1
|
Zamorano-Martín F, Chumaceiro G, Navarro-Torres P, Borroni D, Urbinati F, Molina Á, Paytuví-Gallart A, Rocha-de-Lossada C. A Comparative Analysis of the Ocular Microbiome: Insights into Healthy Eyes and Anophthalmic Sockets. Microorganisms 2024; 12:2298. [PMID: 39597687 PMCID: PMC11596676 DOI: 10.3390/microorganisms12112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The purpose of this study is to characterize the ocular surface microbiota of patients with an anophthalmic cavity. An eNAT with 1 mL of Liquid Amies Medium was used to collect samples. Microbial DNA from anophthalmic socket and healthy fellow control eye samples was isolated and sequenced. Raw reads were analyzed with GAIA (v 2.02). The richness and Shannon alpha diversity metrics, as well as Bray-Curtis beta diversity and Wilcoxon signed-rank test values, were computed with R packages such as phyloseq, mia, or DESeq2 to allow for microbiome analysis. Principal coordinate analysis (PCoA) was performed using the function plotReducedDim from the R package scater. The different taxonomic profiles were described under the concept of eye community state type (ECST). The microbiomes of both eyes from 25 patients with an anophthalmic cavity were analyzed in this study. While the microbial communities of paired eyes from the same patients showed notable dissimilarity, no consistent patterns emerged when comparing healthy eyes to anophthalmic sockets. Alpha diversity values did not significantly differ between healthy eyes and anophthalmic socket samples, though there was considerable variability within each group. Notably, anophthalmic socket samples generally exhibited lower abundances of genera such as Staphylococcus, Enterococcus, Paenibacillus, and Sediminibacterium compared to their healthy counterparts. Microbial variability between healthy eyes and anophthalmic sockets may be due to anatomical differences. Further research is needed to determine whether patients without anophthalmic sockets exhibit similar microbiome patterns in both eyes.
Collapse
Affiliation(s)
- Francisco Zamorano-Martín
- Departament of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18016 Granada, Spain; (F.Z.-M.)
- Department of Radiology and Physical Medicine, Ophthalmology and Otorhinolaryngology, Ophthalmology Area, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
- Granada Vision and Eye Research Team (VER), Instituto de Investigación Biosanitaria ibs.GRANADA, 18016 Granada, Spain
| | - Guillermo Chumaceiro
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain; (G.C.); (Á.M.); (A.P.-G.)
| | - Pablo Navarro-Torres
- Departament of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18016 Granada, Spain; (F.Z.-M.)
| | - Davide Borroni
- Department of Ophthalmology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Facundo Urbinati
- Departament of Ophthalmology, Hospital Universitario Torrecárdenas, 04001 Almeria, Spain;
| | - Ángel Molina
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain; (G.C.); (Á.M.); (A.P.-G.)
| | - Andreu Paytuví-Gallart
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain; (G.C.); (Á.M.); (A.P.-G.)
| | - Carlos Rocha-de-Lossada
- Qvision, Ophthalmology Department, VITHAS Almeria Hospital, 04009 Almeria, Spain;
- Ophthalmology Department, VITHAS Malaga, 29016 Malaga, Spain
- Departament of Ophthalmology, Hospital Regional Universitario de Malaga, 29010 Malaga, Spain
- Departamento de Cirugía, Universidad de Sevilla, Área de Oftalmología, 41001 Sevilla, Spain
| |
Collapse
|
2
|
Trojacka E, Izdebska J, Szaflik J, Przybek-Skrzypecka J. The Ocular Microbiome: Micro-Steps Towards Macro-Shift in Targeted Treatment? A Comprehensive Review. Microorganisms 2024; 12:2232. [PMID: 39597621 PMCID: PMC11596073 DOI: 10.3390/microorganisms12112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
A healthy ocular surface is inhabited by microorganisms that constitute the ocular microbiome. The core of the ocular microbiome is still a subject of debate. Numerous culture-dependent and gene sequencing studies have revealed the composition of the ocular microbiome. There was a confirmed correlation between the ocular microbiome and ocular surface homeostasis as well as between ocular dysbiosis and pathologies such as blepharitis, microbial keratitis, and conjunctivitis. However, the role of the ocular microbiome in the pathogenesis and treatment of ocular surface diseases remains unclear. This article reviews available data on the ocular microbiome and microbiota, their role in maintaining ocular homeostasis, and the impact of dysbiosis on several ophthalmic disorders. Moreover, we aimed to discuss potential treatment targets within the ocular microbiota.
Collapse
Affiliation(s)
- Ewelina Trojacka
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
| | - Justyna Izdebska
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| | - Jacek Szaflik
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| | - J. Przybek-Skrzypecka
- SPKSO Ophthalmic University Hospital in Warsaw, 03-709 Warsaw, Poland; (E.T.); (J.I.); (J.S.)
- Department of Ophthalmology, Medical University of Warsaw, 03-709 Warsaw, Poland
| |
Collapse
|
3
|
Amer AM, Naqvi M, Charnock C. Genomics of Staphylococcus aureus and Enterococcus faecalis isolated from the ocular surface of dry eye disease sufferers. Exp Eye Res 2024; 248:110071. [PMID: 39241861 DOI: 10.1016/j.exer.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Ocular surface inflammatory disorders, such as dry eye, are becoming increasingly prevalent. Developing new treatment strategies targeting harmful bacteria could provide significant therapeutic benefits. The purpose of this study was to characterize the common ocular pathogen Staphylococcus aureus and the rarer endophthalmitis-associated species Enterococcus faecalis isolated from the ocular surface of dry eye disease patients in Norway. Together the 7 isolates (5 S. aureus and 2 E. faecalis) comprise the complete set of members of each species isolated in our previous study of the ocular microbiome of 61 dry eye sufferers. We aimed to investigate the pathogenic potential of these isolates in relation to ocular surface health. To this end, we used whole genome sequencing, multiplex PCR directed at virulence genes and antibiotic susceptibility tests encompassing clinically relevant agents. The E. faecalis isolates showed resistance to only gentamicin. S. aureus isolates displayed susceptibility to most of the tested antibiotics, except for two isolates which showed resistance to trimethoprim/sulfamethoxazole and three isolates which were resistant to ampicillin. Susceptibilities included sensitivity to several first-line antibiotics for treatment of ocular infections by these species. Thus, treatment options would be available if required. However, spontaneous resistance development to gentamicin and rifampicin occurred in some S. aureus which could be a cause for concern. Whole genome sequencing of the isolates showed genome sizes ranging from 2.74 to 2.83 Mbp for S. aureus and 2.86 Mbp for E. faecalis, which is typical for these species. Multilocus sequence typing and phylogenetic comparisons with previously published genomes, did not suggest the presence of eye-specific clusters for either species. Genomic analysis indicated a high probability of pathogenicity among all isolates included in the study. Resistome analysis revealed the presence of the beta-lactamase blaZ gene in all S. aureus isolates and the dfrG gene in two of them; while E. faecalis isolates carried the lsa(A) gene which confers intrinsic resistance to lincosamides and streptogramin A in this species. Screening for virulence factors revealed the presence of various pathogenicity associated genes in both S. aureus and E. faecalis isolates. These included genes coding for toxin production and factors associated with evading the host immune system. Some of the identified genes (tst, hylA & hylB) are suggested to be linked to the pathophysiology of dry eye disease. Lastly, the presence of specific S. aureus virulence genes was confirmed through multiplex PCR analysis.
