analysed. Nitric oxide (NO), lipid profile, phospholipid (PL), and reduced glutathione (GSH) were also evaluated in cerebral homogenate. The cerebrum was sectioned for histological analysis. Administration of As induced significant depressions in antioxidant enzymes, GSH, PL, and HDL-c compared to normal control. Levels of MDA, NO, total cholesterol and activities of ADA, AchE in the cerebrum were markedly increased by As compared to normal rats. Lipid profile indices and PL were prominently altered by As. Histopathological study supported the biochemical findings through extensive cerebral damage. In contrast, oral supplementation of VCO prior to and along with As treatment significantly attenuated the As-induced biochemical alterations and restored near-normal histology. VCO attenuates cerebral neurotoxicity by strengthening endogenous antioxidant defence and cholinergic function via counteracting free-radical-mediated arsenic toxicity.
Collapse
Affiliation(s)
- Sharon O. Azubuike-Osu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Japheth C. David
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Innocent Abi
- Department of Physiology, Benue State University, Makurdi, Nigeria
| | - Patience N. Ogbu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Chiedozie K. Oparaji
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Konyefom G. Nwaeze
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Godson G. Akunna
- Department of Anatomy, College of Medicine and Health Sciences, Bowen University, Nigeria
| |
Collapse
|
6
|
Counteracting effects of heavy metals and antioxidants on male fertility. Biometals 2021; 34:439-491. [PMID: 33761043 DOI: 10.1007/s10534-021-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Infertility is regarded as a global health problem affecting 8-12% of couples. Male factors are regarded as the main cause of infertility in 40% of infertile couples and contribute to this condition in combination with female factors in another 20% of cases. Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Several studies have shown the deteriorative impact of heavy metals on sperm parameters and fertility in human subjects or animal models. Other studies have pointed to the role of antioxidants in counteracting the detrimental effects of heavy metals. In the currents study, we summarize the main outcomes of studies that assessed the counteracting impacts of heavy metal and antioxidants on male fertility. Based on the provided data from animal studies, it seems rational to administrate appropriate antioxidants in persons who suffer from abnormal sperm parameters and infertility due to exposure to toxic elements. Yet, further human studies are needed to approve the beneficial effects of these antioxidants.
Collapse
|
7
|
Sadogh A, Gorji N, Moeini R. Herbal foodstuffs in Avicenna's recommended diet to improve sperm quality and increase male fertility; an evidence-based approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:47-70. [PMID: 33544522 DOI: 10.1515/jcim-2020-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
Attention to diet was considered important issues in improvement of men infertility in Persian Medicine (PM). The purpose of this study was to extract herbal foodstuffs introduced by Avicenna, one of the greatest PM physicians to improve the semen production and to provide evidence of their impact on the basis of current studies."Canon of Medicine", the most important Avecinna's book, was searched with keywords equivalent to semen, fertility and infertility, main herbal foodstuffs were extracted and was searched with keywords sperm, semen, infertility, and fertility in Google scholar, PubMed and Scopus databases. Manuscripts from 1950 up to December 2019 were selected and reviewed. Almond, Onion, Chickpea, Garlic, Coconut, Palm date, Sesame, Fenugreek, Carrot, Fig, Grapes, Pistachio, Hazelnut and Walnut are among main foodstuffs which recommended by Avicenna and there is also evidence that they have positive effects on testosterone production and improvement of various sperm parameters, including count, motility and morphology. Containing large amount of different macro and micronutrients such as vitamins including vit B, C, A and E, minerals such as Mg, Se, Zn, Cu and Fe, important unsaturated fatty acids such as linoleic and oleic acids, amino acids such as lysine and arginine and phytochemicals such as polyphenols, flavonoids, triterpenes and steroids can be considered as a main factor in the effectiveness of these foodstuffs. Designing a diet based on the fruits, vegetables, nuts and seeds that Avicenna has recommended, may be effective in treating male infertility but further studies are needed to clarify this issue. Research on the effectiveness of his other recommended foodsuffs may also offer new treatments and supplements for this purpose.
