1
|
Baylous K, Kovarovic B, Paz RR, Anam S, Helbock R, Horner M, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108469. [PMID: 39461118 DOI: 10.1016/j.cmpb.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves. METHODS An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. RESULTS Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm2 - nearly double the activation threshold - despite those being clinically classified as "mild" paravalvular leaks. CONCLUSIONS Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rodrigo R Paz
- ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551, USA; CONICET (IMIT), Argentina
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Shao X, Xu X, Li Q, Hu R, Tao K, Yang W, Dong A. Thrombotic Thrombocytopenia Purpura (TTP) following emergent aortic valve replacement after a complicated TAVR procedure: a case report and review of the literature. J Cardiothorac Surg 2024; 19:545. [PMID: 39313779 PMCID: PMC11418202 DOI: 10.1186/s13019-024-03055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a rare hematological disorder. The occurrence of TTP subsequent to an emergent aortic valve replacement after a TAVR procedure is exceedingly uncommon with only a few reported cases worldwide. CASE PRESENTATION We report the case of a 70-year-old female patient diagnosed with aortic insufficiency. Following a transcatheter aortic valve replacement, she underwent emergency aortic valve replacement under cardiopulmonary bypass on the subsequent day due to heart valve displacement. The postoperative diagnosis revealed TTP and symptomatic treatment involving plasma exchange was administered. After demonstrating steady improvement, the patient was eventually discharged. CONCLUSION Aortic valve replacement after TAVR is a high-risk procedure and increases susceptibility for developing secondary TTP. The diagnosis and treatment of secondary TPP is considerably challenging, and early diagnosis with symptomatic treatment including plasma exchange can increase patient survival.
Collapse
Affiliation(s)
- Xia Shao
- Intensive care unit in Cardiovascular Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Xu
- Cardiovascular Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingju Li
- Cardiologist, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruying Hu
- Physical Examination Center The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaiyu Tao
- Cardiovascular Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weijun Yang
- Intensive care unit in Cardiovascular Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiqiang Dong
- Head of Department, Cardiovascular Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xi Y, Li Y, Wang H, Sun A, Deng X, Chen Z, Fan Y. Effect of veno-arterial extracorporeal membrane oxygenation lower-extremity cannulation on intra-arterial flow characteristics, oxygen content, and thrombosis risk. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108204. [PMID: 38728829 DOI: 10.1016/j.cmpb.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE This study aimed to investigate the effects of lower-extremity cannulation on the intra-arterial hemodynamic environment, oxygen content, blood damage, and thrombosis risk under different levels of veno-arterial (V-A) ECMO support. METHODS Computational fluid dynamics methods were used to investigate the effects of different levels of ECMO support (ECMO flow ratios supplying oxygen-rich blood 100-40 %). Flow rates and oxygen content in each arterial branch were used to determine organ perfusion. A new thrombosis model considering platelet activation and deposition was proposed to determine the platelet activation and thrombosis risk at different levels of ECMO support. A red blood cell damage model was used to explore the risk of hemolysis. RESULTS Our study found that partial recovery of cardiac function improved the intra-arterial hemodynamic environment, with reduced impingement of the intra-arterial flow field by high-velocity blood flow from the cannula, a flow rate per unit time into each arterial branch closer to physiological levels, and improved perfusion in the lower extremities. Partial recovery of cardiac function helps reduce intra-arterial high shear stress and residence time, thereby reducing blood damage. The overall level of hemolysis and platelet activation in the aorta decreased with the gradual recovery of cardiac contraction function. The areas at high risk of thrombosis under V-A ECMO femoral cannulation support were the aortic root and the area distal to the cannula, which moved to the descending aorta when cardiac function recovered to 40-60 %. However, with the recovery of cardiac contraction function, hypoxic blood pumped by the heart is insufficient in supplying oxygen to the front of the aortic arch, which may result in upper extremity hypoxia. CONCLUSION We developed a thrombosis risk prediction model applicable to ECMO cannulation and validated the model accuracy using clinical data. Partial recovery of cardiac function contributed to an improvement in the aortic hemodynamic environment and a reduction in the risk of blood damage; however, there is a potential risk of insufficient perfusion of oxygen-rich blood to organs.
Collapse
Affiliation(s)
- Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Zhang J, Han D, Chen Z, Wang S, Sun W, Griffith BP, Wu ZJ. Linking Computational Fluid Dynamics Modeling to Device-Induced Platelet Defects in Mechanically Assisted Circulation. ASAIO J 2024:00002480-990000000-00490. [PMID: 38768482 DOI: 10.1097/mat.0000000000002242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Thrombotic and bleeding events are the most common hematologic complications in patients with mechanically assisted circulation and are closely related to device-induced platelet dysfunction. In this study, we sought to link computational fluid dynamics (CFD) modeling of blood pumps with device-induced platelet defects. Fresh human blood was circulated in circulatory loops with four pumps (CentriMag, HVAD, HeartMate II, and CH-VAD) operated under a total of six clinically representative conditions. Blood samples were collected and analyzed for glycoprotein (GP) IIb/IIIa activation and receptor shedding of GPIbα and GPVI. In parallel, CFD modeling was performed to characterize the blood flow in these pumps. Numerical indices of platelet defects were derived from CFD modeling incorporating previously derived power-law models under constant shear conditions. Numerical results were correlated with experimental results by regression analysis. The results suggested that a scalar shear stress of less than 75 Pa may have limited contribution to platelet damage. The platelet defect indices predicted by the CFD power-law models after excluding shear stress <75 Pa correlated excellently with experimentally measured indices. Although numerical prediction based on the power-law model cannot directly reproduce the experimental data. The power-law model has proven its effectiveness, especially for quantitative comparisons.
Collapse
Affiliation(s)
- Jiafeng Zhang
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dong Han
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zengsheng Chen
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shigang Wang
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wenji Sun
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P Griffith
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J Wu
- From the Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
5
|
Li Y, Liu X, Sun A, Deng X, Chen Z, Fan Y. Multi-Method Investigation of Blood Damage Induced By Blood Pumps in Different Clinical Support Modes. ASAIO J 2024; 70:280-292. [PMID: 38215762 DOI: 10.1097/mat.0000000000002116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects of blood pumps operated in different modes on nonphysiologic flow patterns, cell and protein function, and the risk of bleeding, thrombosis, and hemolysis, an extracorporeal blood pump (CentriMag) was operated in three clinical modalities including heart failure (HF), venous-venous (V-V) extracorporeal membrane oxygenation (ECMO), and venous-arterial (V-A) ECMO. Computational fluid dynamics (CFD) methods and coupled hemolysis models as well as recently developed bleeding and thrombosis models associated with changes in platelet and von Willebrand factor (vWF) function were used to predict hydraulic performance and hemocompatibility. The V-A ECMO mode had the highest flow losses and shear stress levels, the V-V ECMO mode was intermediate, and the HF mode was the lowest. Different nonphysiologic flow patterns altered cell/protein morphology and function. The V-A ECMO mode resulted in the highest levels of platelet activation, receptor shedding, vWF unfolding, and high molecular weight multimers vWF (HMWM-vWF) degradation, leading to the lowest platelet adhesion and the highest vWF binding capacity, intermediate in the V-V ECMO mode, and opposite in the HF mode. The V-A ECMO mode resulted in the highest risk of bleeding, thrombosis, and hemolysis, with the V-V ECMO mode intermediate and the HF mode lowest. These findings are supported by published experimental or clinical statistics. Further studies found that secondary blood flow passages resulted in the highest risk of blood damage. Nonphysiologic blood flow patterns were strongly associated with cell and protein function changing, blood damage, and complications.
Collapse
Affiliation(s)
- Yuan Li
- From the Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | | | | | | | | |
Collapse
|
6
|
Gao X, Zhang T, Huang X, Huan X, Li Y. Impact of rise and fall phases of shear on platelet activation and aggregation using microfluidics. J Thromb Thrombolysis 2024; 57:576-586. [PMID: 38556576 DOI: 10.1007/s11239-024-02968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Blood flow disorders are often the result of the non-physiological narrowing of blood arteries caused by atherosclerosis and thrombus. The blood then proceeds through rising-peak-decreasing phases as it passes through the narrow area. Although abnormally high shear is known to activate platelets, the shear process that platelets undergo in small arteries is complex. Thus, understanding how each shear phase affects platelet activation can be used to improve antiplatelet therapy and decrease the risk of side effects like bleeding. Blood samples were sheared (68.8 ms,5200 s-1) in vitro by the microfluidic technique, and platelet activation levels (P-selectin and integrin αIIbβ3) and von Willebrand factor (vWF) binding to platelets were analyzed by flow cytometry. Post-stenosis platelet aggregation was dynamically detected using microfluidic technology. We studied TXA2, P2Y12-ADP, and integrin αIIbβ3-fibrinogen receptor pathways by adding antiplatelet drugs, such as acetylsalicylic acid (ASA, an active ingredient of aspirin that inhibits platelet metabolism), ticagrelor (hinders platelet activation), and tirofiban (blocks integrin αIIbβ3 receptor) in vitro, respectively, to determine platelet activation function mediated by transient non-physiological high shear rates. We demonstrated that platelets can be activated under transient pathological high shear rates. The shear rise and fall phases influenced shear-induced platelet activation by regulating the binding of vWF to platelets. The degree of platelet activation and aggregation increased with multiple shear rise and fall phases. ASA did not inhibit shear-mediated platelet activation, but ticagrelor and tirofiban effectively inhibited shear-mediated platelet activation. Our data demonstrated that the shear rise and fall phases play an important role in shear-mediated platelet activation and promote platelet activation and aggregation in a vWF-dependent manner. Blocking integrin αIIbβ3 receptor and hindering P2Y12-ADP were beneficial to reducing shear-mediated platelet activation.
