1
|
Mahmoud SA, El-Ghareeb AEW, Abd El-Rahman HA. Chlorantraniliprole (Coragen® 20% SC) exposure induced reproductive toxicity mediated by oxidative stress, apoptosis, and sperm quality deficient in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03806-8. [PMID: 39888365 DOI: 10.1007/s00210-025-03806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Pesticides can adversely affect reproduction by causing congenital abnormalities, fetal demise, and infertility. The reproductive toxicity of coragen, a modified ryanodine receptor-targeting insecticide with chlorantraniliprole concentrations of 20%, was examined in male rats. Twenty-one healthy male rats were randomly assigned to one of three groups: the control group, two orally administered with low (500 mg/kg) and high (1000 mg/kg) doses of coragen for 8 weeks. Exposure to coragen resulted in significant, dose-dependent changes in male reproductive hormones, steroidogenic enzymes, and an imbalance in the oxidant-antioxidant system. The treated groups revealed significantly higher lipid peroxidation levels than the control group. The effects were accompanied by damage to testicular tissue, modified testicular lactate dehydrogenase, reduced sperm motility and viability, and heightened sperm abnormalities. Elevated levels of pro-apoptotic proteins (caspase-3 and Bax) and decreased levels of anti-apoptotic protein (Bcl-2) provided evidence of apoptosis in both treatment groups. Moreover, coragen induced substantial DNA damage in the testicular tissue. The results indicate that the reproductive impairment caused by coragen may be ascribed to oxidative stress, hormonal disturbance, apoptosis, and damage to testicular DNA and finally might result in infertility and compromised reproductive function.
Collapse
|
2
|
Wang R, Deng L, Wang Y, Liu N, Yang M, Qiu J, Chen C. Synergistic effects of combined lead and iprodione exposure on P53 signaling-mediated hepatotoxicity, enterotoxicity and transgenerational toxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178127. [PMID: 39708747 DOI: 10.1016/j.scitotenv.2024.178127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Environmental heavy metal contamination, combined with inappropriate use of fungicides, has led to the co-existence of lead (Pb) and iprodione (IPR), presenting signification risks to ecosystems and human health. The toxic effects resulting from concurrent exposure to Pb and IPR, however, remain poorly understood. In the study, we conducted a comprehensive 60-day subchronic study to investigate the toxic effects on the liver and gut in parental male zebrafish through employing multi-omics analyses. We also explored the potential transgenerational toxicity to unexposed offspring embryos. The results demonstrated that exposure to both Pb and IPR exacerbated intestinal pathological damage, decreased the expression of intestinal tight junction molecules, and activated the expression of intestinal inflammatory molecules in the gut. Metabolic and microbial analyses, utilizing 16S rRNA sequencing and non-targeted metabolic profiling, revealed alterations in the intestinal flora structure and disruptions in metabolite synthesis. Notably, we observed a significant negative correlation between the abundance of the Lactobacillus genus and uracil synthesis. Furthermore, liver RNA-seq analysis identified a marked enrichment of the P53 signaling pathway, confirmed by the activation of P53-mediated apoptotic markers, which was consistent with the observed increase in inflammatory infiltration and pathological damage within the liver. Importantly, P53-mediated apoptosis and inflammatory responses were activated in offspring embryos, suggesting that long-term parental exposure to Pb and IPR may induce transgenerational toxicity, potentially impacting offspring health. Despite the identification of these molecular changes, the phenotypic effects remain to be elucidated. Future studies are necessary to evaluate the potential phenotypic changes in offspring to fully understand the long-term effects of Pb and IPR exposure. Overall, these findings enhance the understanding of the molecular mechanisms underlying the toxic effects of Pb and IPR and emphasize the importance of a comprehensive risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ligang Deng
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan, China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Na Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Menglian Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
3
|