Collapse
Affiliation(s)
- Azita Sadogh
- Student Reseaerch Committee, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Department of History of Medical Science, School of Persian medicine, Babol University of Medical Sciences, Tehran, Iran
| | - Reihaneh Moeini
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
8
|
Nayak G, Rao A, Mullick P, Mutalik S, Kalthur SG, Adiga SK, Kalthur G. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112922. [PMID: 32422360 DOI: 10.1016/j.jep.2020.112922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is known for its nutritional and ethno medicinal values due to the presence of wide array of phytochemicals with multiple biological activities. We have previously reported that ethanolic extract of Moringa oleifera leaves (MOE) ameliorated cyclophosphamide (CP)-induced testicular toxicity and improved functional integrity of spermatozoa as well as spermatogenic cells. AIM OF THE STUDY The present study was planned to investigate whether the mitigation of CP-induced testicular toxicity by MOE is mediated via modulation of endocrine profile, genes associated with function of different cell types and enhancement of DNA repair response in spermatogonial cells. MATERIALS AND METHODS Adult Swiss albino mice (8 week) were injected with CP (100 mg/kg, one dose in a week for 3 weeks) and MOE (100 mg/kg, 5 doses in a week for 4 weeks) either alone or in combination intraperitoneally. At 35 day post CP injection (first dose), the functional characteristics such as count, motility, head morphology and DNA integrity were assessed in epididymal spermatozoa. Key reproductive hormones like testosterone, follicle stimulating hormone (FSH) and Inhibin B concentration were analyzed in serum and testis. In addition, mRNA expression of genes pertaining to the function of Leydig, Sertoli and spermatogonial cells as well as antioxidant enzymes were evaluated in the testis. To understand the DNA damage and repair process in germ cells, prepubertal (2 week) mice were administered with single dose of CP (200 mg/kg) and/or MOE (100 mg/kg) and analyzed for expression of DNA damage (γ-H2AX, P53 and Caspase3) and repair genes (Rad51 and Ku80) in isolated spermatogonial cells at various time points after treatment. RESULTS CP administration resulted in decrease in count, motility and increase in morphological defects and DNA damage in spermatozoa. Testosterone level was marginally decreased while there was a significant increase in FSH (p < 0.001) and decrease in inhibin B (p < 0.05) observed in CP treated mice. Administration of MOE prior to CP, improved sperm functional characteristics, decreased FSH and increased inhibin B levels. Expression of Abp was down-regulated while Transferrin, Fshr and Gata4 (Sertoli cell specific genes) were up-regulated in testis treated with CP. Administration of CP down-regulated the expression of Oct4 and Ddx4 (Spermatogonia specific genes). MOE administration was shown to ameliorate CP-induced damage by modulating the expression of genes specific to Sertoli and spermatogenic cells. Furthermore, MOE treatment reduced CP-induced DNA damage as evident from lower percentage of γ-H2AX positive spermatogonial cells. CONCLUSION Administration of MOE mitigated CP-induced testicular damage by improving blood and, intra-testicular hormonal milieu as well as modulating the expression of genes pertaining to Sertoli and spermatogonial cells.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Orji O, Awoke J, Harbor C, Igwenyi I, Obasi O, Ezeani N, Aloke C. Ethanol leaf extract of Psychotria microphylla rich in quercetin restores heavy metal induced redox imbalance in rats. Heliyon 2020; 6:e04999. [PMID: 33033769 PMCID: PMC7534181 DOI: 10.1016/j.heliyon.2020.e04999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023] Open
Abstract
Psychotria microphylla is a plant found in Africa and many parts of the world where the leaves are locally used in folk medicine for the treatment of toxicity related liver diseases. We investigated the antioxidant potentials of ethanol leaf extract of Psychotria microphylla (ELE-PM) in restoring hepatic redox dysregulations in rats exposed to heavy metals. HPLC was used in quantifying the bioactive compounds in ELE-PM. DPPH (1,1-diphenyl-2 picrylhydrazyl), FRAP (Ferric reducing antioxidant power) and NO (Nitric Oxide) assays were used for in vitro studies. The in vivo studies involved 30 rats randomly divided into 5 groups (n = 6). Group 1 received normal saline (2 mg/kg), group 2, 3, 4 and 5 received a combined solution of Pb(NO3)2 (11.25 mg/kg) and HgCl2 (0.4 mg/kg) respectively. After 7 days of heavy metal exposure, groups 3, 4 and 5 received a daily bolus administration of 200, 400 and 600 mg/kg body weight of EE-PM respectively through oral intubation for 28 days. HPLC quantification revealed a high amount of quercetin (27.43 ± 0.04 mg/100g), lower amounts of gallic acid (7.60 ± 0.06 mg/100g) and rutin (0.38 ± 0.009 mg/100g). Additionally, ELE-PM demonstrated strong inhibitory potentials against free radical scavenging activity generated in vitro. More interestingly, administration of ELE-PM significantly ameliorated hepatic redox dysregulations elicited by the exposure of the rats to heavy metals in a dose dependent pattern. ELE-PM is highly rich in flavonoid compound quercetin and perhaps this may be responsible for the strong antioxidant potentials exhibited in this investigation.