Collapse
Affiliation(s)
- Xuemei Gao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Tiancong Zhang
- Department of Laboratory, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaojing Huang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanrong Huan
- Department of Clinical Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Watson CT, Ward SC, Rizzo SA, Redaelli A, Manning KB. Influence of Hematocrit Level and Integrin α IIbβ III Function on vWF-Mediated Platelet Adhesion and Shear-Induced Platelet Aggregation in a Sudden Expansion. Cell Mol Bioeng 2024; 17:49-65. [PMID: 38435796 PMCID: PMC10902252 DOI: 10.1007/s12195-024-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Shear-mediated thrombosis is a clinically relevant phenomenon that underlies excessive arterial thrombosis and device-induced thrombosis. Red blood cells are known to mechanically contribute to physiological hemostasis through margination of platelets and vWF, facilitating the unfurling of vWF multimers, and increasing the fraction of thrombus-contacting platelets. Shear also plays a role in this phenomenon, increasing both the degree of margination and the near-wall forces experienced by vWF and platelets leading to unfurling and activation. Despite this, the contribution of red blood cells in shear-induced platelet aggregation has not been fully investigated-specifically the effect of elevated hematocrit has not yet been demonstrated. Methods Here, a microfluidic model of a sudden expansion is presented as a platform for investigating platelet adhesion at hematocrits ranging from 0 to 60% and shear rates ranging from 1000 to 10,000 s-1. The sudden expansion geometry models nonphysiological flow separation characteristic to mechanical circulatory support devices, and the validatory framework of the FDA benchmark nozzle. PDMS microchannels were fabricated and coated with human collagen. Platelets were fluorescently tagged, and blood was reconstituted at variable hematocrit prior to perfusion experiments. Integrin function of selected blood samples was inhibited by a blocking antibody, and platelet adhesion and aggregation over the course of perfusion was monitored. Results Increasing shear rates at physiological and elevated hematocrit levels facilitate robust platelet adhesion and formation of large aggregates. Shear-induced platelet aggregation is demonstrated to be dependent on both αIIbβIII function and the presence of red blood cells. Inhibition of αIIbβIII results in an 86.4% reduction in overall platelet adhesion and an 85.7% reduction in thrombus size at 20-60% hematocrit. Hematocrit levels of 20% are inadequate for effective platelet margination and subsequent vWF tethering, resulting in notable decreases in platelet adhesion at 5000 and 10,000 s-1 compared to 40% and 60%. Inhibition of αIIbβIII triggered dramatic reductions in overall thrombus coverage and large aggregate formation. Stability of platelets tethered by vWF are demonstrated to be αIIbβIII-dependent, as adhesion of single platelets treated with A2A9, an anti-αIIbβIII blocking antibody, is transient and did not lead to sustained thrombus formation. Conclusions This study highlights driving factors in vWF-mediated platelet adhesion that are relevant to clinical suppression of shear-induced thrombosis and in vitro assays of platelet adhesion. Primarily, increasing hematocrit promotes platelet margination, permitting shear-induced platelet aggregation through αIIbβIII-mediated adhesion at supraphysiological shear rates. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00796-0.
Collapse
Affiliation(s)
- Connor T. Watson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
| | - Shane C. Ward
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
| | - Stefano A. Rizzo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA USA
| |
Collapse
|
8
|
Ali S, Ho CY, Yang CC, Chou SH, Chen ZY, Huang WC, Shih TC. Computational fluid dynamics modeling of coronary artery blood flow using OpenFOAM: Validation with the food and drug administration benchmark nozzle model. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1121-1136. [PMID: 38788116 PMCID: PMC11380260 DOI: 10.3233/xst-230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Cardiovascular disease (CVD), a global health concern, particularly coronary artery disease (CAD), poses a significant threat to well-being. Seeking safer and cost-effective diagnostic alternatives to invasive coronary angiography, noninvasive coronary computed tomography angiography (CCTA) gains prominence. This study employed OpenFOAM, an open-source Computational Fluid Dynamics (CFD) software, to analyze hemodynamic parameters in coronary arteries with serial stenoses. Patient-specific three-dimensional (3D) models from CCTA images offer insights into hemodynamic changes. OpenFOAM breaks away from traditional commercial software, validated against the FDA benchmark nozzle model for reliability. Applying this refined methodology to seventeen coronary arteries across nine patients, the study evaluates parameters like fractional flow reserve computed tomography simulation (FFRCTS), fluid velocity, and wall shear stress (WSS) over time. Findings include FFRCTS values exceeding 0.8 for grade 0 stenosis and falling below 0.5 for grade 5 stenosis. Central velocity remains nearly constant for grade 1 stenosis but increases 3.4-fold for grade 5 stenosis. This research innovates by utilizing OpenFOAM, departing from previous reliance on commercial software. Combining qualitative stenosis grading with quantitative FFRCTS and velocity measurements offers a more comprehensive assessment of coronary artery conditions. The study introduces 3D renderings of wall shear stress distribution across stenosis grades, providing an intuitive visualization of hemodynamic changes for valuable insights into coronary stenosis diagnosis.
Collapse
Affiliation(s)
- Sajid Ali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien-Yi Ho
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chen-Chia Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Szu-Hsien Chou
- Department of Radiology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Zhen-Ye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Inoue M, Ohwada M, Watanabe N. The shear rate promotes pinocytosis of extracellular dextran in platelets. Clin Hemorheol Microcirc 2024; 87:237-247. [PMID: 38393893 PMCID: PMC11307048 DOI: 10.3233/ch-232075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Several conventional studies focused on platelet pinocytosis for possible utilization as drug delivery systems. Although platelet pinocytosis is important in such utilization, the impact of the shear rate on pinocytosis is unclear. OBJECTIVE Our objective was to investigate the relationship between shear rate and platelet pinocytosis in vitro. In addition, this study addressed the change in platelet aggregation reactivity with adenosine diphosphate (ADP) stimulation after pinocytosis. METHOD Porcine platelet-rich plasma was mixed with fluorescein isothiocyanate (FITC)-conjugated dextran and incubated for 15 min under shear conditions of 0, 500, and 1500 s-1. After incubation, confocal microscopic scanning and three-dimensional rendering were performed to confirm the internalization of FITC-dextran into platelets. The amount of FITC-dextran accumulated via platelet pinocytosis was compared using flow cytometry at each shear rate. In addition, light transmission aggregometry by ADP stimulation was applied to platelets after pinocytosis. RESULTS The amount of intracellular FITC-dextran increased with higher shear rates. Platelets with increased amounts of intracellular FITC-dextran did not show changes in the aggregation reactivity to ADP. CONCLUSIONS A higher shear rate promotes platelet pinocytosis, but enhanced pinocytosis does not affect aggregation sensitivity, which is stimulated by ADP.
Collapse
Affiliation(s)
- Masataka Inoue
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Masahiro Ohwada
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Nobuo Watanabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Department of Bio-Science and Engineering, Biofluid Science and Engineering Laboratory, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
10
|
Gao X, Zhang T, Huang X, Huan X, Li Y. Evaluating the impact of transient shear stress on platelet activation, adhesion, and aggregation with microfluidic chip technique. Artif Organs 2024; 48:28-36. [PMID: 37792630 DOI: 10.1111/aor.14653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND When nonphysiological stenosis occurs, the transient high shear stress formed in vessels increases the risk of thrombosis and is a potential factor for cardiovascular diseases. But the platelet adhesion and aggregation behavior at nonphysiological post-stenosis and its affecting factors are not fully understood yet. METHODS In this experiment, platelet aggregation on collagen and fibrinogen at different shear stresses and different hematocrits were observed by microfluidic technology. Platelet activation (P-selectin, glycoprotein IIb/IIIa) and monocyte-platelet aggregate (MPA) levels under different shear stresses were analyzed by flow cytometry. RESULTS On fibrinogen, platelets aggregate more at higher shear stress conditions. While on collagen, it becomes more difficult for platelets to form stable aggregation at higher shear stress conditions. If platelets adhere initially at low shear stress, stable platelet aggregation can be formed at subsequent high shear stress. Moreover, when the shear stress increases, platelet activity markers (P-selectin, glycoprotein IIb/IIIa and MPAs) increase significantly. Hematocrit affects the degree of platelet aggregation, and the influence of hematocrit is obvious at high shear stress. CONCLUSION Transient high shear stress (46 ms) can effectively activate platelets. Platelet aggregation behavior was different for coated fibrinogen and collagen protein. Stable platelet adhesion at post-stenosis is more dependent on fibrinogen and platelet aggregation is stable on both fibrinogen and collagen. Hematocrit can significantly affect the formation of platelet aggregation.
Collapse
Affiliation(s)
- Xuemei Gao
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Tiancong Zhang
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Huang
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanrong Huan
- Department of Clinical Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Grande Gutiérrez N, Mukherjee D, Bark D. Decoding thrombosis through code: a review of computational models. J Thromb Haemost 2024; 22:35-47. [PMID: 37657562 PMCID: PMC11064820 DOI: 10.1016/j.jtha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
From the molecular level up to a blood vessel, thrombosis and hemostasis involves many interconnected biochemical and biophysical processes over a wide range of length and time scales. Computational modeling has gained eminence in offering insights into these processes beyond what can be obtained from in vitro or in vivo experiments, or clinical measurements. The multiscale and multiphysics nature of thrombosis has inspired a wide range of modeling approaches that aim to address how a thrombus forms and dismantles. Here, we review recent advances in computational modeling with a focus on platelet-based thrombosis. We attempt to summarize the diverse range of modeling efforts straddling the wide-spectrum of physical phenomena, length scales, and time scales; highlighting key advancements and insights from existing studies. Potential information gleaned from models is discussed, ranging from identification of thrombus-prone regions in patient-specific vasculature to modeling thrombus deformation and embolization in response to fluid forces. Furthermore, we highlight several limitations of current models, future directions in the field, and opportunities for clinical translation, to illustrate the state-of-the-art. There are a plethora of opportunity areas for which models can be expanded, ranging from topics of thromboinflammation to platelet production and clearance. Through successes demonstrated in existing studies described here, as well as continued advancements in computational methodologies and computer processing speeds and memory, in silico investigations in thrombosis are poised to bring about significant knowledge growth in the years to come.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Carnegie Mellon University, Department of Mechanical Engineering Pittsburgh, PA, USA. https://twitter.com/ngrandeg
| | - Debanjan Mukherjee
- University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering Boulder, CO, USA. https://twitter.com/debanjanmukh
| | - David Bark
- Washington University in St Louis, Department of Pediatrics, Division of Hematology and Oncology St Louis, MO, USA; Washington University in St Louis, Department of Biomedical Engineering St Louis, MO, USA.