Collapse
Affiliation(s)
- Ahmed M Amer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway.
| | - Maria Naqvi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| |
Collapse
|
4
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024; 32:840-857. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
5
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Schlunck G, Maier P, Maier B, Maier W, Strempel S, Reinhard T, Heinzelmann S. Next-Generation Sequencing of the Human Aqueous Humour Microbiome. Int J Mol Sci 2024; 25:6128. [PMID: 38892316 PMCID: PMC11173048 DOI: 10.3390/ijms25116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The microbiome of the ocular surface has been characterised, but only limited information is available on a possible silent intraocular microbial colonisation in normal eyes. Therefore, we performed next-generation sequencing (NGS) of 16S rDNA genes in the aqueous humour. The aqueous humour was sampled from three patients during cataract surgery. Air swabs, conjunctival swabs from patients as well as from healthy donors served as controls. Following DNA extraction, the V3 and V4 hypervariable regions of the 16S rDNA gene were amplified and sequenced followed by denoising. The resulting Amplicon Sequence Variants were matched to a subset of the Ribosomal Database Project 16S database. The deduced bacterial community was then statistically analysed. The DNA content in all samples was low (0-1.49 ng/µL) but sufficient for analysis. The main phyla in the samples were Acinetobacteria (48%), Proteobacteria (26%), Firmicutes (14%), Acidobacteria (8%), and Bacteroidetes (2%). Patients' conjunctival control samples and anterior chamber fluid showed similar patterns of bacterial species containing many waterborne species. Non-disinfected samples showed a different bacterial spectrum than the air swab samples. The data confirm the existence of an ocular surface microbiome. Meanwhile, a distinct intraocular microbiome was not discernible from the background, suggesting the absence of an intraocular microbiome in normal eyes.
Collapse
Affiliation(s)
- Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Barbara Maier
- Institute for Infection Prevention and Control, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany;
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg im Breisgau, Germany;
| | | | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Sonja Heinzelmann
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| |
Collapse
|
7
|
Chow L, Flaherty E, Pezzanite L, Williams M, Dow S, Wotman K. Impact of Equine Ocular Surface Squamous Neoplasia on Interactions between Ocular Transcriptome and Microbiome. Vet Sci 2024; 11:167. [PMID: 38668434 PMCID: PMC11054121 DOI: 10.3390/vetsci11040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular surface squamous neoplasia (OSSN) represents the most common conjunctival tumor in horses and frequently results in vision loss and surgical removal of the affected globe. Multiple etiologic factors have been identified as contributing to OSSN progression, including solar radiation exposure, genetic mutations, and a lack of periocular pigmentation. Response to conventional treatments has been highly variable, though our recent work indicates that these tumors are highly responsive to local immunotherapy. In the present study, we extended our investigation of OSSN in horses to better understand how the ocular transcriptome responds to the presence of the tumor and how the ocular surface microbiome may also be altered by the presence of cancer. Therefore, we collected swabs from the ventral conjunctival fornix from 22 eyes in this study (11 with cytologically or histologically confirmed OSSN and 11 healthy eyes from the same horses) and performed RNA sequencing and 16S microbial sequencing using the same samples. Microbial 16s DNA sequencing and bulk RNA sequencing were both conducted using an Illumina-based platform. In eyes with OSSN, we observed significantly upregulated expression of genes and pathways associated with inflammation, particularly interferon. Microbial diversity was significantly reduced in conjunctival swabs from horses with OSSN. We also performed interactome analysis and found that three bacterial taxa (Actinobacillus, Helcococcus and Parvimona) had significant correlations with more than 100 upregulated genes in samples from animals with OSSN. These findings highlight the inflammatory nature of OSSN in horses and provide important new insights into how the host ocular surface interacts with certain microbial populations. These findings suggest new strategies for the management of OSSN in horses, which may entail immunotherapy in combination with ocular surface probiotics or prebiotics to help normalize ocular cell and microbe interactions.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Edward Flaherty
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Lynn Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Maggie Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| |
Collapse
|
8
|
Schiano-Lomoriello D, Abicca I, Contento L, Gabrielli F, Alfonsi C, Di Pietro F, Papa FT, Ballesteros-Sánchez A, Sánchez-González JM, Rocha-De-Lossada C, Mazzotta C, Giannaccare G, Bonzano C, Borroni D. Infectious Keratitis: Characterization of Microbial Diversity through Species Richness and Shannon Diversity Index. Biomolecules 2024; 14:389. [PMID: 38672407 PMCID: PMC11048652 DOI: 10.3390/biom14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Purpose: To characterize microbial keratitis diversity utilizing species richness and Shannon Diversity Index. Methods: Corneal impression membrane was used to collect samples. All swabs were processed and analyzed by Biolab Laboratory (level V-SSN Excellence: ISO 9001:2015), Biolab Srl (Ascoli Piceno, Italy). DNA extraction, library preparation, and sequencing were performed in all samples. After sequencing, low-quality and polyclonal sequences were filtered out by the Ion software. At this point, we employed Kraken2 for microbial community analysis in keratitis samples. Nuclease-free water and all the reagents included in the experiment were used as a negative control. The primary outcome was the reduction in bacterial DNA (microbial load) at T1, expressed as a percentage of the baseline value (T0). Richness and Shannon alpha diversity metrics, along with Bray-Curtis beta diversity values, were calculated using the phyloseq package in R. Principal coordinate analysis was also conducted to interpret these metrics. Results: 19 samples were included in the study. The results exhibited a motley species richness, with the highest recorded value surpassing 800 species. Most of the samples displayed richness values ranging broadly from under 200 to around 600, indicating considerable variability in species count among the keratitis samples. Conclusions: A significant presence of both typical and atypical bacterial phyla in keratitis infections, underlining the complexity of the disease's microbial etiology.
Collapse
Affiliation(s)
| | - Irene Abicca
- I.R.C.C.S.-G.B. Bietti Foundation, 00198 Rome, Italy; (D.S.-L.); (I.A.); (L.C.)
| | - Laura Contento
- I.R.C.C.S.-G.B. Bietti Foundation, 00198 Rome, Italy; (D.S.-L.); (I.A.); (L.C.)
| | - Federico Gabrielli
- Biolab SRL, Laboratorio di Genetica e Genomica Molecolare, Largo degli Aranci, 9, 63100 Ascoli Piceno, Italy; (F.G.); (C.A.); (F.D.P.); (F.T.P.)
| | - Cinzia Alfonsi
- Biolab SRL, Laboratorio di Genetica e Genomica Molecolare, Largo degli Aranci, 9, 63100 Ascoli Piceno, Italy; (F.G.); (C.A.); (F.D.P.); (F.T.P.)
| | - Fabio Di Pietro
- Biolab SRL, Laboratorio di Genetica e Genomica Molecolare, Largo degli Aranci, 9, 63100 Ascoli Piceno, Italy; (F.G.); (C.A.); (F.D.P.); (F.T.P.)
| | - Filomena Tiziana Papa
- Biolab SRL, Laboratorio di Genetica e Genomica Molecolare, Largo degli Aranci, 9, 63100 Ascoli Piceno, Italy; (F.G.); (C.A.); (F.D.P.); (F.T.P.)
| | - Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (A.B.-S.)