Collapse
Affiliation(s)
- O.U. Orji
- Department of Biochemistry, Ebonyi State University, PMB, 053, Abakaliki, Nigeria
| | - J.N. Awoke
- Department of Biochemistry, Ebonyi State University, PMB, 053, Abakaliki, Nigeria
| | - C. Harbor
- Department of Biochemistry, Ebonyi State University, PMB, 053, Abakaliki, Nigeria
| | - I.O. Igwenyi
- Department of Biochemistry, Ebonyi State University, PMB, 053, Abakaliki, Nigeria
| | - O.D. Obasi
- Department of Medical Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, PMB, 1010, Abakaliki, Ebonyi State, Nigeria
| | - N.N. Ezeani
- Department of Biochemistry, Ebonyi State University, PMB, 053, Abakaliki, Nigeria
| | - C. Aloke
- Department of Medical Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, PMB, 1010, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
10
|
Alahmadi BA. Effect of Herbal Medicine on Fertility Potential in Experimental Animals - an Update Review. Mater Sociomed 2020; 32:140-147. [PMID: 32843864 PMCID: PMC7428893 DOI: 10.5455/msm.2020.32.140-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: Sexual function greatly affects the quality of life. Any problem which affects satisfaction is considered sexual dysfunction. Aim: The aim of this study was to investigate how recently used of complementary and alternative medicines has increased in treating infertility. Methods: Study has descriptive character based on searched and analyzed facts from the published articles in scientific journals. Results: The majority of the studies done for the detection of the efficacy of medicinal plants in treating male infertility were done on experimental animals with few clinical studies. However, there is still a need for more studies to have certain results, as conflicting results were noted in different studies done on the effect of the same medicinal plant on spermatogenesis. It might be referred it to the absence of standardization among research models, the difference in extracts, administration route, doses and how long did the experiment last added to differences in the part of the plant used and plant collection. This review summarized the finding of many studies that studied the effect of different medicinal herbs on the testes, epididymis, sperm and prostate parameters, testosterone level and steroidogenesis, erection/ejaculation function and libido. Conclusion: The protective effect might be due to OLE competence to antagonize the oxidative stress and LPO. Londium suffruticosum I. suffruticosum leaf extract was administered to sub-fertile male rats, subfertility was induced by carbendazim, it resulted in increased spermatogenesis, increased sperm counts, lessened sperm agglutination by preserving normal pH in testicular microenvironment, increasing the testicular oxidative biomarkers, SOD, and CAT. It was found that the main active components of the extract are alkaloids, steroidal lactones and flavonoids.