| |
Collapse
|
12
|
Wu P, Bai Y, Du G, Zhang L, Zhao X. Resistance valves in circulatory loops have a significant impact on in vitro evaluation of blood damage caused by blood pumps: a computational study. Front Physiol 2023; 14:1287207. [PMID: 38098804 PMCID: PMC10720901 DOI: 10.3389/fphys.2023.1287207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Background: Hemolysis and its complications are major concerns during the clinical application of blood pumps. In-vitro circulatory testing loops have been employed as the key procedure to evaluate the hemolytic and thrombogenic performance of blood pumps during the development phase and before preclinical in-vivo animal studies. Except for the blood damage induced by the pump under test, blood damage induced by loop components such as the resistance valve may affect the accuracy, reproducibility, and intercomparability of test results. Methods: This study quantitatively investigated the impact of the resistance valve on in vitro evaluation of blood damage caused by blood pumps under different operating points. A series of idealized tubing models under the resistance valve with different openings were created. Three pumps - the FDA benchmark pump, the HeartMate 3 LVAD, and the CH-VAD - were involved in hypothetical tests. Eight operating points were chosen to cover a relatively wide spectrum of testing scenarios. Computational fluid dynamics (CFD) simulations of the tubing and pump models were conducted at the same operating points. Results and Conclusion: Overall, hemolysis and platelet activation induced by a typical resistance valve are equivalent to 17%-45% and 14%-60%, respectively, of those induced by the pump itself. Both ratios varied greatly with flow rate, valve opening and pump models. Differences in blood damage levels between different blood pumps or working conditions can be attenuated by up to 45%. Thus, hemolysis and platelet activation induced by the resistance valve significantly affect the accuracy of in-vitro hemocompatibility evaluations of blood pumps. A more accurate and credible method for hemocompatibility evaluations of blood pumps will benefit from these findings.
Collapse
Affiliation(s)
- Peng Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Yuqiao Bai
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Guanting Du
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Liudi Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Xiangyu Zhao
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Chi H, Shao Y, Xie F, Zhang J, Zhang G, Jiang G, Tong D, Li J. Procoagulant effect of extracellular vesicles in patients after transcatheter aortic valve replacement or transcatheter aortic valve replacement with percutaneous coronary intervention. J Thromb Thrombolysis 2023:10.1007/s11239-023-02835-5. [PMID: 37284999 DOI: 10.1007/s11239-023-02835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Patients with severe aortic stenosis (AS) after replacement of the transcatheter aortic valve (TAVR) are more likely to develop thrombotic complications such as cerebral embolism and artificial valve thrombosis. However, the mechanism is not yet well defined. We aimed to explore the plasma extracellular vesicles (EVs) levels and their role in the induction of procoagulant activity (PCA) in patients receiving TAVR alone or TAVR with percutaneous coronary intervention (PCI). EVs were analyzed with flow cytometer. Markers of platelet and endothelial cell activation were quantified using selective enzyme-linked immunosorbent assay (ELISA) kits. Procoagulant activity (PCA) was assessed by clotting time, purified clotting complex assays, and fibrin production assays. Our results confirmed that EVs with positive phosphatedylserin (PS+EV), platelet EVs (PEVs) and positive tissue factor EVs (TF+EVs) were higher in patients following TAVR than before TAVR, particularly in TAVR with PCI. Furthermore, endothelial-derived EVs (EEVs) were also higher in patients after TAVR with PCI than pre-TAVR, however, the EEVs levels in TAVR alone patients were gradually reduce than pre-TAVR. In addition, we further proved that total EVs contributed to dramatically shortened coagulation time, increased intrinsic/extrinsic factor Xa and thrombin generation in patients after TAVR, especially in TAVR with PCI. The PCA was markedly attenuated by approximately 80% with lactucin. Our study reveals a previously unrecognized link between plasma EV levels and hypercoagulability in patients after TAVR, especially TAVR with PCI. Blockade of PS+EVs may improve the hypercoagulable state and prognosis of patients.
Collapse
Affiliation(s)
- Hang Chi
- Department of emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Yibing Shao
- Department of Cardiology, School of Medicine, Qingdao Municipal Hospital, Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Fangyu Xie
- Department of Cardiology, School of Medicine, Qingdao Municipal Hospital, Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Jian Zhang
- Department of General Practice, People's Hospital of Longhua, Shenzhen, China
| | - Guixin Zhang
- Department of General Surgery, Qingdao FUWAI Cardiovascular Hospital, Qingdao, Shandong Province, China
| | - Guihua Jiang
- Department of Infectious Diseases, People's Hospital of Longhua, Shenzhen, China
| | - Dongxia Tong
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, NO. 1 Jiaozhou Road, Qingdao, 266071, Shandong, China.
| | - Jihe Li
- Department of Cardiology, School of Medicine, Qingdao Municipal Hospital, Qingdao University, NO. 5 Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
14
|
Li Y, Wang H, Xi Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. A mathematical model for assessing shear induced bleeding risk. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107390. [PMID: 36745955 DOI: 10.1016/j.cmpb.2023.107390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The objective of this study is to develop a bleeding risk model for assessing device-induced bleeding risk in patients supported with blood contact medical devices (BCMDs). METHODS The mathematical model for evaluating bleeding risk considers the effects of shear stress on von Willebrand factor (vWF) unfolding, high molecular weight multimers-vWF (HMWM-vWF) degradation, platelet activation and receptor shedding and platelet-vWF binding ability. Functions of the effect of shear stress on the above factors are fitted/employed and solved by the Eulerian transport equation. An axial flow-through Couette device and two clinical VADs which are HeartWare Ventricular Assist Device (HVAD) and HeartMate II (HM II) blood pump were employed to perform the simulation to evaluate platelet receptor shedding (GPIbα and GPIIb/IIIa), loss of HWMW-vWF, platelet-vWF binding ability and bleeding risk for validating the accuracy of our model. RESULTS The platelet-vWF binding ability after being subjected to high shear region in the axial flow-through Couette device predicted by our bleeding model was highly consistent with reported experimental data. As indicated by our CFD simulation results in the axial flow-through Couette device, it can find that an increase in shear stress led to a decrease in the adhesion ability of platelets on vWF, while the binding ability of vWF with platelets first increase and then decrease as shear stress elevates gradually beyond a threshold. The factor of exposure time can enhance the effect of shear stress. Additionally, the shear-induced bleeding risk predicted by our model increases with increasing shear stress and exposure time in an axial flow-through Couette device. As indicated by our numerical model, the bleeding risk in HVAD was higher than HMII, which is highly consistent with the meta-analysis based on clinical statistics. Our simulation investigations in these two clinical VADs also found that HVAD caused a higher rate of platelet receptor shedding and lower damage to HWMW-vWF than HeartMate II. The high shear stress generated in the narrow and turbulent regions of both VADs was the underlying cause of device-induced bleeding. CONCLUSION In this study, the shear-induced bleeding risk predicted by our bleeding model in axial flow-through Couette device and two clinical VADs is consistent or highly correlated with experimental and clinical findings, which proves the accuracy of our bleeding model. Our bleeding model can be used to aid the development of new BCMDs with improved functional characteristics and biocompatibility, and help to reduce risk of device-induced adverse events in patients.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
15
|
Li Y, Xi Y, Wang H, Sun A, Deng X, Chen Z, Fan Y. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3671. [PMID: 36507614 DOI: 10.1002/cnm.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
To investigate the effect of rotor design configuration on hemodynamic features, hemocompatibility and dynamic balance of blood pumps. Computational fluid dynamics was employed to investigate the effects of rotor type (closed impeller, semi-open impeller), clearance height and back vanes on blood pump performance. In particular, the Eulerian hemolysis model based on a power-law function and the Lagrangian thrombus model with integrated stress accumulation and residence time were applied to evaluate the hemocompatibility of the blood pump. This study shows that compared to the closed impeller, the semi-open impeller can improve hemolysis at a slight sacrifice in head pressure, but increase the risk of thrombogenic potential and disrupt rotor dynamic balance. For the semi-open impeller, the pressure head, hemolysis, and axial thrust of the blood pump decrease with increasing front clearance, and the risk of thrombosis increases first and then decreases with increasing front clearance. Variations in back clearance have little effect on pressure head, but larger on back clearance, worsens hemolysis, thrombogenic potential and rotor dynamic balance. The employment of back vanes has little effect on the pressure head. All back vanes configurations have an increased risk of hemolysis in the blood pump but are beneficial for the improvement of the rotor dynamic balance of the blood pump. Reasonable back vanes configuration (higher height, wider width, longer length and more number) decreases the flow separation, increases the velocity of blood in the back clearance, and reduces the risk of blood pooling and thrombosis. It was also found that hemolysis index (HI) was highly negatively correlated with pressure difference between the top and back clearances (r = -.87), and thrombogenic potential was positively correlated with pressure difference between the top and back clearances (r = .71). This study found that rotor type, clearance height, and back vanes significantly affect the hydraulic performance, hemocompatibility and rotor dynamic balance of centrifugal blood pumps through secondary flow. These parameters should be carefully selected when designing and optimizing centrifugal blood pumps for improving the blood pump clinical outcomes.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
16
|
Bounouib M, Benakrach H, Taha-Janan M, Maazouzi W. Analysis of shear stress related hemolysis in a ventricular assist device. Biomed Mater Eng 2023; 34:51-66. [PMID: 35988210 DOI: 10.3233/bme-221401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Implantable devices such as ventricular assist devices provide appropriate treatment for patients with advanced heart failure. Unfortunately, these devices still have many problems, particularly related to blood damage. OBJECTIVE The aim of this research is to examine two new ventricular assist devices in terms of induced shear stress, exposure time, and induced hemolysis. METHOD Reverse engineering was used on multiple axial flow ventricular assist devices to collect all the details related to the designs (diameters, lengths, blade angles…), which were used to build two prototypes: Model A and Model B. RESULTS The obtained results were close to a large extent, except for static pressure rise, where the difference was clear. CONCLUSION Compared with what has been published in other studies, the overall performance of both models was excellent.