- Department of Ophthalmology, Clínica Novovisión, 30008 Murcia, Spain
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (A.B.-S.)
| | - Carlos Rocha-De-Lossada
- Regional University Hospital of Malaga, Hospital Civil Square, 29009 Malaga, Spain;
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain
| | | | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09121 Cagliari, Italy;
| | - Chiara Bonzano
- DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy;
| | - Davide Borroni
- Department of Ophthalmology, Riga Stradins University, LV-1007 Riga, Latvia
- Eyemetagenomics Ltd., 71-75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
| |
Collapse
|
9
|
Liang C, Wang L, Wang X, Jia Y, Xie Q, Zhao L, Yuan H. Altered ocular surface microbiota in obesity: a case-control study. Front Cell Infect Microbiol 2024; 14:1356197. [PMID: 38533385 PMCID: PMC10963539 DOI: 10.3389/fcimb.2024.1356197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Purpose This study aimed to investigate the composition of ocular surface microbiota in patients with obesity. Methods This case-control study, spanning from November 2020 to March 2021 at Henan Provincial People's Hospital, involved 35 patients with obesity and an equivalent number of age and gender-matched healthy controls. By employing 16S rRNA sequencing, this study analyzed the differences in ocular surface microbiota between the two groups. The functional prediction analysis of the ocular surface microbiota was conducted using PICRUSt2. Results The alpha diversity showed no notable differences in the richness or evenness of the ocular surface microbiota when comparing patients with obesity to healthy controls (Shannon index, P=0.1003). However, beta diversity highlighted significant variances in the microbiota composition of these two groups (ANOSIM, P=0.005). LEfSe analysis revealed that the relative abundances of Delftia, Cutibacterium, Aquabacterium, Acidovorax, Caulobacteraceae unclassified, Comamonas and Porphyromonas in patients with obesity were significantly increased (P<0.05). Predictive analysis using PICRUSt2 highlighted a significant enhancement in certain metabolic pathways in patients with obesity, notably xenobiotics metabolism via cytochrome P450 (CYP450), lipid metabolism, and the oligomerization domain (NOD)-like receptor signaling pathway (P<0.05). Conclusions Patients with obesity exhibit a distinct ocular surface core microbiome. The observed variations in this microbiome may correlate with increased activity in CYP450, changes in lipid metabolism, and alterations in NOD-like receptor signaling pathways.
Collapse
Affiliation(s)
- Chenghong Liang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Limin Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiudan Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yifan Jia
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qinyuan Xie
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lingyun Zhao
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Endocrinology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Clougher S, Severgnini M, Marangoni A, Consolandi C, Camboni T, Morselli S, Arpinati M, Bonifazi F, Dicataldo M, Lazzarotto T, Fontana L, Versura P. Longitudinal Changes of Ocular Surface Microbiome in Patients Undergoing Hemopoietic Stem Cell Transplant (HSCT). J Clin Med 2023; 13:208. [PMID: 38202215 PMCID: PMC10779677 DOI: 10.3390/jcm13010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To evaluate changes in the ocular surface microbiome (OSM) between pre- and post-haemopoietic stem cell transplant (HSCT) in the same patient, and to assess the potential impact of these changes in ocular graft-versus-host disease (o)GVHD development. METHODS Lower fornix conjunctival swabs of 24 patients were obtained before and after HSCT and subjected to DNA extraction for amplification and sequencing of the V3-V4 regions of the bacterial 16S rRNA gene. The obtained reads were reconstructed, filtered, and clustered into zero-radius operational taxonomic units (zOTUs) at 97% identity level before taxonomic assignment, and biodiversity indexes were calculated. Transplant characteristics were recorded, and dry eye was diagnosed and staged 1-4 according to the Dry Eye WorkShop (DEWS) score. RESULTS No significant difference in OSM alpha diversity between pre- and post-transplant was found. A significant difference in beta diversity was observed between patients with a DEWS score of 1 versus 3 (p = 0.035). Increased corneal damage between pre- and post-HSCT was significantly associated with a decrease in alpha diversity. The changes in OSM were not associated with oGVHD, nor with any transplant parameter. CONCLUSIONS This preliminary study is the first study to analyse changes in the OSM before and after HSCT longitudinally. No trend in OSM biodiversity, microbial profile, or overall composition changes before and after HSCT was significant or associated with oGVHD onset. The great variability in the observed OSM profiles seems to suggest the absence of a patient-specific OSM "signature".
Collapse
Affiliation(s)
- Suzanne Clougher
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (S.C.); (L.F.)
| | - Marco Severgnini
- Institute of Biomedical Technologies—National Research Council, 20054 Segrate, Italy; (M.S.); (C.C.); (T.C.)
| | - Antonella Marangoni
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (A.M.); (S.M.); (T.L.)
| | - Clarissa Consolandi
- Institute of Biomedical Technologies—National Research Council, 20054 Segrate, Italy; (M.S.); (C.C.); (T.C.)
| | - Tania Camboni
- Institute of Biomedical Technologies—National Research Council, 20054 Segrate, Italy; (M.S.); (C.C.); (T.C.)
| | - Sara Morselli
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (A.M.); (S.M.); (T.L.)
| | - Mario Arpinati
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| | - Michele Dicataldo
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| | - Tiziana Lazzarotto
- Microbiology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (A.M.); (S.M.); (T.L.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| | - Luigi Fontana
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (S.C.); (L.F.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| | - Piera Versura
- Ophthalmology Unit, DIMEC, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy; (S.C.); (L.F.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (M.A.); (F.B.); (M.D.)
| |
Collapse
|
11
|
Rasaruck U, Kasetsuwan N, Kittipibul T, Pongchaikul P, Chatsuwan T. Composition and diversity of meibum microbiota in meibomian gland dysfunction and the correlation with tear cytokine levels. PLoS One 2023; 18:e0296296. [PMID: 38134040 PMCID: PMC10745150 DOI: 10.1371/journal.pone.0296296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Meibomian gland dysfunction (MGD) leads to meibum stasis and pathogenic bacteria proliferation. We determined meibum microbiota via next-generation sequencing (NGS) and examined their association with tear cytokine levels in patients with MGD. This cross-sectional study included 44 moderate-severe patients with MGD and 44 healthy controls (HCs). All volunteers underwent assessment with the ocular surface disease index questionnaire, Schirmer without anesthesia, tear break-up time, Oxford grading of ocular surface staining, and lid and meibum features. Sample collection included tears for cytokine detection and meibum for 16S rRNA NGS. No significant differences were observed in the α-diversity of patients with MGD compared with that in HCs. However, Simpson's index showed significantly decreased α-diversity for severe MGD than for moderate MGD (p = 0.045). Principal coordinate analysis showed no significant differences in β-diversity in meibum samples from patients with MGD and HCs. Patients with MGD had significantly higher relative abundances of Bacteroides (8.54% vs. 6.00%, p = 0.015) and Novosphingobium (0.14% vs. 0.004%, p = 0.012) than the HCs. Significantly higher interleukin (IL)-17A was detected in the MGD group than in the HC group, particularly for severe MGD (p = 0.008). Although Bacteroides was more abundant in the MGD group than in the HC group, it was not positively correlated with IL-17A. The relationship between core meibum microbiota and tear cytokine levels remains unclear. However, increased Bacteroides and Novosphingobium abundance may be critical in MGD pathophysiology.
Collapse
Affiliation(s)
- Ubonwan Rasaruck
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ngamjit Kasetsuwan
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center of Cornea and Limbal Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanachaporn Kittipibul
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center of Cornea and Limbal Stem Cell Transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital Mahidol University, Samut Prakarn, Thailand
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakorn Pathom, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Zilliox MJ, Bouchard CS. The Microbiome, Ocular Surface, and Corneal Disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1648-1661. [PMID: 37236506 DOI: 10.1016/j.ajpath.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The ocular surface microbiome is an emerging field of study that seeks to understand how the community of microorganisms found on the ocular surface may help maintain homeostasis or can potentially lead to disease and dysbiosis. Initial questions include whether the organisms detected on the ocular surface inhabit that ecological niche and, if so, whether there exists a core microbiome found in most or all healthy eyes. Many questions have emerged around whether novel organisms and/or a redistribution of organisms play a role in disease pathogenesis, response to therapies, or convalescence. Although there is much enthusiasm about this topic, the ocular surface microbiome is a new field with many technical challenges. These challenges are discussed in this review as well as a need for standardization to adequately compare studies and advance the field. In addition, this review summarizes the current research on the microbiome of various ocular surface diseases and how these findings may impact treatments and clinical decision-making.