Collapse
Affiliation(s)
- Bassam A Alahmadi
- Department of Biology, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Albasher G, Alkahtani S, Alarifi S. Berberine mitigates oxidative damage associated with testicular impairment following mercury chloride intoxication. J Food Biochem 2020; 44:e13385. [PMID: 33460233 DOI: 10.1111/jfbc.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
In this study, we assessed the protective effect of berberine (BBR) against mercuric chloride (HgCl2)-induced reproductive impairment. Twenty-eight adult male Wistar albino rats were placed into four equal groups: control, BBR, HgCl2, and BBR + HgCl2. All the treatments were orally administered for seven consecutive days. The rats exposed to HgCl2 showed a marked decrease in testosterone accompanied by an increase in lipid peroxidation (LPO) and nitric oxide (NO). Additionally, HgCl2 decreased glutathione (GSH) content, deactivated catalase (CAT) and glutathione reductase (GR), and suppressed the activities and mRNA expression of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testicular tissue. In addition, histological deformations and testicular cell loss were recorded, as evidenced by the upregulation of caspase-3 following HgCl2 intoxication. Notably, BBR administration reversed the testicular impairments associated with HgCl2 exposure. These findings suggest that BBR protected the testicular tissue following HgCl2 exposure through inhibiting the disturbance in the testosterone level and enhanced the antioxidant capacity. PRACTICAL APPLICATIONS: Heavy metals are naturally existing metallic elements in the earth's crust. These trace metals have the potential to cause multiple adverse reactions to the living systems, even at low exposure doses. Human exposure may also result from industrial, agricultural, and domestic activities. Berberine (BBR, a naturally occurring quaternary benzylisoquinoline alkaloid) is a protoberberine and is the representative main active ingredient in all parts of Berberis species. BBR has been used widely in folk medicine worldwide for its multiple pharmacological and therapeutic activities; for example, in the treatment of digestive and reproductive system disorders, microorganism infections, hemorrhage and wound healing, and cardiovascular and ophthalmic diseases. We found that BBR administration was able to abrogate significantly the reproductive toxicity associated with Hg intoxication. This protective effect comes from its strong antioxidant, anti-inflammatory, and antiapoptotic activities; suggesting that BBR may be applied to alleviate reproductive toxicity associated with Hg intoxication.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Popoola JO, Aworunse OS, Oyesola OL, Akinnola OO, Obembe OO. A systematic review of pharmacological activities and safety of Moringa oleifera. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, Moringa oleifera, a multipurpose medicinal plant (MMP) has received increased research attention and commercial interest for its nutritional, therapeutic and pharmacological properties. Rigorous approaches including biological assays, animal and clinical trials are required towards safe usage as herbal therapy. We conducted a systematic review of the known pharmacological activities, toxicity, and safety of M. oleifera, usually used locally in the treatment and prevention of myriads of illnesses. Five major bibliographic databases (SCOPUS, Web of Science, Science Direct, PubMed, and Mendeley) were searched for studies reported on pharmacological activities, toxicity, and safety assessment of M. oleifera in the last 29 years (1990 – 2019). Studies on animals and humans involving aqueous leaf extracts and different preparations from M. oleifera seed and bark were also considered. All articles retained, and data collected were evaluated based on the period of the article, country where such studies were conducted and the document type. Our search results identified and analyzed 165 articles while 63 studies were eventually retained. Diverse pharmacological activities including neuroprotective, antimicrobial, antiasthmatic, anti-malaria, cardioprotective, antidiabetic, antiobesity, hepatoprotective and cytotoxic effects, amongst others, were recorded. Toxicity studies in animal models and few human studies showed that M. oleifera is safe with no adverse effect reported. The importance of the plant is highlighted in the search for new bioactive compounds to explore its therapeutic potentials towards drug discovery and development in the pharmaceutical and allied industries.