Collapse
Affiliation(s)
- Mohamed Bounouib
- Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University, Rabat, Morocco
| | - Hind Benakrach
- Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University, Rabat, Morocco
| | - Mourad Taha-Janan
- Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University, Rabat, Morocco
| | - Wajih Maazouzi
- Industrial and Health Science and Technology Research Center (STIS), ENSAM, Mohammed V University, Rabat, Morocco
| |
Collapse
|
17
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Artif Organs 2023; 47:88-104. [PMID: 35962603 DOI: 10.1111/aor.14384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The centrifugal blood pump volute has a significant impact on its hemodynamic performance hemocompatibility. Previous studies about the effect of volute design features on the performance of blood pumps are relatively few. METHODS In the present study, the computational fluid dynamics (CFD) method was utilized to evaluate the impact of volute design factors, including spiral start position, volute tongue radius, inlet height, size, shape and diffuser pipe angle on the hemolysis index and thrombogenic potential of the centrifugal blood pump. RESULTS Correlation analysis shows that flow losses affect the hemocompatibility of the blood pump by influencing shear stress and residence time. The closer the spiral start position of the volute, the better the hydraulic performance and hemocompatibility of the blood pump. Too large or too small volute inlet heights can worsen hydraulic performance and hemolysis, and higher volute inlet height can increase the thrombogenic potential. Small volute sizes exacerbate hemolysis and large volute sizes increase the thrombogenic risk, but volute size does not affect hydraulic performance. When the diffuser pipe is tangent to the base circle of the volute, the best hydraulic performance and hemolysis performance of the blood pump is achieved, but the thrombogenic potential is increased. The trapezoid volute has poor hydraulic performance and hemocompatibility. The round volute has the best hydraulic and hemolysis performance, but the thrombogenic potential is higher than that of the rectangle volute. CONCLUSION This study found that the hemolysis index shows a significant correlation with spiral start position, volute size, and diffuser pipe angle. Thrombogenic potential exhibits a good correlation with all the studied volute design features. The flow losses affect the hemocompatibility of the blood pump by influencing shear stress and residence time. The finding of this study can be used to guide the optimization of blood pump for improving the hemodynamic performance and hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
18
|
Velasquez-Mao AJ, Velasquez M, Vandsburger MH. Cyclical depressurization degranulates platelets in an agonist-free mechanism of platelet activation. PLoS One 2022; 17:e0274178. [PMID: 36107866 PMCID: PMC9477271 DOI: 10.1371/journal.pone.0274178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Activation of circulating platelets by receptor binding and subsequent coagulation events are defined by a well characterized physiological response. However, the growing prevalence of chronic kidney disease (CKD) and implication of platelet-released factors in worsening cardiovascular outcomes with hemodialysis warrant further investigation into the mechanobiology of platelet degranulation. The significant drops in pressure caused by high friction across the hemodialysis flow circuit present an overlooked platelet stimulant not involving immobilization as a driver for cytoskeletal rearrangement. In this study, platelets from healthy and dialysis (pre- and post-treatment) donors were cyclically depressurized in static suspension to measure changes in physiology by integrin αIIbβ3 activation and surface P-selectin expression. The progressive increase in CD62P with no changes in PAC1 over pressure-cycling duration regardless of uremia signifies that hydrostatic depressurization involves a novel agonist-free mechanism leading to platelet degranulation as a unique case in which CD62P and PAC1 do not interchangeably indicate platelet activation. Subsequent stimulation using ADP further suggests that sustained depressurization regimens desensitize integrin αIIbβ3 activation. Variability in platelet response caused by uremia and CKD are observed by elevated baseline PAC1 in pre-dialysis samples, PAC1 retention after ADP exposure, and maximum CD62P with ADP independent of pressure. Theory for hydrostatic pressure-induced degranulation circumventing integrin-initiated signal transduction is here presented based on the Starling Equation.
Collapse
Affiliation(s)
- Aaron J. Velasquez-Mao
- UC Berkeley–UCSF Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | - Mark Velasquez
- Department of Bioengineering, UC Berkeley, Berkeley, CA, United States of America
| | | |
Collapse
|
19
|
Kronborg J, Svelander F, Eriksson-Lidbrink S, Lindström L, Homs-Pons C, Lucor D, Hoffman J. Computational Analysis of Flow Structures in Turbulent Ventricular Blood Flow Associated With Mitral Valve Intervention. Front Physiol 2022; 13:806534. [PMID: 35846019 PMCID: PMC9280136 DOI: 10.3389/fphys.2022.806534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac disease and clinical intervention may both lead to an increased risk for thrombosis events due to a modified blood flow in the heart, and thereby a change in the mechanical stimuli of blood cells passing through the chambers of the heart. Specifically, the degree of platelet activation is influenced by the level and type of mechanical stresses in the blood flow. In this article we analyze the blood flow in the left ventricle of the heart through a computational model constructed from patient-specific data. The blood flow in the ventricle is modelled by the Navier-Stokes equations, and the flow through the mitral valve by a parameterized model which represents the projected opening of the valve. A finite element method is used to solve the equations, from which a simulation of the velocity and pressure of the blood flow is constructed. The intraventricular blood flow is complex, in particular in diastole when the inflow jet from the atrium breaks down into turbulent flow on a range of scales. A triple decomposition of the velocity gradient tensor is then used to distinguish between rigid body rotational flow, irrotational straining flow, and shear flow. The triple decomposition enables the separation of three fundamentally different flow structures, that each generates a distinct type of mechanical stimulus on the blood cells in the flow. We compare the results in a simulation where a mitral valve clip intervention is modelled, which leads to a significant modification of the intraventricular flow. Further, we perform a sensitivity study of the results with respect to the positioning of the clip. It was found that the shear in the simulation cases treated with clips increased more compared to the untreated case than the rotation and strain did. A decrease in valve opening area of 64% in one of the cases led to a 90% increase in rotation and strain, but a 150% increase in shear. The computational analysis opens up for improvements in models of shear-induced platelet activation, by offering an algorithm to distinguish shear from other modalities in intraventricular blood flow.
Collapse
Affiliation(s)
- Joel Kronborg
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
- *Correspondence: Joel Kronborg,
| | - Frida Svelander
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Samuel Eriksson-Lidbrink
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ludvig Lindström
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Carme Homs-Pons
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Didier Lucor
- Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CNRS, Université Paris-Saclay, Orsay, France
| | - Johan Hoffman
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
20
|
Comparison of the Hemocompatibility of an Axial and a Centrifugal Left Ventricular Assist Device in an In Vitro Test Circuit. J Clin Med 2022; 11:jcm11123431. [PMID: 35743501 PMCID: PMC9225365 DOI: 10.3390/jcm11123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hemocompatibility of left ventricular assist devices is essential for preventing adverse events. In this study, we compared the hemocompatibility of an axial-flow (Sputnik) to a centrifugal-flow (HeartMate 3) pump. METHODS Both pumps were integrated into identical in vitro test circuits, each filled with 75 mL heparinized human blood of the same donor. During each experiment (n = 7), the pumps were operated with equal flow for six hours. Blood sampling and analysis were performed on a regular schedule. The analytes were indicators of hemolysis, coagulation activation, platelet count and activation, as well as extracellular vesicles. RESULTS Sputnik induced higher hemolysis compared to the HeartMate 3 after 360 min. Furthermore, platelet activation was higher for Sputnik after 120 min onward. In the HeartMate 3 circuit, the platelet count was reduced within the first hour. Furthermore, Sputnik triggered a more pronounced increase in extracellular vesicles, a potential trigger for adverse events in left ventricular assist device application. Activation of coagulation showed a time-dependent increase, with no differences between both groups. CONCLUSIONS This experimental study confirms the hypothesis that axial-flow pumps may induce stronger hemolysis compared to centrifugal pumps, coming along with larger amounts of circulating extracellular vesicles and a stronger PLT activation.
Collapse
|
21
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices. Bioengineering (Basel) 2022; 9:bioengineering9060235. [PMID: 35735478 PMCID: PMC9219778 DOI: 10.3390/bioengineering9060235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Thrombosis is the main complication in patients supported with ventricular assist devices (VAD). Models that accurately predict the risk of thrombus formation in VADs are still lacking. When VADs are clinically assisted, their complex geometric configuration and high rotating speed inevitably generate complex flow fields and high shear stress. These non-physiological factors can damage blood cells and proteins, release coagulant factors and trigger thrombosis. In this study, a more accurate model for thrombus assessment was constructed by integrating parameters such as shear stress, residence time and coagulant factors, so as to accurately assess the probability of thrombosis in three clinical VADs. (2) Methods: A mathematical model was constructed to assess platelet activation and thrombosis within VADs. By solving the transport equation, the influence of various factors such as shear stress, residence time and coagulation factors on platelet activation was considered. The diffusion equation was applied to determine the role of activated platelets and substance deposition on thrombus formation. The momentum equation was introduced to describe the obstruction to blood flow when thrombus is formed, and finally a more comprehensive and accurate model for thrombus assessment in patients with VAD was obtained. Numerical simulations of three clinically VADs (CH-VAD, HVAD and HMII) were performed using this model. The simulation results were compared with experimental data on platelet activation caused by the three VADs. The simulated thrombogenic potential in different regions of MHII was compared with the frequency of thrombosis occurring in the regions in clinic. The regions of high thrombotic risk for HVAD and HMII observed in experiments were compared with the regions predicted by simulation. (3) Results: It was found that the percentage of activated platelets within the VAD obtained by solving the thrombosis model developed in this study was in high agreement with the experimental data (r² = 0.984), the likelihood of thrombosis in the regions of the simulation showed excellent correlation with the clinical statistics (r² = 0.994), and the regions of high thrombotic risk predicted by the simulation were consistent with the experimental results. Further study revealed that the three clinical VADs (CH-VAD, HVAD and HMII) were prone to thrombus formation in the inner side of the secondary flow passage, the clearance between cone and impeller, and the corner region of the inlet pipe, respectively. The risk of platelet activation and thrombus formation for the three VADs was low to high for CH-VAD, HVAD, and HM II, respectively. (4) Conclusions: In this study, a more comprehensive and accurate thrombosis model was constructed by combining parameters such as shear stress, residence time, and coagulation factors. Simulation results of thrombotic risk received with this model showed excellent correlation with experimental and clinical data. It is important for determining the degree of platelet activation in VAD and identifying regions prone to thrombus formation, as well as guiding the optimal design of VAD and clinical treatment.