Behairy A, Hashem MMM, Abo-El-Sooud K, El-Metwally AE, Soliman AM, Mouneir SM, Hassan BA, Abd-Elhakim YM. Mitigating effect of gallic acid on zinc oxide nanoparticles and arsenic trioxide-induced spermatogenesis suppression, testicular injury, hormonal imbalance, and immunohistochemical changes in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9859-9875. [PMID: 38935127 PMCID: PMC11582332 DOI: 10.1007/s00210-024-03228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The current study compared the effects of incorporated exposure to arsenic trioxide (As) and zinc oxide nanoparticles (ZnONPs) on male reproductive hormones, oxidative stress, and inflammatory biomarkers in adult rats to each metal alone. A defensive trial with gallic acid (GA) has also been studied. A total of 60 adult male Sprague Dawley rats were categorized into six groups: control, GA (20 mg/kg), ZnONPs (100 mg/kg), As (8 mg/kg), ZnONPs with As, and GA concurrently with ZnONPs and As at the same previous doses. The regimens were applied for 60 days in sequence. Current findings showed significant weight loss in all study groups, with testicular weights significantly decreased in the As and combined groups. Testosterone, follicular stimulating hormone, and luteinizing hormone serum levels were also considerably reduced, while serum levels of estradiol increased. Inducible nitric oxide synthase (iNOS) immunoexpression was significantly upregulated while proliferating cell nuclear antigen (PCNA) was downregulated. Moreover, there was a significant elevation of testicular malondialdehyde, reduction of testicular superoxide dismutase, and glutathione peroxidase with disruptive testes, prostate glands, and seminal vesicle alterations in all experimental groups with marked changes in the combined group. Additionally, the present results revealed the protective effects of GA on ZnONPs and As adverse alterations in rats. GA enhanced sperm picture, oxidant status, and hormonal profile. Also, it modulates iNOS and PCNA immunoexpression and recovers the histoarchitecture of the testes, prostate glands, and seminal vesicles. Ultimately, GA may be a promising safeguarding agent against ZnONPs and As-induced disturbances to reproductive parameters.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abeer E El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza, 3514805, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Donoso-Piñol P, Briceño G, Evaristo JAM, Nogueira FCS, Schalchli H, Diez MC. Proteome Changes Induced by Iprodione Exposure in the Pesticide-Tolerant Pseudomonas sp. C9 Strain Isolated from a Biopurification System. Int J Mol Sci 2024; 25:10471. [PMID: 39408799 PMCID: PMC11476656 DOI: 10.3390/ijms251910471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Iprodione is a pesticide that belongs to the dicarboximide fungicide family. This pesticide was designed to combat various agronomical pests; however, its use has been restricted due to its environmental toxicity and risks to human health. In this study, we explored the proteomic changes in the Pseudomonas sp. C9 strain when exposed to iprodione, to gain insights into the affected metabolic pathways and enzymes involved in iprodione tolerance and biodegradation processes. As a result, we identified 1472 differentially expressed proteins in response to iprodione exposure, with 978 proteins showing significant variations. We observed that the C9 strain upregulated the expression of efflux pumps, enhancing its tolerance to iprodione and other harmful compounds. Peptidoglycan-binding proteins LysM, glutamine amidotransferase, and protein Ddl were similarly upregulated, indicating their potential role in altering and preserving bacterial cell wall structure, thereby enhancing tolerance. We also observed the presence of hydrolases and amidohydrolases, essential enzymes for iprodione biodegradation. Furthermore, the exclusive identification of ABC transporters and multidrug efflux complexes among proteins present only during iprodione exposure suggests potential counteraction against the inhibitory effects of iprodione on downregulated proteins. These findings provide new insights into iprodione tolerance and biodegradation by the Pseudomonas sp. C9 strain.
Collapse
Affiliation(s)
- Pamela Donoso-Piñol
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Gabriela Briceño
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Joseph A. M. Evaristo
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Fábio C. S. Nogueira
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Heidi Schalchli
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
5
|
Uwamahoro C, Jo JH, Jang SI, Jung EJ, Lee WJ, Bae JW, Kwon WS. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int J Mol Sci 2024; 25:6945. [PMID: 39000054 PMCID: PMC11241045 DOI: 10.3390/ijms25136945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.