Collapse
Affiliation(s)
- Jacob O. Popoola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | | | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olayemi O. Akinnola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
13
|
Almeer RS, Albasher G, Kassab RB, Ibrahim SR, Alotibi F, Alarifi S, Ali D, Alkahtani S, Abdel Moneim AE. Ziziphus spina-christi leaf extract attenuates mercury chloride-induced testicular dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3401-3412. [PMID: 31840221 DOI: 10.1007/s11356-019-07237-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a heavy metal toxicant, causing several adverse reactions to animals and humans including reproductive dysfunction. The potential protective role of Ziziphus spina-christi leaf extract (ZSCLE) against testicular impairments associated with mercury chloride (HgCl2) exposure in rats was investigated in the current study. Four experimental groups were employed as follows (n = 7): group I served as control, group II was gavaged with ZSCLE (300 mg/kg), group III was administered with HgCl2 (0.4 mg/kg), and group IV was preadministered with ZSCLE 1 h before HgCl2. All groups were treated daily for 28 days. The exposure to HgCl2 caused a marked increase in Hg concentration in the testicular tissue, which was accompanied with a decrease in testis index. A reproductive impairment was recorded following HgCl2 exposure as verified through the decrease in levels of testosterone, luteinizing, and follicle-stimulating hormones. HgCl2 was found to enhance the development of oxidative damage in the testicular tissue as presented by the imbalance between pro-oxidants and antioxidant molecules. In addition, excessive release of tumor necrosis factor-α and interleukin-1β was recorded in response to HgCl2 intoxication. Furthermore, a disturbance in the apoptotic proteins in favor of the pro-apoptotic proteins was also observed following HgCl2 intoxication. However, ZSCLE administration along with HgCl2 abolished significantly the molecular, biochemical, and histopathological alterations induced by HgCl2 intoxication. Our findings suggest that ZSCLE could be used to mitigate reproductive dysfunction associated with HgCl2 exposure.
Collapse
Affiliation(s)
- Rafa S Almeer
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.
| | - Gadah Albasher
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Rami B Kassab
- Faculty of Science, Department of Zoology and Entomology, Helwan University, Cairo, Egypt
| | - Shaimaa R Ibrahim
- Molecular Drug Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Fatimah Alotibi
- College of Science, Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Faculty of Science, Department of Zoology and Entomology, Helwan University, Cairo, Egypt
| |
Collapse
|
14
|
Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. Interdiscip Toxicol 2019; 11:247-254. [PMID: 31762676 PMCID: PMC6853017 DOI: 10.2478/intox-2018-0024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mercury is a heavy metal of considerable toxicity. Scientific literature reveals various plants and plant derived natural products, i.e., phytochemicals, which can alleviate experimentally induced mercury toxicity in animals. The present review attempts to collate those experimental studies on medicinal plants and phytochemicals with ameliorative effects on mercury toxicity. A literature survey was carried out by using Google, Scholar Google, Scopus and Pub-Med. Only the scientific journal articles found in the internet for the last two decades (1998–2018) were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. The literature survey revealed that in pre-clinical studies 27 medicinal plants and 27 natural products exhibited significant mitigation from mercury toxicity in experimental animals. Clinical investigations were not found in the literature. Admissible research in this area could lead to development of a potentially effective agent from the plant kingdom for clinical management of mercury toxicity in humans.
Collapse
|
15
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL, Ogunlaja A. Fluted pumpkin seeds protect against busulfan-induced oxidative stress and testicular injuries in adult mice. Drug Chem Toxicol 2019; 45:22-32. [DOI: 10.1080/01480545.2019.1657885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. J. Mgbudom-Okah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. L. Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - A. Ogunlaja
- Department of Biological Sciences, Redeemer’s University, Ede, Osun, Nigeria
| |
Collapse
|
16
|
Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective Effect of Moringa Oleifera Seed Oil on Gentamicin-Induced Nephrotoxicity in Rats: Biochemical Evaluation of Antioxidant, Anti-inflammatory, and Antiapoptotic Pathways. J Am Coll Nutr 2019; 39:307-315. [PMID: 31403889 DOI: 10.1080/07315724.2019.1649218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: Gentamicin is an efficacious aminoglycoside antibiotic widely used to treat life-threatening Gram-negative bacteria infections. However, its specific non-targeted induction of nephrotoxicity is a worrying clinical challenge. The study explored the nephroprotective effect of Moringa oleifera seed oil (MOO) against gentamicin-induced oxidative nephrotoxicity, pro-inflammation, and apoptosis in male Wistar rats.Method: Twenty-four rats divided into 4 groups (n = 6) were administered MOO (5 ml/kg) for 16 days and/or gentamicin (100 mg/kg bw/d, ip) injected from day 11 to day 16. The renal antioxidant enzyme activities reduced glutathione, lipid peroxidation, and serum renal markers. Urea and creatinine levels were estimated. The renal expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) were determined. Renal levels of inducible nitric oxide synthase (iNOS), nuclear factor-ĸB (NF-ĸB), and caspase-3 were determined to detect possible mechanism of inflammation and apoptosis with histology.Results: MOO prominently reduced serum creatinine and urea levels with amelioration of histopathological abrasions induced by gentamicin (GM). It significantly depressed oxidative stress through lowering of renal malondialdehyde (MDA) and elevation of renal superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and reduced glutathione (GSH) level. MOO restored renal content of IL-1β, IL-6, TNF-α, and NO, coupled with the mechanistic downregulation of NF-ĸB, iNOS, and caspase-3 activities. The histopathological alterations were ameliorated by MOO.Conclusions: MOO possesses marked nephroprotective effect against GM-induced renal damage via modulating oxidative stress, inflammation, and apoptosis in Wistar rats.