Collapse
|
22
|
Han D, Zhang J, Griffith BP, Wu ZJ. Models of Shear-Induced Platelet Activation and Numerical Implementation With Computational Fluid Dynamics Approaches. J Biomech Eng 2022; 144:1119644. [PMID: 34529037 DOI: 10.1115/1.4052460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Shear-induced platelet activation is one of the critical outcomes when blood is exposed to elevated shear stress. Excessively activated platelets in the circulation can lead to thrombus formation and platelet consumption, resulting in serious adverse events such as thromboembolism and bleeding. While experimental observations reveal that it is related to the shear stress level and exposure time, the underlying mechanism of shear-induced platelet activation is not fully understood. Various models have been proposed to relate shear stress levels to platelet activation, yet most are modified from the empirically calibrated power-law model. Newly developed multiscale platelet models are tested as a promising approach to capture a single platelet's dynamic shape during activation, but it would be computationally expensive to employ it for a large-scale analysis. This paper summarizes the current numerical models used to study the shear-induced platelet activation and their computational applications in the risk assessment of a particular flow pattern and clot formation prediction.
Collapse
Affiliation(s)
- Dong Han
- Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 436, Baltimore, MD 21201
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 436, Baltimore, MD 21201
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 436, Baltimore, MD 21201
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 436, Baltimore, MD 21201; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
23
|
A new way to evaluate thrombotic risk in failure heart and ventricular assist devices. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Fiusco F, Broman LM, Prahl Wittberg L. Blood Pumps for Extracorporeal Membrane Oxygenation: Platelet Activation During Different Operating Conditions. ASAIO J 2022; 68:79-86. [PMID: 34074850 PMCID: PMC8700320 DOI: 10.1097/mat.0000000000001493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a therapy used in severe cardiopulmonary failure. Blood is pumped through an artificial circuit exposing it to nonphysiologic conditions, which promote platelet activation and coagulation. Centrifugal pumps used at lower flow rates than their design point may lose pump efficiency and increase the risk of hemolysis. In this study, thrombogenic properties of two ECMO pumps designed for adult and neonatal use were evaluated using simulations in different flow scenarios. Three scenarios, adult pump in adult mode (4 L/min), adult pump in baby mode (300 ml/min), and neonatal pump used in its design point (300 ml/min), were simulated using computational fluid dynamics. The flow was numerically seeded with platelets, whose activation state was computed considering the stress history that acted along their respective path lines. Statistical distributions of activation state and residence time were drawn. The results showed that using the adult pump in baby mode increased the fraction of platelets with higher activation state confirming that low-pump flow rate impacts thrombogenicity. The neonatal pump showed a backflow at the inlet, which carried platelets in a retrograde motion contributing to an increased thrombogenic potential compared with the adult mode scenario.
Collapse
Affiliation(s)
- Francesco Fiusco
- From the Department of Engineering Mechanics, KTH, Stockholm, Sweden
- FLOW & BioMEx Center, KTH, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Prahl Wittberg
- From the Department of Engineering Mechanics, KTH, Stockholm, Sweden
- FLOW & BioMEx Center, KTH, Stockholm, Sweden
| |
Collapse
|
25
|
Chan CHH, Simmonds MJ, Fraser KH, Igarashi K, Ki KK, Murashige T, Joseph MT, Fraser JF, Tansley GD, Watanabe N. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear. J Biomech 2021; 130:110898. [PMID: 34896790 DOI: 10.1016/j.jbiomech.2021.110898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.
Collapse
Affiliation(s)
- Chris H H Chan
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia.
| | - Michael J Simmonds
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Kosuke Igarashi
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Tomotaka Murashige
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Mary T Joseph
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia; School of Medicine, Griffith University, Queensland, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nobuo Watanabe
- Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
26
|
Oota-Ishigaki A, Yamane T, Sakota D, Kosaka R, Maruyama O, Nishida M. In vitro hemocompatibility investigation for the development of low-flow centrifugal blood pumps with less platelet clogging. Int J Artif Organs 2021; 45:431-437. [PMID: 34661490 DOI: 10.1177/03913988211052570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-flow blood pumps rated under 1 L/min are emerging for new medical applications, such as hemofiltration in acute use. In those pumps, platelet adhesion and aggregation have to be carefully considered because of clogging risk in the filter part. To find an acceptable hemocompatibility that can be applied to low-flow centrifugal blood pump design, the platelet aggregation index, clogging on a micromesh filter, and the hemolysis index were investigated using a low-flow blood pump designed for hemofiltration use. We conducted circulation testing in vitro using fresh porcine blood and two centrifugal pumps with different impeller inlet shapes. The Negative Log Platelet Aggregation Threshold Index (NL-PATI), which reflects the ability of residual platelets to aggregate, and flow rate were measured during reflux for 60 min, and the Normalized Index of Hemolysis (NIH (g/20 min)) was calculated. In addition, blood cell clogging after reflux was observed on the micromesh filter by SEM, and the adhesion rate was calculated. Our results showed that the platelet clogging on the micromesh filter occurred when the average NL-PATI was greater than 0.28 and the average NIH (g/20 min) was greater than 0.01. In contrast, platelet clogging on the micromesh was suppressed when NL-PATI was less than 0.17 and the NIH (g/20 min) was less than 0.003. These values might be used as acceptable hemocompatibility of low-flow centrifugal blood pumps with suppressed platelet clogging for hemofiltration pumps.
Collapse
Affiliation(s)
- Akiko Oota-Ishigaki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Yamane
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Osamu Maruyama
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masahiro Nishida
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Litvinenko AL, Nekrasov VM, Strokotov DI, Moskalensky AE, Chernyshev AV, Shilova AN, Karpenko AA, Maltsev VP. Blood platelet quantification by light scattering: from morphology to activation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3233-3241. [PMID: 34184022 DOI: 10.1039/d1ay00431j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Analysis of blood platelets encounters a number of different preanalytical issues, which greatly decrease the reliability and accuracy of routine clinical analysis. Modern hematology analyzers determine only four parameters relating to platelets. Platelet shape and dose-dependent activation parameters are outside the scope of commercial instruments. We used the original scanning flow cytometer for measurement of angle-resolved light scattering and the discrete dipole approximation for simulation of light scattering from a platelet optical model, as an oblate spheroid, and global optimization with two algorithms: the DATABASE algorithm to retrieve platelet characteristics from light scattering and the DIRECT algorithm to retrieve dose-dependent activation parameters. We developed the original sampling protocol to decrease spontaneous platelet activation. The new protocol allows us to keep most of the platelets in resting and partially activated states before analysis. The analysis delivers 13 content and morphological parameters of the platelets. To analyze platelet shape change during ADP activation we developed a phenomenological model. This model was applied to the analysis of ADP activation of platelets to give 8 dose-dependent activation parameters. To demonstrate the applicability of the developed protocol and analytical method, we analyzed platelets from five donors. This novel approach to the analysis of platelets allows the determination of 21 parameters relating to their content, morphology and dose-dependent activation.
Collapse
Affiliation(s)
- Alena L Litvinenko
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation.
| | - Vyacheslav M Nekrasov
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation. and Novosibirsk State University, Novosibirsk, Russian Federation
| | - Dmitry I Strokotov
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation.