Collapse
Affiliation(s)
- Michael J Zilliox
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois
| | - Charles S Bouchard
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois.
| |
Collapse
|
13
|
Barrera B, Bustamante A, Marín-Cornuy M, Aguila-Torres P. Contact lenses and ocular dysbiosis, from the transitory to the pathological. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:586-594. [PMID: 37648207 DOI: 10.1016/j.oftale.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Normal ocular microbiota is composed of different Gram-negative and positive bacterial communities that act as commensals on the ocular surface. An imbalance in the homeostasis of the native species or dysbiosis triggers functional alterations that can eventually lead to ocular conditions, indicating the use of contact lenses as the most relevant predisposing factor. Through a bibliographic review that added scientific articles published between 2018 and 2022, the relationship between healthy ocular microbiota and dysbiosis associated with the use of contact lenses that trigger ocular conditions was analyzed. The ocular microbiota in healthy individuals is mainly composed of bacteria from the phyla: Proteobacteria, Actinobacteria and Firmicutes. These bacterial communities associated with the use of contact lenses develop dysbiosis, observing an increase in certain genera such as Staphylococcus spp. and Pseudomonas spp., which under normal conditions are commensals of the ocular surface, but as their abundance is increased, they condition the appearance of various ocular conditions such as corneal infiltrative events, bacterial keratitis and corneal ulcer. These pathologies tend to evolve rapidly, which, added to late detection and treatment, can lead to a poor visual prognosis. It is suggested that professionals in the ophthalmology area learn about the composition of the communities of microorganisms that make up this ocular microbiota, in order to correctly distinguish and identify the causative agent, thereby providing a adequate and effective treatment to the user.
Collapse
Affiliation(s)
- B Barrera
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - A Bustamante
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - M Marín-Cornuy
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - P Aguila-Torres
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile.
| |
Collapse
|
14
|
Astley RA, Mursalin MH, Coburn PS, Livingston ET, Nightengale JW, Bagaruka E, Hunt JJ, Callegan MC. Ocular Bacterial Infections: A Ten-Year Survey and Review of Causative Organisms Based on the Oklahoma Experience. Microorganisms 2023; 11:1802. [PMID: 37512974 PMCID: PMC10386592 DOI: 10.3390/microorganisms11071802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Ocular infections can be medical emergencies that result in permanent visual impairment or blindness and loss of quality of life. Bacteria are a major cause of ocular infections. Effective treatment of ocular infections requires knowledge of which bacteria are the likely cause of the infection. This survey of ocular bacterial isolates and review of ocular pathogens is based on a survey of a collection of isolates banked over a ten-year span at the Dean McGee Eye Institute in Oklahoma. These findings illustrate the diversity of bacteria isolated from the eye, ranging from common species to rare and unique species. At all sampled sites, staphylococci were the predominant bacteria isolated. Pseudomonads were the most common Gram-negative bacterial isolate, except in vitreous, where Serratia was the most common Gram-negative bacterial isolate. Here, we discuss the range of ocular infections that these species have been documented to cause and treatment options for these infections. Although a highly diverse spectrum of species has been isolated from the eye, the majority of infections are caused by Gram-positive species, and in most infections, empiric treatments are effective.
Collapse
Affiliation(s)
- Roger A Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erin T Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - James W Nightengale
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eddy Bagaruka
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Jonathan J Hunt
- Department of Biology, Oklahoma Christian University, Edmond, OK 73013, USA
| | - Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Pavlović J, Puškárová A, Planý M, Farkas Z, Rusková M, Kvalová K, Kraková L, Bučková M, Pangallo D. Colored stains: Microbial survey of cellulose-based and lignin rich papers. Int J Biol Macromol 2023; 241:124456. [PMID: 37085082 DOI: 10.1016/j.ijbiomac.2023.124456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
During the centuries diverse types of paper were produced and were characterized by a different ratio of natural macromolecules, mainly lignin and cellulose. Handmade paper has a higher content of cellulose respect to the early machine-made paper, where the lignin is the other important component. Microorganisms are able to colonize and deteriorate both types of papers. They can release on their surfaces pigments and colorants which produced anesthetic stains. The microbiota colonising 17 stains on handmade and machine-made paper surfaces together with that in library and archive environments was analyzed. Combination of microbiological and high-throughput sequencing (HTS) approaches were applied. The culture-dependent methodology comprised: isolation, DNA identification, hydrolytic and paper staining assays. The HTS was performed by MinION platform and for the mycobiome a more suitable bioinformatics analysis pipeline, MetONTIIME based on QIIME2 framework, was applied. The paper model staining assay permitted the direct recognition of colorizing isolates which in combination with sequencing data evidenced a complex microbial community able to stain the two types of paper. Staining abilities were confirmed by frequently isolated and detected fungi and also by new ones such as Roussoella euonymi and Achaetomium. We have also evidenced the staining ability of several bacteria.
Collapse
Affiliation(s)
- Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Matej Planý
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Zuzana Farkas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Katarína Kvalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; Caravella, s.r.o., Tupolevova 2, 85101 Bratislava, Slovakia.
| |
Collapse
|
16
|
Peter VG, Morandi SC, Herzog EL, Zinkernagel MS, Zysset-Burri DC. Investigating the Ocular Surface Microbiome: What Can It Tell Us? Clin Ophthalmol 2023; 17:259-271. [PMID: 36698849 PMCID: PMC9870096 DOI: 10.2147/opth.s359304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
While pathogens of the eye have been studied for a very long time, the existence of resident microbes on the surface of healthy eyes has gained interest only recently. It appears that commensal microbes are a normal feature of the healthy eye, whose role and properties are currently the subject of extensive research. This review provides an overview of studies that have used 16s rRNA gene sequencing and whole metagenome shotgun sequencing to characterize microbial communities associated with the healthy ocular surface from kingdom to genus level. Bacteria are the primary colonizers of the healthy ocular surface, with three predominant phyla: Proteobacteria, Actinobacteria, and Firmicutes, regardless of the host, environment, and method used. Refining the microbial classification to the genus level reveals a highly variable distribution from one individual and study to another. Factors accounting for this variability are intriguing - it is currently unknown to what extent this is attributable to the individuals and their environment and how much is artifactual. Clearly, it is technically challenging to accurately describe the microorganisms of the ocular surface because their abundance is relatively low, thus, permitting substantial contaminations. More research is needed, including better experimental standards to prevent biases, and the exploration of the ocular surface microbiome's role in a spectrum of healthy to pathological states. Outcomes from such research include the opportunity for therapeutic interventions targeting the microbiome.