Collapse
Affiliation(s)
- Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; (C.U.); (J.-H.J.); (S.-I.J.); (E.-J.J.); (W.-J.L.); (J.-W.B.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
6
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
7
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
8
|
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, Thazeem B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol 2023; 474:116623. [PMID: 37414290 DOI: 10.1016/j.taap.2023.116623] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Endocrine disrupting compounds are the chemicals which mimics the natural endocrine hormones and bind to the receptors made for the hormones. Upon binding they activate the cascade of reaction which leads to permanent activating of the signalling cycle and ultimately leads to uncontrolled growth. Pesticides are one of the endocrine disrupting chemicals which cause cancer, congenital birth defects, and reproductive defects in non-target organisms. Non-target organisms are keen on exposing to these pesticides. Although several studies have reported about the pesticide toxicity. But a critical analysis of pesticide toxicity and its role as endocrine disruptor is lacking. Therefore, the presented review literature is an endeavour to understand the role of the pesticides as endocrine disruptors. In addition, it discusses about the endocrine disruption, neurological disruption, genotoxicity, and ROS induced pesticide toxicity. Moreover, biochemical mechanisms of pesticide toxicity on non-target organisms have been presented. An insight on the chlorpyrifos toxicity on non-target organisms along with species names have been presented.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India.
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur 143521, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| |
Collapse
|
9
|
Abd-Elhakim YM, El Sharkawy NI, Gharib HSA, Hassan MA, Metwally MMM, Elbohi KM, Hassan BA, Mohammed AT. Neurobehavioral Responses and Toxic Brain Reactions of Juvenile Rats Exposed to Iprodione and Chlorpyrifos, Alone and in a Mixture. TOXICS 2023; 11:toxics11050431. [PMID: 37235246 DOI: 10.3390/toxics11050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Herein, male juvenile rats (23th postnatal days (PND)) were exposed to chlorpyrifos (CPS) (7.5 mg/kg b.wt) and/or iprodione (IPD) (200 mg IPD /kg b.wt) until the onset of puberty (60th day PND). Our results demonstrated that IPD and/or CPS exposure considerably reduced locomotion and exploration. However, CPS single exposure induced anxiolytic effects. Yet, neither IPD nor IPD + CPS exposure significantly affected the anxiety index. Of note, IPD and/or CPS-exposed rats showed reduced swimming time. Moreover, IPD induced significant depression. Nonetheless, the CPS- and IPD + CPS-exposed rats showed reduced depression. The individual or concurrent IPD and CPS exposure significantly reduced TAC, NE, and AChE but increased MDA with the maximum alteration at the co-exposure. Moreover, many notable structural encephalopathic alterations were detected in IPD and/or CPS-exposed rat brain tissues. The IPD + CPS co-exposed rats revealed significantly more severe lesions with higher frequencies than the IPD or CPS-exposed ones. Conclusively, IPD exposure induced evident neurobehavioral alterations and toxic reactions in the brain tissues. IPD and CPS have different neurobehavioral effects, particularly regarding depression and anxiety. Hence, co-exposure to IPD and CPS resulted in fewer neurobehavioral aberrations relative to each exposure. Nevertheless, their simultaneous exposure resulted in more brain biochemistry and histological architecture disturbances.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba S A Gharib
- Department of Behaviour and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Khlood M Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Amany Tharwat Mohammed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
11
|
Khamis T, Hegazy AA, El-Fatah SSA, Abdelfattah ER, Abdelfattah MMM, Fericean LM, Arisha AH. Hesperidin Mitigates Cyclophosphamide-Induced Testicular Dysfunction via Altering the Hypothalamic Pituitary Gonadal Axis and Testicular Steroidogenesis, Inflammation, and Apoptosis in Male Rats. Pharmaceuticals (Basel) 2023; 16:301. [PMID: 37259444 PMCID: PMC9966503 DOI: 10.3390/ph16020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclophosphamide (CP) is a cytotoxic, cell cycle, non-specific, and antiproliferative drug. This study aimed to address the toxic effects of CP on male fertility and the possible ameliorative role of hesperidin (HSP). Thirty-two adult albino rats were randomly divided into four groups, namely, the negative control, HSP, CP-treated, and CP+HSP-treated groups. The CP-treated rats showed a significant reduction in the levels of serum LH, FSH, testosterone, prolactin, testicular