| | - Alexander E Moskalensky
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation. and Novosibirsk State University, Novosibirsk, Russian Federation
| | - Andrey V Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation. and Novosibirsk State University, Novosibirsk, Russian Federation
| | - Anna N Shilova
- State Research Institute of Circulation Pathology, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- State Research Institute of Circulation Pathology, Novosibirsk, Russian Federation
| | - Valeri P Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russian Federation. and Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
28
|
Sun W, Wang S, Zhang J, Arias K, Griffith BP, Wu ZJ. Neutrophil injury and function alterations induced by high mechanical shear stress with short exposure time. Artif Organs 2021; 45:577-586. [PMID: 33237583 DOI: 10.1111/aor.13874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
High mechanical shear stresses (HMSS) can cause damage to blood, which manifests as morphologic changes, shortened life span, biochemical alterations, and complete rupture of blood cells and proteins, leading to the alterations of normal blood function. The aim of this study is to determine the state of neutrophil activation and function alterations caused by HMSS with short exposure time relevant to ventricular assist devices. Blood from healthy donors was exposed to three levels of HMSS (75Pa, 125Pa, and 175Pa) for a short exposure time (0.5 s) using our Couette-type blood-shearing device. Neutrophil activation (Mac-1, platelet-neutrophil aggregates) and surface expression levels of two key functional receptors (CD62L and CD162) on neutrophils were evaluated by flow cytometry. Neutrophil phagocytosis and transmigration were also examined with functional assays. Results showed that the expression of Mac-1 on neutrophils and platelet-neutrophil aggregates increased significantly while the level of CD62L expression on neutrophils decreased significantly after the exposure to HMSS. The Mac-1 expression progressively increased while the CD62L expression progressively decreased with the increased level of HMSS. The level of CD162 expression on neutrophils slightly increased after the exposure to HMSS, but the increase was not significant. The phagocytosis assay data revealed that the ability of neutrophils to phagocytose latex beads coated with fluorescently labeled rabbit IgG increased significantly with the increased level of HMSS. The transmigration ability of neutrophils slightly increased after the exposure to HMSS, but did not reach a significant level. In summary, HMSS with a short exposure time of 0.5 seconds could induce neutrophil activation, platelet-neutrophil aggregation, shedding of CD62L receptor, and increased phagocytic ability. However, the exposure to the three levels of HMSS did not cause a significant change in neutrophil transmigration capacity and shedding of CD162 receptor on neutrophils.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shigang Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherin Arias
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
29
|
Fang J, Sun X, Liu S, Yang P, Lin J, Feng J, Cruz MA, Dong JF, Fang Y, Wu J. Shear Stress Accumulation Enhances von Willebrand Factor-Induced Platelet P-Selectin Translocation in a PI3K/Akt Pathway-Dependent Manner. Front Cell Dev Biol 2021; 9:642108. [PMID: 34141704 PMCID: PMC8204100 DOI: 10.3389/fcell.2021.642108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Platelet adhesion and activation through the interaction of von Willebrand factor (VWF) with platelet glycoprotein (GP) Ibα are the early key events in hemostasis and thrombosis especially under high blood shear stress. P-selectin translocation from α granule to the cell surface is a typical platelet function phenotype, which makes the platelet-induced inflammatory response of flowing leukocytes possible and can be induced by either chemical agonists (thrombin, ADP, etc.) or high blood shear stress, but regulations of VWF mutation and blood shear stress on VWF-induced P-selectin translocation remain unclear. With flow cytometry, parallel plate flow chamber, and immunofluorescence staining techniques, we examined the P-selectin translocation of platelets on immobilized wild-type (WT) VWF-A1 domain and its two mutants, the gain-of-function (GOF) mutant R1308L and the loss-of-function (LOF) mutant G1324S, respectively. The results showed that the VWF-A1-induced platelet P-selectin translocation was triggered, accelerated, and enhanced by fluid shear stress and could be correlated with shear stress accumulation (SSA, the product of fluid shear stress and mechanical stimulus time), and the PI3K/Akt axis was involved in the platelet P-selectin translocation. The force-triggered P-selectin translocation occurred quickly on partial platelet surface first and then extended gradually to the whole platelet surface as SSA increased. The P-selectin translocation process would be promoted by the GOF mutation (R1308L) but slowed down by the LOF mutation (G1324S). These findings demonstrated a force-enhanced regulation mechanism for the VWF-induced platelet P-selectin translocation through the PI3K/Akt pathway and provided a novel insight into the mechano-chemical regulation mechanism for the key events, such as platelet activation and functional phenotype change in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Jinhua Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Sun
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Silu Liu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pu Yang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingjing Feng
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Ying Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Bozzi S, Roka-Moiia Y, Mencarini T, Vercellino F, Epifani I, Ammann KR, Consolo F, Slepian MJ, Redaelli A. Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. Int J Artif Organs 2021; 44:1013-1020. [PMID: 33845625 DOI: 10.1177/03913988211009909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supraphysiological shear stress and surface-contact are recognized as driving mechanisms of platelet activation (PA) in blood contacting devices (BCDs). However, the competing role of these mechanisms in triggering thrombogenic events is poorly understood. Here, we characterized the dynamics of PA in response to the combined effect of shear stress and material exposure. Human platelets were stimulated with different levels of shear stress (500, 750, 1000 dynes/cm2) over a range of exposure times (10, 20, and 30 min) within capillary tubes made of various polymeric materials. Polyethylene (PE), polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyether ether ketone (PEEK), used for BCDs fabrication, were investigated as compared to glass and thromboresistant Sigma™-coated glass. PA was quantified using the Platelet Activity State assay. Our results indicate that mechanical stimulation and polymer surface-contact both significantly contribute to PA. Notably, the contribution of the mechanical stimulus ranges between +36% and +43%, while that associated with polymer surface-contact ranges from +48% to +59%, depending on the exposure time. In more detail, our results indicate that: (i) PA increases with increasing shear stress magnitude; (ii) PA has a non-linear, time-dependent relationship to exposure time; (iii) PA is largely influenced by biomaterials, with PE and PEEK having respectively the lowest and highest prothrombotic potential; (iv) the effects of polymer surface-contact and shear stress are not correlated and can be studied separately. Our results suggest the importance of incorporating the evaluation of platelet activation driven by the combined effect of shear stress and polymer surface-contact for the comprehensive assessment, and eventually minimization, of BCDs thrombogenic potential.
Collapse
Affiliation(s)
- Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Yana Roka-Moiia
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Federica Vercellino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ilenia Epifani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kaitlyn R Ammann
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Filippo Consolo
- Università Vita-Salute San Raffaele, Facoltà di Medicina e Chirurgia, Milano, Italy
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
31
|
Rahman S, Fogelson A, Hlady V. Effects of elapsed time on downstream platelet adhesion following transient exposure to elevated upstream shear forces. Colloids Surf B Biointerfaces 2020; 193:111118. [DOI: 10.1016/j.colsurfb.2020.111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
|
32
|
Management of Antiplatelet Therapy During Continuous-Flow Left Ventricular Assist Device Support After Thrombotic Hemorrhagic Events. ASAIO J 2020; 65:683-689. [PMID: 30585872 DOI: 10.1097/mat.0000000000000935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hemorrhagic or thrombotic events are common complications in heart failure patients with continuous-flow left ventricular assist device (CF-LVAD) support. Aim of this study is to investigate the effect of change in antiplatelet therapy after thrombotic or hemorrhagic events in patients with CF-LVAD support. A total of 231 CF-LVAD patients were included in this study. Patients with CF-LVAD were categorized into three groups: (1) high antiplatelet regimen as control group (aspirin [ASA] 325 mg; n = 115), (2) low antiplatelet regimen (ASA 81 mg; n = 82), started after hemorrhagic complications, and (3) double antiplatelet therapy (ASA/clopidogrel; n = 34) started after thrombotic complications. In our analysis, indications for low antiplatelet therapy were gastrointestinal (GI) bleeding (36%), hemorrhagic stroke (8%), and epistaxis (9%). Freedom from major bleeding events after changing therapy was comparable at 1 year for all three groups respectively 96%, 97%, and 91% (log rank = 0.421). Major indications for double antiplatelet therapy were pump thrombosis (15%) and coronary artery stent placement (2.5%). Freedom from thrombotic events after changing therapy was comparable at 1 year for groups 1, 2, and 3, respectively, 97%, 98%, and 91% (log rank = 0.317). Logistic regression shows that Heartmate II patients required more antiplatelet therapy changes compared with HeartWare (odds ratio [OR]: 3.611, 95% confidence interval [CI]: 1.8-6.9; p = 0.0001). HeartMate II required more adjustment of antiplatelet therapy during follow-up. Reducing or increasing antithrombotic therapies in response to major thrombotic hemorrhagic events in CF-LVAD patients is a safe strategy to avoid recurrences.
Collapse
|
33
|
Sun W, Wang S, Chen Z, Zhang J, Li T, Arias K, Griffith BP, Wu ZJ. Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit. Artif Organs 2020; 44:717-726. [PMID: 31970795 DOI: 10.1111/aor.13646] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023]
Abstract
The roles of the large membrane surface of the oxygenator and the high mechanical shear stress (HMSS) of the pump in the extracorporeal membrane oxygenation (ECMO) circuit were examined under a pediatric support setting. A clinical centrifugal pump and a pediatric oxygenator were used to construct the ECMO circuit. An identical circuit without the oxygenator was constructed for comparison. Fresh human blood was circulated in the two circuits for 4 hours under the identical pump speed and flow. Blood samples were collected hourly for blood damage assessment, including platelet activation, generation of platelet-derived microparticles (PDMP), losses of key platelet hemostasis receptors (glycoprotein (GP) Ibα (GPIbα) and GPVI), and high molecular weight multimers (HMWM) of von Willebrand factor (VWF) and plasma free hemoglobin (PFH). Platelet adhesion on fibrinogen, VWF, and collagen was further examined. The levels of platelet activation and generation of PDMP and PFH exhibited an increasing trend with circulation time while the expression levels of GPIbα and GPVI receptors on the platelet surface decreased. Correspondingly, the platelets in the blood samples exhibited increased adhesion capacity to fibrinogen and decreased adhesion capacities on VWF and collagen with circulation time. Loss of HMWM of VWF occurred in both circuits. No statistically significant differences were found in all the measured parameters for blood damage and platelet adhesion function between the two circuits. The results indicate that HMSS from the pump played a dominant role in blood damage associated with ECMO and the impact of the large surface of the oxygenator on blood damage was insignificant.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shigang Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tieluo Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherin Arias
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
34
|
Zhang J, Chen Z, Griffith BP, Wu ZJ. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps. Int J Artif Organs 2020; 43:653-662. [PMID: 32043405 DOI: 10.1177/0391398820903734] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Left ventricular assist devices are routinely used to treat patients with advanced heart failure as a bridge to transplant or a destination therapy. However, non-physiological shear stress generated by left ventricular assist devices damages blood cells. The continued development of novel left ventricular assist devices is essential to improve the left ventricular assist device therapy for heart failure patients. The CH-VAD is a new maglev centrifugal left ventricular assist device. In this study, the CH-VAD pump was numerically analyzed and compared with the HVAD and HeartMate II pumps under two clinically relevant conditions (flow: 4.5 L/min, pressure head: normal ~80 and hypertension ~120 mmHg). The velocity and shear stress fields, washout, and hemolysis index of the three pumps were assessed with computational fluid dynamics analysis. Under the same condition, the CH-VAD hemolysis index was two times lower than the HVAD and HeartMate II pumps; the CH-VAD had the least percentage volume with shear stress larger than 100 Pa (i.e. normal condition: 0.4% vs HVAD 1.0%, and HeartMate II 2.9%). Under the normal condition, more than 98% was washed out of the three pumps within 0.4 s. The washout times were slightly shorter under the hypertension condition for the three pumps. No regions inside the CH-VAD or HVAD had extremely long residential time, while areas near the straightener of the HeartMate II pump had long residential time (>4 s) indicating elevated risks of thrombosis. The computational fluid dynamics results suggested that the CH-VAD pump has a better hemolytic biocompatibility than the HVAD and HeartMate II pumps under the normal and hypertension conditions.