Collapse
Affiliation(s)
- Virginie G Peter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Correspondence: Virginie G Peter, Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern, 3010, Switzerland, Email
| | - Sophia C Morandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Borroni D, Bonzano C, Sánchez-González JM, Rachwani-Anil R, Zamorano-Martín F, Pereza-Nieves J, Traverso CE, García Lorente M, Rodríguez-Calvo-de-Mora M, Esposito A, Godin F, Rocha-de-Lossada C. Shotgun metagenomic sequencing in culture negative microbial keratitis. Eur J Ophthalmol 2023:11206721221149077. [PMID: 36617769 DOI: 10.1177/11206721221149077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate the microbiota of culture negative Corneal Impression Membrane (CIM) microbial keratitis samples with the use of shotgun metagenomics analysis. METHODS DNA of microbial keratitis samples were collected with CIM and extracted using the MasterPure™ Complete DNA and RNA Purification Kit (Epicentre). DNA was fragmented by sonication into fragments of 300 to 400 base pairs (bp) using Bioruptor® (Diagenode, Belgium) and then used as a template for library preparation. DNA libraries were sequenced on Illumina® HiSeq2500. The resulting reads were quality controlled, trimmed and mapped against the human reference genome. The unmapped reads were taxonomically classified using the Kraken software. RESULTS 18 microbial keratitis samples were included in the study. Brevundimonas diminuta was found in 5 samples while 6 samples showed the presence of viral infections. Cutibacterium acnes, Staphylococcus aureus, Moraxella lacunata and Pseudomonas alcaligenes were also identified as the presumed putative cause of the infection in 7 samples. CONCLUSIONS Shotgun sequencing can be used as a diagnostic tool in microbial keratitis samples. This diagnostic method expands the available tests to diagnose eye infections and could be clinically significant in culture negative samples.
Collapse
Affiliation(s)
- Davide Borroni
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
| | - Chiara Bonzano
- DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | | | | | | | | | - Carlo Enrico Traverso
- DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | | | | | - Alfonso Esposito
- 18470International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fernando Godin
- Department of Ophthalmology, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Rocha-de-Lossada
- Qvision, Opththalmology Department, VITHAS Almería Hospital, Almería, Spain.,Ophthalmology Department, VITHAS Málaga, Málaga, Spain.,Hospital Regional Universitario de Málaga, Plaza del Hospital Civil, Málaga, Spain.,Departamento de Cirugía, Universidad de Sevilla, Área de Oftalmología, Doctor Fedriani, Seville, Spain
| |
Collapse
|
18
|
Delbeke H, Casteels I, Joossens M. DNA extraction protocol impacts ocular surface microbiome profile. Front Microbiol 2023; 14:1128917. [PMID: 37152736 PMCID: PMC10157640 DOI: 10.3389/fmicb.2023.1128917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose The aim of this study is to provide a reference frame to allow the comparison and interpretation of currently published studies on 16S ribosomal ribonucleic acid amplicon sequencing of ocular microbiome samples using different DNA extraction protocols. Alongside, the quantitative and qualitative yield and the reproducibility of different protocols has been assessed. Methods Both eyes of 7 eligible volunteers were sampled. Five commercially available DNA extraction protocols were selected based on previous publications in the field of the ocular surface microbiome and 2 host DNA depletion protocols were added based on their reported effective host DNA depletion without significant reduction in bacterial DNA concentration. The V3-V4 region of the 16S rRNA gene was targeted using Illumina MiSeq sequencing. The DADA2 pipeline in R was used to perform the bio-informatic processing and taxonomical assignment was done using the SILVA v132 database. The Vegdist function was used to calculate Bray-Curtis distances and the Galaxy web application was used to identify potential metagenomic biomarkers via linear discriminant analysis Effect Size (LEfSe). The R package Decontam was applied to control for potential contaminants. Results Samples analysed with PowerSoil, RNeasy and NucleoSpin had the highest DNA yield. The host DNA depletion kits showed a very low microbial DNA yield; and these samples were pooled per kit before sequencing. Despite pooling, 1 of both failed to construct a library.Looking at the beta-diversity, clear microbial compositional differences - dependent on the extraction protocol used - were observed and remained present after decontamination. Eighteen genera were consistently retrieved from the ocular surface of every volunteer by all non-pooled extraction kits and a comprehensive list of differentially abundant bacteria per extraction method was generated using LefSe analysis. Conclusion High-quality papers have been published in the field of the ocular surface microbiome but consensus on the importance of the extraction protocol used are lacking. Potential contaminants and discriminative genera per extraction protocol used, were introduced and a reference frame was built to facilitate both the interpretation of currently published papers and to ease future choice - making based on the research question at hand.
Collapse
Affiliation(s)
- Heleen Delbeke
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
- *Correspondence: Heleen Delbeke,
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology (WE10), Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Tong L, Constancias F, Hou A, Chua SL, Drautz-Moses DI, Schuster SC, Yang L, Williams RBH, Kjelleberg S. Shotgun metagenomic sequencing analysis of ocular surface microbiome in Singapore residents with mild dry eye. Front Med (Lausanne) 2022; 9:1034131. [PMID: 36438051 PMCID: PMC9684611 DOI: 10.3389/fmed.2022.1034131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
The ocular surface microbiome has implications for ocular surface inflammation and immunology. Previous shotgun metagenomics analyses were performed in China, showing results that differed according to environment and age. Patients with Sjogren's syndrome were reported to have altered conjunctival microbiome, but such studies have not been done in milder dry eye. The aim of this study is to describe the conjunctival microbiome in people with mild dry eye in Singapore. Samples were collected from 14 participants with mild dry eye and 10 age-matched comparison participants recruited from Singapore National Eye Centre (SNEC) clinics. Shotgun metagenomic sequencing analysis was employed to evaluate the conjunctival microbiome composition. Proteobacteria formed the predominant phylum in the conjunctiva. As in a study from a coastal city in China, Achromobacter spp. was numerically most abundant. Compared to age-matched controls, the conjunctival microbial composition in mild dry eye was similar. Several microorganisms, including Streptococcus spp. increased in representation with age, and the abundance of Staphylococcus correlated with Schirmer readings. In addition, when cultured corneal epithelial cells were exposed to three strains of Achromobacter xylosoxidans, cytokines such as TNF-α and IL-6 were upregulated in the cell lysates and supernatants. Ourresults suggest that age is an important factor that affects composition of the conjunctival microbiome, and relative abundance of specific microorganism may vary according to the environment of the human host.
Collapse
Affiliation(s)
- Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Corneal and External Eye Disease Service, Singapore National Eye Centre, Singapore, Singapore
- Eye-Academic Clinical Programme, Office of Clinical, Academic and Faculty Affairs, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Eye-Academic Clinical Programme, Office of Clinical, Academic and Faculty Affairs, Duke-NUS Medical School, Singapore, Singapore
| | - Song Lin Chua
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Stephan Christoph Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Centre for Marine Science and Innovation, School of Biological Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
20
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
21
|
Borroni D, Paytuví-Gallart A, Sanseverino W, Gómez-Huertas C, Bonci P, Romano V, Giannaccare G, Rechichi M, Meduri A, Oliverio GW, Rocha-de-Lossada C. Exploring the Healthy Eye Microbiota Niche in a Multicenter Study. Int J Mol Sci 2022; 23:ijms231810229. [PMID: 36142138 PMCID: PMC9499403 DOI: 10.3390/ijms231810229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose: This study aims to explore and characterize healthy eye microbiota. Methods: Healthy subjects older than 18 years were selected for this descriptive cross-sectional study. Samples were collected with an eSwab with 1 mL of Liquid Amies Medium (Copan Brescia, Italy). Following DNA extraction, libraries preparation, and amplification, PCR products were purified and end-repaired for barcode ligation. Libraries were pooled to a final concentration of 26 pM. Template preparation was performed with Ion Chef according to Ion 510, Ion 520, and Ion 530 Kit-Chef protocol. Sequencing of the amplicon libraries was carried out on a 520 or 530 chip using the Ion Torrent S5 system (Thermo Fisher; Waltham, MA, USA). Raw reads were analyzed with GAIA (v 2.02). Results: Healthy eye microbiota is a low-diversity microbiome. The vast majority of the 137 analyzed samples were highly enriched with Staphylococcus, whereas only in a few of them, other genera such as Bacillus, Pseudomonas, and Corynebacterium predominate. We found an average of 88 genera with an average Shannon index of 0.65. Conclusion: We identified nine different ECSTs. A better understanding of healthy eye microbiota has the potential to improve disease diagnosis and personalized regimens to promote health.