glutathione peroxidase (GPx), and total antioxidant capacity (TAC) with an elevation in levels of malondialdehyde (MDA), and p53, and iNOS immune expression, compared to the control group. A significant downregulation in hypothalamic KISS-1, KISS-1r, and GnRH, hypophyseal GnRHr, and testicular mRNA expression of steroidogenesis enzymes, PGC-1α, PPAR-1, IL10, and GLP-1, as well as a significant upregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP-treated group in comparison to that in the control group. The administration of HSP in CP-treated rats significantly improved the levels of serum LH, FSH, testosterone, prolactin, testicular GPx, and TAC, with a reduction in levels of MDA, and p53, and iNOS immune expression compared to the CP-treated group. A significant upregulation in hypophyseal GnRHr, and testicular mRNA expression of CYP19A1 enzymes, PPAR-1, IL10, and GLP-1, as well as a significant downregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP+HSP-treated group in comparison to that in the CP-treated group. In conclusion, HSP could be a potential auxiliary agent for protection from the development of male infertility.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelmonem Awad Hegazy
- Anatomy and Embryology, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ramadan Abdelfattah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
12
|
Park W, An G, Lim W, Song G. Exposure to iprodione induces ROS production and mitochondrial dysfunction in porcine trophectoderm and uterine luminal epithelial cells, leading to implantation defects during early pregnancy. CHEMOSPHERE 2022; 307:135894. [PMID: 35926749 DOI: 10.1016/j.chemosphere.2022.135894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Iprodione is a well-known fungicide used in the cultivation of strawberries, tomatoes, grapes, and green beans. In recent studies, neurotoxicity, cardiotoxicity, and endocrine toxicity of iprodione have been reported. Although reproductive toxicity of iprodione has been identified in animal studies, its effects are limited to male fertility. Also, the toxic effects of iprodione on pregnancy, especially the implantation process, have not been elucidated. This study demonstrated a series of cytotoxic responses of iprodione along with the alteration of implantation-related gene expression in porcine trophectoderm (pTr) and luminal epithelium (pLE) cells. In this study, iprodione suppressed cell viability, proliferation, and migration of these cells. Iprodione induced G1 phase arrest and attenuated spheroid formation by pTr and pLE cells. Furthermore, iprodione caused mitochondrial dysfunction and excessive reactive oxygen species generation, which resulted in an increase in mitochondrial calcium levels. Consequently, DNA damage and apoptotic cell death were induced by iprodione treatment in pTr and pLE cells. This stress-induced cell death was mediated by alterations in intracellular signal transduction, including the PI3K/AKT and MAPK signaling pathways. This finding suggests the potential of iprodione to impair the implantation capacity by exerting cytotoxic effects on fetal and maternal cells.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Hassan AA, Bel Hadj Salah K, Fahmy EM, Mansour DA, Mohamed SAM, Abdallah AA, Ashkan MF, Majrashi KA, Melebary SJ, El-Sheikh ESA, El-Shaer N. Olive Leaf Extract Attenuates Chlorpyrifos-Induced Neuro- and Reproductive Toxicity in Male Albino Rats. Life (Basel) 2022; 12:1500. [PMID: 36294935 PMCID: PMC9605092 DOI: 10.3390/life12101500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is a common organophosphorus insecticide. It is associated with negative consequences such as neurotoxicity and reproductive injury. This study aimed to observe the ability of olive leaf extract to attenuate chlorpyrifos toxicity, which induced neuro- and reproductive toxicity in male albino rats. Olive leaf extract (OLE) exhibits potent antioxidant and antiapoptotic properties. Twenty-two mature male rats were divided into four groups: control (saline), CPF (9 mg/kg), OLE (150 mg/kg), and CPF + OLE. Treatment was administered orally for 80 days. The CPF significantly reduced serum sex hormones, sperm counts and motility, high oxidants (MDA), and depleted antioxidants (GSH, SOD, TAC) in the brain and testes homogenate; additionally, it decreased serum AChE and brain neurotransmitters, increased Bax, decreased Bcl-2, and boosted caspase-3 immune expression in neural and testicular cells. Immunological expression of Ki 67 in the cerebrum, cerebellum, choroid plexus, and hippocampus was reduced, and α-SMA in testicular tissue also decreased. Histopathological findings were consistent with the above impacts. OLE co-administration significantly normalized all these abnormalities. OLE showed significant protection against neural and reproductive damage caused by CPF.