Collapse
Affiliation(s)
- C O Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Michael E Kalu
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Ilorin, Kwara State, Nigeria
| | - Gertrude N Onyeji
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| | - Kelechi O Ikpemo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
17
|
Bjørklund G, Chirumbolo S, Dadar M, Pivina L, Lindh U, Butnariu M, Aaseth J. Mercury exposure and its effects on fertility and pregnancy outcome. Basic Clin Pharmacol Toxicol 2019; 125:317-327. [PMID: 31136080 DOI: 10.1111/bcpt.13264] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Mercury (Hg), a highly toxic environmental pollutant, shows harmfulness which still represents a big concern for human health, including hazards to fertility and pregnancy outcome. Research has shown that Hg could induce impairments in the reproductive function, cellular deformation of the Leydig cells and the seminiferous tubules, and testicular degeneration as well as abnormal menstrual cycles. Some studies investigated spontaneous abortion and complicated fertility outcome due to occupational Hg exposure. Moreover, there is a relation between inhaled Hg vapour and reproductive outcome. This MiniReview evaluates the hypothesis that exposure to Hg may increase the risk of reduced fertility, spontaneous abortion and congenital deficits or abnormalities.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan.,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Ulf Lindh
- Biology Education Centre, Uppsala University, Uppsala, Sweden
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania.,CONEM Romania Biotechnology and Environmental Sciences Group, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
18
|
Santos HO, Howell S, Teixeira FJ. Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:392-405. [PMID: 30790614 DOI: 10.1016/j.jep.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Phytotherapeutic approaches have been widely proposed to improve male health. Despite the well-touted effects of tribulus (Tribulus terrestris L) on men's health, an optimal phytotherapy remains an elusive challenge. AIM OF THE REVIEW We sought to critically analyze the evidence in the phytotherapic literature beyond the effects of tribulus on testosterone (T) concentration and sperm analysis to also include indications for prostate health. MATERIALS AND METHODS A focused literature search was conducted to include studies published in Cochrane, Pubmed, and Web of Science databases between the years 2002 and 2018. RESULTS The use of tribulus and maca (Lepidium meyenii Walp, Brassicaceae) were not scientifically supported to improve serum T levels in men. Moderate evidence supports the use of long Jack (Eurycoma longifolia Jack, Simaroubaceae), mucuna (Mucuna pruriens (L.) DC., Fabaceae), ashwagandha (Withania somnifera (L.) Dunal, Solanaceae), fenugreek (Trigonella foenum-graceum L., Fabaceae), and black seeds (Nigella sativa L., Ranunculaceae) to increase total T and improve seminal parameters. Data suggests an increase in total T with the use of 5000 mg/d of powdered mucuna seed and ashwagandha root (151 and 143 ng/dL, respectively) over a 12-week period in patients with oligozoospermia. The use of mucuna was supported for patients with oligozoospermia to improve sperm parameters, with an increase of 83.3 million/mL observed after use of 5000 mg/d of powdered mucuna seed over a 12-week period. Evidence supporting the use of saw palmetto (Serenoa repens, (W.Bartram) Small, Arecaceae) to improve prostate health remains equivocal; whereas, evidence supporting the use of Pygeum africanum Hook.f., Rosaceae, Urtica dioica L., Urticaceae, beta-sitosterols, pollen extract, onion, garlic, and tomato, appears favorable and promising. CONCLUSION Scientific evidence supports the use of mucuna and ashwagandha as phytotherapics for improving serum T concentrations and semen parameters. Despite inconclusive evidence for use of tribulus as a T booster, it may provide advantageous effects on sperm parameters in men with idiopathic infertility. Nutraceutical strategies and some phytotherapics may also be effective to promote prostate health. Popular foodstuffs (onion, garlic, and tomato), nutraceutical agents (pollen extract and beta-sitosterols), and herbal medicines (Pygeum africanum and Urtica dioica) are rational approaches.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Scott Howell