Collapse
Affiliation(s)
- Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Correspondence:
| | | | - Walter Sanseverino
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain
| | - Carmen Gómez-Huertas
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Paola Bonci
- Ospedale Civile di Ravenna, Banca Delle Cornee Della Regione Emilia-Romagna, 48121 Ravenna, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, 9297 University of Brescia, ASST Spedali Civili, 25100 Brescia, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Miguel Rechichi
- Centro Polispecialistico Mediterraneo, 88050 Sellia Marina, Italy
| | - Alessandro Meduri
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Giovanni William Oliverio
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Carlos Rocha-de-Lossada
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Department of Ophthalmology, Qvision (Vithas Almeria), 04120 Almería, Spain
- Hospital Regional Universitario de Malaga, 29010 Malaga, Spain
- Departamento de Cirugía, Área de Oftalmología, Universidad de Sevilla, 41004 Sevilla, Spain
| | | |
Collapse
|
22
|
Singh N, Diebold Y, Sahu SK, Leonardi A. Epithelial barrier dysfunction in ocular allergy. Allergy 2022; 77:1360-1372. [PMID: 34757631 PMCID: PMC9300009 DOI: 10.1111/all.15174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The epithelial barrier is the first line of defense that forms a protective barrier against pathogens, pollutants, and allergens. Epithelial barrier dysfunction has been recently implicated in the development of allergic diseases such as asthma, atopic dermatitis, food allergy, and rhinitis. However, there is limited knowledge on epithelial barrier dysfunction in ocular allergy (OA). Since the ocular surface is directly exposed to the environment, it is important to understand the role of ocular epithelia and their dysfunction in OA. Impaired epithelial barrier enhances allergen uptake, which lead to activation of immune responses and development of chronic inflammation as seen in allergies. Abnormal expression of tight junction proteins that helps to maintain epithelial integrity has been reported in OA but sufficient data not available in chronic atopic (AKC) and vernal keratoconjunctivitis (VKC), the pathophysiology of which is not just complex, but also the current treatments are not completely effective. This review provides an overview of studies, which indicates the role of barrier dysfunction in OA, and highlights how ocular barrier dysfunction possibly contributes to the disease pathogenesis. The review also explores the potential of ocular epithelial barrier repair strategies as preventive and therapeutic approach.
Collapse
Affiliation(s)
- Neera Singh
- ProCyto Labs Pvt. Ltd. KIIT‐TBI KIIT University Patia, Bhubaneswar India
| | - Yolanda Diebold
- Ocular Surface Group Instituto Universitario de Oftalmobiología Aplicada (IOBA) Universidad de Valladolid Valladolid Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Valladolid Spain
| | - Srikant K. Sahu
- LV Prasad Eye Institute, Cornea and Anterior Segment, MTC Campus Patia, Bhubaneswar India
| | - Andrea Leonardi
- Ophthalmology Unit Department of Neuroscience University of Padova Padova Italy
| |
Collapse
|
23
|
Ozkan J, Willcox M, Coroneo M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp Eye Res 2022; 220:109130. [DOI: 10.1016/j.exer.2022.109130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
24
|
Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. Int J Pharm 2022; 621:121772. [PMID: 35487399 DOI: 10.1016/j.ijpharm.2022.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
Globally, over 2 billion people suffer from vision impairment. Despite complex multifactorial etiology, advanced glycation end products are involved in the pathogenesis of many causative age- and diabetes-related eye diseases. Deglycating enzyme fructosamine-3-kinase (FN3K) was recently proposed as a potential therapeutic, but for further biopharmaceutical development, knowledge on its manufacturability and stability and mobility in the vitreous fluid of the eye is indispensable. We evaluated recombinant production of FN3K in two host systems, and its diffusion behavior in both bovine and human vitreous. Compared to Escherichia coli, intracellular production in Pichia pastoris yielded more and higher purity FN3K. The yeast-produced enzyme was used in a first attempt to use fluorescence correlation spectroscopy to study protein mobility in non-sonicated bovine vitreous, human vitreous, and intact bovine eyes. It was demonstrated that FN3K retained mobility upon intravitreal injection, although a certain delay in diffusion was observed. Alkylation of free cysteines was tolerated both in terms of enzymatic activity and vitreous diffusion. Ex vivo diffusion data gathered and the availability of yeast-produced high purity enzyme now clear the path for in vivo pharmacokinetics studies of FN3K.
Collapse
|
25
|
Gardnerella vaginalis in Recurrent Urinary Tract Infection Is Associated with Dysbiosis of the Bladder Microbiome. J Clin Med 2022; 11:jcm11092295. [PMID: 35566419 PMCID: PMC9100223 DOI: 10.3390/jcm11092295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies on the urine microbiome have highlighted the importance of the gut–vagina–bladder axis in recurrent urinary tract infection (rUTI). In particular, the role of Gardnerella as a covert pathogen that activates E. coli in animal experiments has been reported. Herein, we conducted a human bladder microbiome study to investigate the effect of Gardnerella on rUTI. Urine 16S ribosomal RNA gene sequencing via transurethral catheterization was conducted in the normal control group (NC) (n = 18) and rUTI group (n = 78). The positive detection rate of Gardnerella species did not differ between the NC and rUTI groups (22.2% vs. 18.0%, p = 0.677). In addition, the Gardnerella-positive NC and Gardnerella-positive rUTI groups showed similar levels of microbiome diversity. The Gardnerella-positive group was categorized into three subgroups: the Escherichia-dominant group, Gardnerella-dominant group, and Lactobacillus-dominant group. All of the Escherichia-dominant groups were associated with rUTI. The Gardnerella-dominant or Lactobacillus-dominant groups expressed rUTI with symptoms when risk factors such as the degree of Gardnerella proliferation or causative agents of bacterial vaginosis were present. The presence of Gardnerella in the urine is considered to be related to rUTI depending on other risk factors. New guideline recommendations regarding antibiotic selection based on a novel method to detect the cause of rUTI may be required to reduce antibiotic resistance.
Collapse
|
26
|
Delbeke H, Casteels I, Joossens M. The Effect of Topical Anesthetics on 16S Ribosomal Ribonucleic Acid Amplicon Sequencing Results in Ocular Surface Microbiome Research. Transl Vis Sci Technol 2022; 11:2. [PMID: 35238917 PMCID: PMC8899854 DOI: 10.1167/tvst.11.3.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To clarify the short-term effect of topical anesthetics on 16S ribosomal ribonucleic acid amplicon sequencing results in ocular surface microbiome research. METHODS Both eyes of 24 eligible volunteers undergoing general anesthesia were sampled. Before sampling, a drop of artificial tears or a drop of topical anesthetic was applied in a randomized way. By using artificial tears as a control, we assured blinding of the executer and took a potential diluting effect into account. Bacterial DNA was extracted using the QIAGEN RNeasy PowerMicrobiome Kit with specific adaptations. Amplified DNA was sequenced with the Illumina MiSeq sequencing platform. RESULTS Four sample pairs were excluded due to low yield of bacterial DNA. In the remaining 20 sample pairs, no differences were observed with topical anesthetics at the levels of amplicon sequence variants (ASVs), phylum, genera, or alpha and beta diversity. Weighted UniFrac distance confirmed that the intraindividual distance between the right and left eye was smaller than the effect of the topical anesthetic. Interestingly, however, we identified Cutibacterium as a potential discriminative biomarker for topical anesthetic use. Overall, a significantly higher number of observed reads were assigned to genera with Gram-positive characteristics. CONCLUSIONS Based on our targeted, double-blinded, within-subject study, topical anesthetics do not affect the overall sequencing results but display a specific effect on Cutibacterium. When comparing research results, the impact of topical anesthetics on prevalence and abundance of Cutibacterium should be considered. TRANSLATIONAL RELEVANCE Understanding and standardization of sampling techniques are indispensable to properly execute clinical microbiome research.