Collapse
Affiliation(s)
- Arwa A. Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia
| | - Esraa M. Fahmy
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa A. Mansour
- Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Sally A. M. Mohamed
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa A. Abdallah
- Theriogenology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - El-Sayed A. El-Sheikh
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa El-Shaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
14
|
Ahmed MM, Hussein MMA, Saber T, Abd-Elhakim YM. Palliative Effect of Resveratrol against Nanosized Iron Oxide-Induced Oxidative Stress and Steroidogenesis-Related Genes Dysregulation in Testicular Tissue of Adult Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138171. [PMID: 35805830 PMCID: PMC9266693 DOI: 10.3390/ijerph19138171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The nano-sized iron oxide (Fe2O3-NPs) is one of the most used engineered nanomaterials worldwide. This study investigated the efficacy of natural polyphenol resveratrol (RSV) (20 mg/kg b.wt, orally once daily) to alleviate the impaired sperm quality and testicular injury resulting from Fe2O3-NPs exposure (3.5 or 7 mg/kg b.wt, intraperitoneally once a week) for eight weeks. Spermiograms, sexual hormonal levels, oxidative stress indicators, and lipid peroxidation biomarker were assessed. Moreover, the steroidogenesis-related genes mRNA expressions were evaluated. The results showed that RSV substantially rescued Fe2O3-NPs-mediated sperm defects. Additionally, the Fe2O3-NPs-induced depressing effects on sperm motility and viability were markedly counteracted by RSV. Moreover, RSV significantly restored Fe2O3-NPs-induced depletion of testosterone, follicle-stimulated hormone, luteinizing hormone, and testicular antioxidant enzymes but reduced malondialdehyde content. Furthermore, the Fe2O3-NPs-induced downregulation of steroidogenesis-related genes (3 β-HSD, 17 β-HSD, and Nr5A1) was significantly counteracted in the testicular tissue of RSV-treated rats. These findings concluded that RSV could limit the Fe2O3-NPs-induced reduced sperm quality and testicular injury most likely via their antioxidant activity and steroidogenesis-related gene expression modulation.
Collapse
Affiliation(s)
- Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
| | - Mohamed M. A. Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
- Correspondence:
| |
Collapse
|
15
|
Kortenkamp A, Scholze M, Ermler S, Priskorn L, Jørgensen N, Andersson AM, Frederiksen H. Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. ENVIRONMENT INTERNATIONAL 2022; 165:107322. [PMID: 35691715 DOI: 10.1016/j.envint.2022.107322] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Semen quality in men continues to decline in Western countries, but the contours of the issue remain obscure, in relation to contributing chemicals. OBJECTIVES To obtain more clarity about the chemicals that drive the deterioration of semen quality, we conducted a mixture risk assessment based on European exposures. METHODS We included chemicals capable of affecting semen quality after prenatal exposures, among them androgen receptor antagonists, substances that disrupt prostaglandin signalling, suppress testosterone synthesis, inhibit steroidogenic enzymes or activate the aryl hydrocarbon receptor. We employed the Hazard Index approach (HI), based on risk quotients of exposures in Europe and reference doses for reductions in semen quality. By summing up the risk quotients of the 29 chemicals included in the assessment we examined fold-exceedances of "acceptable" mixture exposures relative to an index value of 1. For bisphenols A, F, S, phthalates DEHP, DnBP, BBzP, DiNP, n-butyl paraben and paracetamol we relied on biomonitoring studies in which these 9 chemicals were measured together in the same subjects. This allowed us to construct personalised Hazard Indices. RESULTS Highly exposed subjects experienced combined exposures to the 9 chemicals that exceeded the index value of 1 by more than 100-fold; the median was a 17-fold exceedance. Accounting for median background exposures to the remaining 20 chemicals added a Hazard Index of 1.39. Bisphenol A made the largest contribution to the HI, followed by polychlorinated dioxins, bisphenols S and F and DEHP. Eliminating bisphenol A alone would still leave unacceptably high mixture risks. Paracetamol is also a driver of mixture risks among subjects using the drug. CONCLUSIONS Tolerable exposures to substances associated with deteriorations of semen quality are exceeded by a large margin. Bisphenols, polychlorinated dioxins, phthalates and analgesics drive these risks. Dedicated efforts towards lowering exposures to these substances are necessary to mitigate risks.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom.