Collapse
Affiliation(s)
- Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
35
|
Li M, Walk R, Roka-Moiia Y, Sheriff J, Bluestein D, Barth EJ, Slepian MJ. Circulatory loop design and components introduce artifacts impacting in vitro evaluation of ventricular assist device thrombogenicity: A call for caution. Artif Organs 2019; 44:E226-E237. [PMID: 31876310 DOI: 10.1111/aor.13626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022]
Abstract
Mechanical circulatory support (MCS) devices continue to be hampered by thrombotic adverse events (AEs), a consequence of device-imparted supraphysiologic shear stresses, leading to shear-mediated platelet activation (SMPA). In advancing MCS devices from design to clinical use, in vitro circulatory loops containing the device under development and testing are utilized as a means of assessing device thrombogenicity. Physical characteristics of these test circulatory loops may also contribute to inadvertent platelet activation through imparted shear stress, adding inadvertent error in evaluating MCS device thrombogenicity. While investigators normally control for the effect of a loop, inadvertent addition of what are considered innocuous connectors may impact test results. Here, we tested the effect of common, additive components of in vitro circulatory test loops, that is, connectors and loop geometry, as to their additive contribution to shear stress via both in silico and in vitro models. A series of test circulatory loops containing a ventricular assist device (VAD) with differing constituent components, were established in silico including: loops with 0~5 Luer connectors, a loop with a T-connector creating 90° angulation, and a loop with 90° angulation. Computational fluid dynamics (CFD) simulations were performed using a k - ω shear stress transport turbulence model to platelet activation index (PAI) based on a power law model. VAD-operated loops replicating in silico designs were assembled in vitro and gel-filtered human platelets were recirculated within (1 hour) and SMPA was determined. CFD simulations demonstrated high shear being introduced at non-smooth regions such as edge-connector boundaries, tubing, and at Luer holes. Noticeable peaks' shifts of scalar shear stress (sss) distributions toward high shear-region existed with increasing loop complexity. Platelet activation also increased with increasing shear exposure time, being statistically higher when platelets were exposed to connector-employed loop designs. The extent of platelet activation in vitro could be successfully predicted by CFD simulations. Loops employing additional components (non-physiological flow pattern connectors) resulted in higher PAI. Loops with more components (5-connector loop and 90° T-connector) showed 63% and 128% higher platelet activation levels, respectively, versus those with fewer (0-connector (P = .023) and a 90° heat-bend loop (P = .0041). Our results underscore the importance of careful consideration of all component elements, and suggest the need for standardization in designing in vitro circulatory loops for MCS device evaluation to avoid inadvertent additive SMPA during device evaluation, confounding overall results. Specifically, we caution on the use and inadvertent introduction of additional connectors, ports, and other shear-generating elements which introduce artifact, clouding primary device evaluation via introduction of additive SMPA.
Collapse
Affiliation(s)
- Mengtang Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ryan Walk
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Eric J Barth
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
36
|
Richez U, De Castilla H, Guerin CL, Gendron N, Luraghi G, Grimme M, Wu W, Taverna M, Jansen P, Latremouille C, Migliavacca F, Dubini G, Capel A, Carpentier A, Smadja DM. Hemocompatibility and safety of the Carmat Total Artifical Heart hybrid membrane. Heliyon 2019; 5:e02914. [PMID: 31867454 PMCID: PMC6906674 DOI: 10.1016/j.heliyon.2019.e02914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
The Carmat bioprosthetic total artificial heart (C-TAH) is a biventricular pump developed to minimize drawbacks of current mechanical assist devices and improve quality of life during support. This study aims to evaluate the safety of the hybrid membrane, which plays a pivotal role in this artificial heart. We investigated in particular its blood-contacting surface layer of bovine pericardial tissue, in terms of mechanical aging, risks of calcification, and impact of the hemodynamics shear stress inside the ventricles on blood components. Hybrid membranes were aged in a custom-designed endurance bench. Mechanical, physical and chemical properties were not significantly modified from 9 months up to 4 years of aging using a simulating process. Exploration of erosion areas did not show no risk of oil diffusion through the membrane. Blood contacting materials in the ventricular cavities were subcutaneously implanted in Wistar rats for 30 days as a model for calcification and demonstrated that the in-house anti-calcification pretreatment with Formaldehyde-Ethanol-Tween 80 was able to significantly reduce the calcium concentration from 132 μg/mg to 4.42 μg/mg (p < 0.001). Hemodynamic simulations with a computational model were used to reproduce shear stress in left and right ventricles and no significant stress was able to trigger hemolysis, platelet activation nor degradation of the von Willebrand factor multimers. Moreover, explanted hybrid membranes from patients included in the feasibility clinical study were analyzed confirming preclinical results with the absence of significant membrane calcification. At last, blood plasma bank analysis from the four patients implanted with C-TAH during the feasibility study showed no residual glutaraldehyde increase in plasma and confirmed hemodynamic simulation-based results with the absence of hemolysis and platelet activation associated with normal levels of plasma free hemoglobin and platelet microparticles after C-TAH implantation. These results on mechanical aging, calcification model and hemodynamic simulations predicted the safety of the hybrid membrane used in the C-TAH, and were confirmed in the feasibility study.
Collapse
Affiliation(s)
- Ulysse Richez
- Université de Paris, Innovative Therapies in Haemostasis, INSERM UMR-S1140, F-75006, Paris, France.,et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France.,Carmat SA, Vélizy-Villacoublay, France
| | | | - Coralie L Guerin
- Institut Curie, Flow Cytometry Department, F-75006, Paris, France.,National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Nicolas Gendron
- Service D'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | - Wei Wu
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Myriam Taverna
- PNAS, Institut Galien de Paris-Sud, Faculté de Pharmacie, Université Paris-Sud, CNRS UMR8612, 5 Rue JB Clément, Chatenay Malabry, France
| | | | - Christian Latremouille
- Service Chirurgie Cardique et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | - Alain Carpentier
- Service Chirurgie Cardique et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - David M Smadja
- Service D'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| |
Collapse
|
37
|
Stiehm M, Wüstenhagen C, Siewert S, Ince H, Grabow N, Schmitz KP. Impact of strut dimensions and vessel caliber on thrombosis risk of bioresorbable scaffolds using hemodynamic metrics. ACTA ACUST UNITED AC 2019; 64:251-262. [PMID: 29933242 DOI: 10.1515/bmt-2017-0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/18/2018] [Indexed: 11/15/2022]
Abstract
Bioresorbable scaffolds (BRS) promise to be the treatment of choice for stenosed coronary vessels. But higher thrombosis risk found in current clinical studies limits the expectations. Three hemodynamic metrics are introduced to evaluate the thrombosis risk of coronary stents/scaffolds using transient computational fluid dynamics (CFD). The principal phenomena are platelet activation and effective diffusion (platelet shear number, PSN), convective platelet transport (platelet convection number, PCN) and platelet aggregation (platelet aggregation number, PAN) were taken into consideration. In the present study, two different stent designs (thick-strut vs. thin-strut design) positioned in small- and medium-sized vessels (reference vessel diameter, RVD=2.25 mm vs. 2.70 mm) were analyzed. In both vessel models, the thick-strut design induced higher PSN, PCN and PAN values than the thin-strut design (thick-strut vs. thin-strut: PSN=2.92/2.19 and 0.54/0.30; PCN=3.14/1.15 and 2.08/0.43; PAN: 14.76/8.19 and 20.03/10.18 for RVD=2.25 mm and 2.70 mm). PSN and PCN are increased by the reduction of the vessel size (PSN: RVD=2.25 mm vs. 2.70 mm=5.41 and 7.30; PCN: RVD=2.25 mm vs. 2.70 mm=1.51 and 2.67 for thick-strut and thin-strut designs). The results suggest that bulky stents implanted in small caliber vessels may substantially increase the thrombosis risk. Moreover, sensitivity analyses imply that PSN is mostly influenced by vessel size (lesion-related factor), whereas PCN and PAN sensitively respond to strut-thickness (device-related factor).
Collapse
Affiliation(s)
- Michael Stiehm
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Carolin Wüstenhagen
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Stefan Siewert
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Hüseyin Ince
- Center for Internal Medicine, Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| | - Klaus-Peter Schmitz
- Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany.,Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
| |
Collapse
|
38
|
Ngo T, Kim K, Bian Y, Noh H, Lim KM, Chung JH, Bae ON. Antithrombotic Effects of Paeoniflorin from Paeonia suffruticosa by Selective Inhibition on Shear Stress-Induced Platelet Aggregation. Int J Mol Sci 2019; 20:ijms20205040. [PMID: 31614534 PMCID: PMC6834133 DOI: 10.3390/ijms20205040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.
Collapse
Affiliation(s)
- Thien Ngo
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Faculty of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh city 410000, Vietnam.
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Yiying Bian
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- School of Public Health, China Medical University, Shenyang 110122, China.
| | - Hakjun Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan 15588, Korea.
| |
Collapse
|
39
|
Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI, and Glycoprotein IIb/IIIa. ASAIO J 2019; 64:773-778. [PMID: 29117043 DOI: 10.1097/mat.0000000000000722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.
Collapse
|
40
|
Non-physiological shear stress-induced blood damage in ventricular assist device. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
41
|
Gorbet M, Sperling C, Maitz MF, Siedlecki CA, Werner C, Sefton MV. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater 2019; 94:25-32. [PMID: 31226478 DOI: 10.1016/j.actbio.2019.06.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Christopher A Siedlecki
- Departments of Surgery and Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
McVey MJ, Kuebler WM. Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget 2018; 9:37229-37251. [PMID: 30647856 PMCID: PMC6324688 DOI: 10.18632/oncotarget.26433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are generated at increased rates from parenchymal and circulating blood cells during exposure of the circulation to abnormal flow conditions and foreign materials associated with extracorporeal circuits (ExCors). This review describes types of EVs produced in different ExCors and extracorporeal life support (ECLS) systems including cardiopulmonary bypass circuits, extracorporeal membrane oxygenation (ECMO), extracorporeal carbon dioxide removal (ECCO2R), apheresis, dialysis and ventricular assist devices. Roles of EVs not only as biomarkers of adverse events during ExCor/ECLS use, but also as mediators of vascular dysfunction are explored. Manipulation of the number or subtypes of circulating EVs may prove a means of improving vascular function for individuals requiring ExCor/ECLS support. Strategies for therapeutic manipulation of EVs during ExCor/ECLS use are discussed such as accelerating their clearance, preventing their genesis or pharmacologic options to reduce or select which and how many EVs circulate. Strategies to reduce or select for specific types of EVs may prove beneficial in preventing or treating other EV-related diseases such as cancer.