Collapse
Affiliation(s)
- Heleen Delbeke
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium,KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium,KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Marie Joossens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
The Microbiome of Meibomian Gland Secretions from Patients with Internal Hordeolum Treated with Hypochlorous Acid Eyelid Wipes. DISEASE MARKERS 2022; 2022:7550090. [PMID: 35251376 PMCID: PMC8894068 DOI: 10.1155/2022/7550090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Objective The aims of our experiment were to compare the microorganisms in meibomian gland secretions from patients with internal hordeolum before and after treatment using hypochlorous acid eyelid wipes, to elucidate the mechanism underlying hypochlorous acid eyelid wipe treatment of internal hordeolum. Methods This was a prospective, matched-pair study. A total of eight patients with internal hordeolum who attended the ophthalmology clinic of our hospital from April to August 2020 were included. Meibomian gland secretions were collected from subjects before treatment (Group A) and from patients cured after eyelid cleaning with hypochlorous acid eyelid wipes for 7 days (Group B). Samples were submitted to 16S rRNA high-throughput sequencing, and the resulting data were analyzed to compare the differences in the structure and composition of meibomian gland secretion microbial flora before and after treatment of internal hordeolum. Results A total of 2127 operational taxonomic units were obtained from the two groups of samples, and there was no significant difference in alpha diversity before and after eyelid cleaning. At the phylum level, there was no significant difference between the two groups. The predominant phyla in Group A included the following: Firmicutes (32.78% ± 20.16%), Proteobacteria (26.73% ± 7.49%), Acidobacteria (10.58% ± 11.45%), Bacteroidetes (9.05% ± 6.63%), Actinobacteria (8.48% ±1.77%), and Chloroflexi (3.15% ± 3.12%), while those in Group B were the following: Proteobacteria (31.86% ± 9.69%), Firmicutes (29.07% ± 24.20%), Acidobacteria (11.33% ± 7.53%), Actinobacteria (7.10% ± 1.98%), Bacteroidetes (5.39% ± 5.17%), and Chloroflexi (3.89% ± 3.67%). Starting from the class level, significant differences in microbial communities were detected before and after eyelid cleaning (P < 0.05). Linear discriminant analysis effect size analysis showed the core flora in Group A microbiome comprising Actinobacteria, Staphylococcus, Staphylococcaceae, Staphylococcus aureus, Ruminococcacea UCg-014, Ruminococcacea-UCG-014, Halomonadaceae, Neisseria, Methylobacterium, Frankiales, and Neisseria sicca, while those in Group B microbial were Streptococcus sp., Blautia, Bifidobacterium pseudocatenulatum, Subdoligranulum, Subdoligranulum variabile, Faecalibacterium, and Faecalibacterium prausnitzii. Conclusion Eyelid cleaning with hypochlorous acid eyelid wipes does not change the biodiversity in the meibomian gland secretions of patients with internal hordeolum. Hypochlorous acid eyelid wipes may affect the internal hordeolum through broad-spectrum antibacterial action to effectively reduce the relative abundance of symbiotic pathogens, such as Staphylococcus, Neisseria, Actinomycetes, and Ruminococcus and increase that of Faecalibacterium prausnitzii and other symbiotic probiotics with anti-inflammatory effects.
Collapse
|
28
|
Zhong Y, Fang X, Wang X, Lin YA, Wu H, Li C. Effects of Sodium Hyaluronate Eye Drops With or Without Preservatives on Ocular Surface Bacterial Microbiota. Front Med (Lausanne) 2022; 9:793565. [PMID: 35252237 PMCID: PMC8896347 DOI: 10.3389/fmed.2022.793565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aimed to determine the composition and diversity of bacterial communities on the ocular surface before and after the intervention with sodium hyaluronate eye drops (with or without preservatives) using 16S rRNA gene amplicon sequencing. Methods Sixteen healthy adults were randomly divided into two groups and treated with sodium hyaluronate eye drops with or without preservatives for 2 weeks. The individuals used the same artificial tears in both eyes. The microbial samples from the conjunctival sac of each participant were collected at baseline and 2 weeks after intervention. The diversity and taxonomic differences among different groups before and after intervention were compared by sequencing the V3–V4 region of the 16S rRNA gene. Results The similarity in the binocular microbial community was high in 1 of the 16 volunteers (Bray-Curtis dissimilarity score < 0.3). At the genus level, 11 bacteria were detected in all samples with an average relative abundance of more than 1%. The bacterial community changed significantly after the use of sodium hyaluronate eye drops (with or without preservatives), whether within individuals or between individuals in different groups (P < 0.05, PERMANOVA). Different dosage forms of sodium hyaluronate eye drops significantly decreased the relative abundance of Flavobacterium caeni and Deinococcus antarcticus, respectively (P < 0.05). Conclusions Healthy people had a rich diversity of the bacterial microbiota on the ocular surface, but the bacterial communities between the eyes were not completely similar. Irrespective of containing benzalkonium chloride (BAC), sodium hyaluronate eye drops can change the bacterial community on the ocular surface.
Collapse
Affiliation(s)
- Yanlin Zhong
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
| | - Xie Fang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
| | - Xuemei Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
| | - Yu-An Lin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
| | - Huping Wu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
- Huping Wu
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, China
- *Correspondence: Cheng Li
| |
Collapse
|
29
|
Kravchik MV, Rodina ES, Subbot AM, Pimonova OI, Fettser EI, Novikov IA. [Visualization of normal ocular surface microflora via impression cytology sample using scanning electron microscopy with lanthanide contrasting]. Vestn Oftalmol 2022; 138:5-13. [PMID: 36573942 DOI: 10.17116/oftalma20221380615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To determine the possibilities of impression cytology (IC) with subsequent visualization of the sample on a scanning electron microscope in assessment of normal microflora of the ocular surface. MATERIALS AND METHODS The article presents a visual characteristic of the microorganisms of the ocular surface (OS) captured during impression cytology (IC) in individuals without signs of inflammatory and degenerative eye diseases. The original method of staining the sample with heavy metal salts made it possible to identify the individual signs of the microorganisms in their subsequent visualization by scanning electron microscopy (SEM). RESULTS The paper presents photomicrographs of the microorganisms most common for the OS obtained with the help of SEM, confirming and supplementing the data of non-visual methods of studying the ocular microflora. It was shown that the detection frequency of the microbial component of the OS by the visual method presented in this study is comparable with the detection frequency when using the microbial cultivation method (<80%). Coccoid and rod-shaped microorganisms were detected with relatively equal frequency, with the coccoid organisms mainly represented in association with epithelial cells. The morphological diversity of rod-shaped microorganisms is shown. CONCLUSION The results of the study can be used as a visual reference for the normal microbiome of the eye.