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Sibylle Ermler
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Lærke Priskorn
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Niels Jørgensen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Hanne Frederiksen
- Copenhagen University Hospital - Rigshospitalet, Department of Growth and Reproduction, Blegdamsvej, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
16
|
Abd-Elhakim YM, El Sharkawy NI, El Bohy KM, Hassan MA, Gharib HSA, El-Metwally AE, Arisha AH, Imam TS. Iprodione and/or chlorpyrifos exposure induced testicular toxicity in adult rats by suppression of steroidogenic genes and SIRT1/TERT/PGC-1α pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56491-56506. [PMID: 34060014 DOI: 10.1007/s11356-021-14339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
There is cumulative evidence that iprodione (IPR) fungicide and chlorpyrifos (CPF) insecticide are endocrine disruptors that can evoke reproductive toxicity. Yet, the underlying mechanisms are still unclear. Besides, the outcomes of their co-exposure to male sexual behavior and male fertility are still unknown. The effects of IPR (200 mg/kg b.wt) and CPF (7.45 mg/kg b.wt) single or mutual exposure for 65 days on sexual behavior, sex hormones, testicular enzymes, testis, and accessory sex gland histomorphometric measurements, apoptosis, and oxidative stress biomarkers were investigated. In addition, expression of nuclear receptor subfamily group A (NR5A1), 17β-hydroxysteroid dehydrogenase (HSD17B3), silent information regulator type-1 (SIRT1), telomerase reverse transcriptase (TERT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) genes has been assessed. Our results revealed that the individual or concurrent IPR and CPF exposure significantly disturb the sexual behavior, semen characteristics, testicular enzymes, and male hormones level. Oxidative stress caused by IPR and CPF activates apoptosis by inducing Caspase-3 and reducing Bcl-2. Downregulation of HSD17B3, NR5A1, and SIRT1/TERT/PGC-1α pathway was evident. Of note, most of these disturbances were exaggerated in rats co-exposed to IPR and CPF compared to IPR or CPF alone. Conclusively, our findings verified that IPR and CPF possibly damage the male reproductive system, and concurrent exposure should be avoided.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba S A Gharib
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer E El-Metwally
- Department of Pathology, Animal Reproduction Research Institute, Giza, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Mitidiero Stachissini Arcain B, Gross MC, Frasson Furtado D, Grade CVC. Embryotoxic effects of Rovral® for early chicken ( Gallus gallus) development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:632-648. [PMID: 33970833 DOI: 10.1080/15287394.2021.1924331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rovral® is a fungicide used to control pests that affect various crops and little is known regarding its effects on embryonic development of amniotes. Thus, this study aimed to determine the influence of Rovral® during chicken organogenesis using acute in ovo contamination. Fertilized eggs were inoculated with different concentrations of Rovral® (100, 300, 500 or 750 µl/ml), injected into the egg's air chamber. After 7 days, embryos were examined for possible malformations, staging, weight and mortality. Subsequently, head, trunk, limbs and eyes were measured for morphometry and asymmetry. For blood analysis, eggs were treated with 300 µl/ml Rovral® and glucose, presence of micronuclei and erythrocyte nuclei abnormalities determined. Treatments with Rovral® affected the mortality rate in a concentration-dependent manner. LC50 value was found to be 596 µl/ml which represents 397-fold higher than the recommended concentration for use. Rovral® produced several malformations including hemorrhagic, ocular and cephalic abnormalities. No significant changes were observed in body weight, staging, body measurements, symmetry and glucose levels of live embryos, which indicates this fungicide presents low toxicity under the analyzed conditions. Changes in erythrocyte nuclei were noted; however significant difference was observed only for presence of binucleated erythrocytes. It is important to point out that possibly more significant changes may have occurred at lower concentrations through chronic contamination. Therefore, caution is needed in the use of this fungicide, since it presents teratogenic and mutagenic potential.
Collapse
Affiliation(s)
- Beatriz Mitidiero Stachissini Arcain
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Maria Cláudia Gross
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Danúbia Frasson Furtado
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Carla Vermeulen Carvalho Grade
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| |
Collapse
|