Collapse
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Heart Institute, Berlin, Germany
| |
Collapse
|
43
|
Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S, Schmid Daners M, Meboldt M, Kurtcuoglu V. Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation. Artif Organs 2018; 43:363-376. [PMID: 30129977 DOI: 10.1111/aor.13346] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
Ventricular assist devices (VADs), among which the HeartMate 3 (HM3) is the latest clinically approved representative, are often the therapy of choice for patients with end-stage heart failure. Despite advances in the prevention of pump thrombosis, rates of stroke and bleeding remain high. These complications are attributed to the flow field within the VAD, among other factors. One of the HM3's characteristic features is an artificial pulse that changes the rotor speed periodically by 4000 rpm, which is meant to reduce zones of recirculation and stasis. In this study, we investigated the effect of this speed modulation on the flow fields and stresses using high-resolution computational fluid dynamics. To this end, we compared Eulerian and Lagrangian features of the flow fields during constant pump operation, during operation with the artificial pulse feature, and with the effect of the residual native cardiac cycle. We observed good washout in all investigated situations, which may explain the low incidence rates of pump thrombosis. The artificial pulse had no additional benefit on scalar washout performance, but it induced rapid variations in the flow velocity and its gradients. This may be relevant for the removal of deposits in the pump. Overall, we found that viscous stresses in the HM3 were lower than in other current VADs. However, the artificial pulse substantially increased turbulence, and thereby also total stresses, which may contribute to clinically observed issues related to hemocompatibility.
Collapse
Affiliation(s)
- Lena Wiegmann
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Bente Thamsen
- Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland.,Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Diane de Zélicourt
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Marcus Granegger
- Pediatric Cardiovascular Surgery, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Stefan Boës
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney CH, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Sublethal mechanical trauma alters the electrochemical properties and increases aggregation of erythrocytes. Microvasc Res 2018; 120:1-7. [DOI: 10.1016/j.mvr.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
45
|
Deutsch MA, Scotten LN, Siegel R, Lange R, Bleiziffer S. Leaflet thrombosis and clinical events after TAVR: are paravalvular leaks a crucial trigger? EUROINTERVENTION 2018; 14:716-717. [PMID: 30122662 DOI: 10.4244/eij-d-18-00348l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Marcus-André Deutsch
- Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Chan CHH, Diab S, Moody K, Frazier OH, Sampaio LC, Fraser CD, Teruya J, Adachi I. In Vitro Hemocompatibility Evaluation of Ventricular Assist Devices in Pediatric Flow Conditions: A Benchmark Study. Artif Organs 2018; 42:1028-1034. [DOI: 10.1111/aor.13165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Chris Hoi Houng Chan
- Cardiovascular Surgery Research Laboratories; Texas Heart Institute; Houston TX USA
| | - Sara Diab
- Cardiovascular Surgery Research Laboratories; Texas Heart Institute; Houston TX USA
- School of Medicine; University of Queensland; Brisbane QLD AUS
| | - Kayla Moody
- Cardiovascular Surgery Research Laboratories; Texas Heart Institute; Houston TX USA
| | - O Howard Frazier
- Cardiovascular Surgery Research Laboratories; Texas Heart Institute; Houston TX USA
| | - Luiz C. Sampaio
- Cardiovascular Surgery Research Laboratories; Texas Heart Institute; Houston TX USA
| | - Charles D. Fraser
- Division of Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
- Surgery and Pediatrics; Houston TX USA
| | - Jun Teruya
- Pathology & Immunology; Baylor College of Medicine; Houston TX USA
- Transfusion Medicine and Coagulation; Texas Children's Hospital; Houston TX USA
| | - Iki Adachi
- Division of Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
- Surgery and Pediatrics; Houston TX USA
| |
Collapse
|
47
|
Bohec P, Gachelin J, Ollivier V, Mutin T, Télot X, Ho-Tin-Noé B, Sanfilippo S. Acoustophoretic purification of platelets: feasibility and impact on platelet activation and function. Platelets 2017; 30:174-180. [PMID: 29211557 DOI: 10.1080/09537104.2017.1386296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purity, limited platelet activation, and preservation of platelet function are important stakes of preparation of platelet concentrates (PC) for clinical use. In fact, contaminating red blood cells and leukocytes, as well as activated and/or poorly functional platelets in PC, represents a risk of poor efficiency and adverse side effects during platelet transfusion. Therefore, optimization of preparation and storage of PC is still an active field of research. Shear-induced platelet activation is an unwanted side effect of the hard-spin (up to 5000g) step of centrifugation-based methods currently used in blood banks to prepare PC from whole blood samples. Here, we evaluated the effectiveness of an acoustic-based fractionation device for the isolation of human platelets from whole blood bags. The purity, activation status, and functionality of platelets isolated by acoustopheresis were compared with those of platelets isolated using a reference protocol known to produce limited platelet activation and consisting of two consecutive soft-spin centrifugations (120g and 1200g). Platelet concentration and purity were determined using an automated hematology analyzer. Platelet activation status and platelet reactivity to collagen and thrombin were assessed in flow cytometry by measurement of surface expression of P-selectin and activated integrin αIIbβ3. The ability of isolated platelets to incorporate into a thrombus when transfused to NOD/SCID mice was investigated by intravital microscopy using the ferric chloride-induced thrombosis model. Blood fractionation by acoustophoresis led to the elimination of more than 80% of red blood cells and leukocytes from the platelet fraction, whose mean purity was of 92.8 ± 12.8%. The activation status and reactivity to collagen and thrombin of acoustophoresis-isolated platelets were similar to those of platelets isolated by soft-spin centrifugation. Finally, acoustophoresis-isolated platelets were tethered, adhered to the vessel wall, and incorporated into a growing thrombus following ferric chloride-induced vascular injury. Together, our results indicate that acoustophoresis is a suitable method for the isolation of human platelets with minimal platelet activation and preservation of platelet function.
Collapse
Affiliation(s)
- Pierre Bohec
- a Ænitis technologies S.A.S , Hôpital Saint-Louis , Paris , France
| | - Jérémie Gachelin
- a Ænitis technologies S.A.S , Hôpital Saint-Louis , Paris , France
| | | | - Thibaut Mutin
- a Ænitis technologies S.A.S , Hôpital Saint-Louis , Paris , France
| | - Xavier Télot
- a Ænitis technologies S.A.S , Hôpital Saint-Louis , Paris , France
| | | | | |
Collapse
|
48
|
Alsmadi NZ, Shapiro SJ, Lewis CS, Sheth VM, Snyder TA, Schmidtke DW. Constricted microfluidic devices to study the effects of transient high shear exposure on platelets. BIOMICROFLUIDICS 2017; 11:064105. [PMID: 29204246 PMCID: PMC5705242 DOI: 10.1063/1.4989386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Due to the critical roles that platelets play in thrombosis during many biological and pathological events, altered platelet function may be a key contributor to altered hemostasis, leading to both thrombotic and hemorrhagic complications. Platelet adhesion at arterial shear rates occurs through binding to von Willebrand Factor via the glycoprotein (GP) GPIb receptor. GPIb binding can induce platelet activation distinguishable by P-selectin (CD62P) surface expression and αIIbβ3 activation, resulting in platelet aggregation and formation of the primary hemostatic plug to stop bleeding. Previous studies have used cone and plate viscometers to examine pathologic blood flow conditions, applied shear rates that are relatively low, and examined exposure times that are orders of magnitude longer compared to conditions present in ventricular assist devices, mechanical heart valves, or pathologic states such as stenotic arteries. Here, we evaluate the effect of short exposure to high shear on granule release and receptor shedding utilizing a constricted microfluidic device in conjunction with flow cytometry and enzyme-linked immunosorbent assay. In this study, platelets were first perfused through microfluidic channels capable of producing shear rates of 80 000-100 000 s-1 for exposure times of 0-73 ms. We investigated platelet activation by measuring the expression level of CD62P (soluble and surface expressed), platelet factor 4 (PF4), and beta-thromboglobulin (βTG). In addition, we measured potential platelet receptor shedding of GPVI and GPIb using flow cytometry. The results showed that a single pass to high shear with short exposure times (milliseconds) had no effect on the levels of CD62P, GPVI and GPIb, or on the release of alpha granule content (PF4, βTG, and sP-selectin).
Collapse
Affiliation(s)
- Nesreen Z Alsmadi
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, USA
| | - Sarah J Shapiro
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Christopher S Lewis
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Vinit M Sheth
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, USA
| |
Collapse
|
49
|
Abstract
In this Editor's Review, articles published in 2015 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for providing their work to this journal. We offer our very special thanks to our reviewers who give so generously of their time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|
50
|
Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor. Artif Organs 2015; 40:659-68. [PMID: 26582038 DOI: 10.1111/aor.12606] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Blood can become hypercoagulable by shear-induced platelet activation and generation of microparticles. It has been reported that nonphysiological shear stress (NPSS) could induce shedding of platelet receptor glycoprotein (GP) Ibα, which may result in an opposite effect to hemostasis. The aim of this study was to investigate the influence of the NPSS on platelets and von Willebrand factor (vWF). Human blood was exposed to two levels of NPSS (25 Pa, 125 Pa) with an exposure time of 0.5 s, generated by using a novel blood-shearing device. Platelet activation (P-selectin expression, GPIIb/IIIa activation and generation of microparticles) and shedding of three platelet receptors (GPIbα, GPVI, GPIIb/IIIa) in sheared blood were quantified using flow cytometry. Aggregation capacity of sheared blood induced by ristocetin and collagen was evaluated using an aggregometer. Shear-induced vWF damage was characterized with Western blotting. Consistent with the published data, the NPSS caused significantly more platelets to become activated with increasing NPSS level. Meanwhile, the NPSS induced the shedding of platelet receptors. The loss of the platelet receptors increased with increasing NPSS level. The aggregation capacity of sheared blood induced by ristocetin and collagen decreased. There was a loss of high molecular weight multimers (HMWMs) of vWF in sheared blood. These results suggest that the NPSS induced a paradoxical effect. More activated platelets increase the risk of thrombosis, while the reduction in platelet receptors and the loss of HMWM-vWF increased the propensity of bleeding. The finding might provide a new perspective to understand thrombosis and acquired bleeding disorder in patients supported with blood contacting medical devices.
Collapse
Affiliation(s)
- Zengsheng Chen
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, China
| | - Nandan K Mondal
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Ding
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Steven C Koenig
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhongjun J Wu
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|