- Research Director, Tier 1 Center for Research, Chattanooga, TN, United States
| | - Filipe J Teixeira
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, Portugal
| |
Collapse
|
19
|
Abarikwu SO, Njoku RCC, Onuah CL. Aged coconut oil with a high peroxide value induces oxidative stress and tissue damage in mercury-treated rats. J Basic Clin Physiol Pharmacol 2018; 29:365-376. [PMID: 29570447 DOI: 10.1515/jbcpp-2016-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Background Exposure to mercury (Hg) and the ingestion of peroxidized edible oil represent a health risk. This study evaluated the effects of peroxidized coconut oil (CO) on the liver and kidney of rats treated with Hg. Methods Male albino Wistar rats were administered HgCl2 and CO separately or as a combination for 21 days. The concentrations of glutathione (GSH) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), which were used as markers of oxidative stress were measured in the liver and kidney homogenates. The activities of gamma glutamyl transferase (γ-GT), lactate dehydrogenase (LDH) as well as the levels of bilirubin and creatinine (CREA) as markers of liver and kidney functions were analyzed in the serum. Results The level of MDA in the kidney and liver homogenates was significantly increased in the HgCl2, CO, and CO+HgCl2 groups when compared to control values (p<0.05). Liver SOD activity and GSH level were increased and CAT activity was decreased, whereas kidney GSH level and SOD activity were decreased and CAT activity was increased in the CO and CO+HgCl2 groups when compared to control values (p<0.05). The increase in CREA and bilirubin levels as well as γ-GT and LDH activities observed in the CO+HgCl2 group when compared to the control values (p<0.05) were associated with pathological changes in both tissues, and were considered to be due to oxidative stress. Conclusions In summary, peroxidized CO and Hg alone or in combination induces oxidative damage in the liver and kidney of rats.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Rex-Clovis C Njoku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Chigozie L Onuah
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
20
|
Unsal V. Natural Phytotherapeutic Antioxidants in the Treatment of Mercury Intoxication-A Review. Adv Pharm Bull 2018; 8:365-376. [PMID: 30276132 PMCID: PMC6156483 DOI: 10.15171/apb.2018.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Heavy metals taken into the organism can make the toxic effects on the metabolism in various ways. For example, they may interact with proteins to alter and inhibit their enzymatic and structural functions. Mercury is one of the toxic elements that are widely distributed in nature. Mercury toxicity poses a serious threat to human health. It is an element that causes oxidative stress to increase in individuals, leading to tissue damage. Oxidative stress is the result of the imbalance between the production of oxidative species and cellular antioxidant defense. Phytotherapy continues to play an important role in health care. Natural phytotherapeutic antioxidants, exhibit a broad sequence of biological impacts, including anti-oxidative stress, anti-aging, anti-toxicicity and anticancer. Many studies have also shown that the phytotherapeutic agents play an important role in the removal of mercury from the tissue and in reducing oxidative stress. Our goal in this review was to investigate alternative ways of extracting the mercury in the tissue.
Collapse
Affiliation(s)
- Velid Unsal
- Corresponding author: Velid Unsal, Tel: 0482 2121395,
| |
Collapse
|
21
|
The Hepatoprotective Effect of Gallic Acid on Mercuric Chloride-Induced Liver Damage in Rats. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.12345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|