Collapse
Affiliation(s)
- M V Kravchik
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - E S Rodina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A M Subbot
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - O I Pimonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - E I Fettser
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - I A Novikov
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
30
|
Tuft S, Somerville TF, Li JPO, Neal T, De S, Horsburgh MJ, Fothergill JL, Foulkes D, Kaye S. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2021; 89:101031. [PMID: 34915112 DOI: 10.1016/j.preteyeres.2021.101031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis is a common corneal infection that is treated with topical antimicrobials. By the time of presentation there may already be severe visual loss from corneal ulceration and opacity, which may persist despite treatment. There are significant differences in the associated risk factors and the bacterial isolates between high income and low- or middle-income countries, so that general management guidelines may not be appropriate. Although the diagnosis of bacterial keratitis may seem intuitive there are multiple uncertainties about the criteria that are used, which impacts the interpretation of investigations and recruitment to clinical studies. Importantly, the concept that bacterial keratitis can only be confirmed by culture ignores the approximately 50% of cases clinically consistent with bacterial keratitis in which investigations are negative. The aetiology of these culture-negative cases is unknown. Currently, the estimation of bacterial susceptibility to antimicrobials is based on data from systemic administration and achievable serum or tissue concentrations, rather than relevant corneal concentrations and biological activity in the cornea. The provision to the clinician of minimum inhibitory concentrations of the antimicrobials for the isolated bacteria would be an important step forward. An increase in the prevalence of antimicrobial resistance is a concern, but the effect this has on disease outcomes is yet unclear. Virulence factors are not routinely assessed although they may affect the pathogenicity of bacteria within species and affect outcomes. New technologies have been developed to detect and kill bacteria, and their application to bacterial keratitis is discussed. In this review we present the multiple areas of clinical uncertainty that hamper research and the clinical management of bacterial keratitis, and we address some of the assumptions and dogma that have become established in the literature.
Collapse
Affiliation(s)
- Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Tobi F Somerville
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Timothy Neal
- Department of Clinical Microbiology, Liverpool Clinical Laboratories, Liverpool University Hospital NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK.
| | - Surjo De
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| | - Malcolm J Horsburgh
- Department of Infection and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7BX, UK.
| | - Joanne L Fothergill
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Daniel Foulkes
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Stephen Kaye
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
31
|
Fritz B, Paschko E, Young W, Böhringer D, Wahl S, Ziemssen F, Egert M. Comprehensive Compositional Analysis of the Slit Lamp Bacteriota. Front Cell Infect Microbiol 2021; 11:745653. [PMID: 34869057 PMCID: PMC8635730 DOI: 10.3389/fcimb.2021.745653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Slit lamps are routinely used to examine large numbers of patients every day due to high throughput. Previous, cultivation-based results suggested slit lamps to be contaminated with bacteria, mostly coagulase-negative staphylococci, followed by micrococci, bacilli, but also Staphylococcus aureus. Our study aimed at obtaining a much more comprehensive, cultivation-independent view of the slit lamp bacteriota and its hygienic relevance, as regularly touched surfaces usually represent fomites, particularly if used by different persons. We performed extensive 16S rRNA gene sequencing to analyse the bacteriota, of 46 slit lamps from two tertiary care centers at two sampling sites, respectively. 82 samples yielded enough sequences for downstream analyses and revealed contamination with bacteria of mostly human skin, mucosa and probably eye origin, predominantly cutibacteria, staphylococci and corynebacteria. The taxonomic assignment of 3369 ASVs (amplicon sequence variants) revealed 19 bacterial phyla and 468 genera across all samples. As antibiotic resistances are of major concern, we screened all samples for methicillin-resistant Staphylococcus aureus (MRSA) using qPCR, however, no signals above the detection limit were detected. Our study provides first comprehensive insight into the slit lamp microbiota. It underlines that slit lamps carry a highly diverse, skin-like bacterial microbiota and that thorough cleaning and disinfection after use is highly recommendable to prevent eye and skin infections.
Collapse
Affiliation(s)
- Birgit Fritz
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | - Edita Paschko
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | - Wayne Young
- Food Informatics Team, AgResearch Ltd., Palmerston North, New Zealand
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany.,Institute for Ophthalmic Research, Eberhard-Karls University, Tuebingen, Germany
| | - Focke Ziemssen
- Center for Ophthalmology, Eberhard-Karls University, Tuebingen, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
32
|
An Evaluation of a Simplified Impression Membrane Sampling Method for the Diagnosis of Microbial Keratitis. J Clin Med 2021; 10:jcm10235671. [PMID: 34884373 PMCID: PMC8658700 DOI: 10.3390/jcm10235671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to compare bacterial isolation rate using a corneal impression membrane (CIM) and a sharp instrument for obtaining corneal samples from patients with suspected microbial keratitis (MK). Data was retrospectively collected for all patients that had corneal samples taken for presumed MK between May 2014 and May 2020. Prior to May 2017 samples were collected by scraping the edges of the ulcer with a blade. From May 2017, samples were collected by placing a CIM (Millicell cell culture insert) against the ulcer. All corneal samples were processed using the same conventional diagnostic culture method. A total of 3099 corneal samples were included, of which 1214 (39.2%) were corneal scrapes and 1885 (60.9%) CIMs. Microorganisms were isolated from 235 (19.4%) and 1229 (65.2%) cases using a corneal scrape and CIM, respectively (p < 0.001). Of routinely described pathogenic microorganisms, there were significant increases in the isolations of S. aureus (2.4% to 11.3%) and Serratia (0.5% to 1.7%) using the CIM and no significant changes in the isolations of S. pneumoniae and P. aeruginosa. No significant differences were seen between the isolation rates of fungi or Acanthamoeba species. There was a significant increase in the isolation rates of other Streptococcal species (0.7% to 6.9%) and CNS species, specifically, S. epidermidis (2.1% to 26.2%), S. capitis (0.4% to 2.6%) and S. warneri (0.3% to 1.6%) using the CIM. The simplified CIM sampling method is an effective method for collecting corneal samples from patients with presumed MK in clinical practice.
Collapse
|
33
|
Weitzman CL, Rostama B, Thomason CA, May M, Belden LK, Hawley DM. Experimental test of microbiome protection across pathogen doses reveals importance of resident microbiome composition. FEMS Microbiol Ecol 2021; 97:6385755. [PMID: 34626186 DOI: 10.1093/femsec/fiab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The commensal microbes inhabiting a host tissue can interact with invading pathogens and host physiology in ways that alter pathogen growth and disease manifestation. Prior work in house finches (Haemorhous mexicanus) found that resident ocular microbiomes were protective against conjunctival infection and disease caused by a relatively high dose of Mycoplasma gallisepticum. Here, we used wild-caught house finches to experimentally examine whether protective effects of the resident ocular microbiome vary with the dose of invading pathogen. We hypothesized that commensal protection would be strongest at low M. gallisepticum inoculation doses because the resident microbiome would be less disrupted by invading pathogen. Our five M. gallisepticum dose treatments were fully factorial with an antibiotic treatment to perturb resident microbes just prior to M. gallisepticum inoculation. Unexpectedly, we found no indication of protective effects of the resident microbiome at any pathogen inoculation dose, which was inconsistent with the prior work. The ocular bacterial communities at the beginning of our experiment differed significantly from those previously reported in local wild-caught house finches, likely causing this discrepancy. These variable results underscore that microbiome-based protection in natural systems can be context dependent, and natural variation in community composition may alter the function of resident microbiomes in free-living animals.
Collapse
Affiliation(s)
- Chava L Weitzman
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Bahman Rostama
- Department of Biomedical Sciences, University of New England, Biddeford - 04005, ME, USA
| | - Courtney A Thomason
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA.,Division of Remediation, Tennessee Department of Environment and Conservation, Oak Ridge - 37830, TN, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, Biddeford - 04005, ME, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
34
|
Tunç U, Yıldırım Y, Çelebi ARC, Kepez Yıldız B. Potential role of ocular surface microbiota in keratoconus etiopathogenesis. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1942844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Uğur Tunç
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| | - Yusuf Yıldırım
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| | | | - Burçin Kepez Yıldız
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| |
Collapse
|