1
|
Guo BC, Kuo KL, Chen CH, Chen SL, Tsou TC, Lee TS. Di-(2-ethylhexyl) phthalate limits the pleiotropic effects of statins in chronic kidney disease patients undergoing dialysis and endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115548. [PMID: 32892025 DOI: 10.1016/j.envpol.2020.115548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The level of di-(2-ethylhexyl) phthalate (DEHP) is elevated in chronic kidney disease patients undergoing dialysis. However, statins are unable to reduce the cardiovascular events in chronic dialysis patients. In this study, we investigated the effects of DEHP on statin-conferred pleiotropic effects and the underlying molecular mechanism in peritoneal dialysis (PD) patients and endothelial cells (ECs). In PD patients with serum DEHP level ≥0.0687 μg/mL, statin treatment was not associated with lower risk of cardiovascular disease. In ECs, exposure to DEHP abrogated the simvastatin-induced NO bioavailability and EC-related functions. Additionally, DEHP abolished the anti-inflammatory effect of simvastatin on the tumor necrosis factor α-induced upregulation of adhesion molecules and monocyte adhesion to ECs. Mechanistically, DEHP blunted the activation of transient receptor potential vanilloid type 1 (TRPV1), which is required for NO production by simvastatin in ECs. Notably, DEHP increased the activity and expression of protein phosphatase 2B (PP2B), a negative regulator of TRPV1 activity. The effect of DEHP on PP2B activation was mediated by the activation of the NADPH oxidase/reactive oxygen species (NOX-ROS) pathway. Inhibition of PP2B activity by pharmacological antagonists prevented the inhibitory effects of DEHP on simvastatin-induced Ca2+ influx, NO bioavailability, and EC migration, proliferation, tube formation, and anti-inflammatory action. Collectively, DEHP activates the NOX-ROS-PP2B pathway, which in turns inhibits TRPV1/Ca2+-dependent signaling and abrogates the statin-conferred pleiotropic protection in ECs.
Collapse
Affiliation(s)
- Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Sun Q, Xie L, Song J, Li X. Evodiamine: A review of its pharmacology, toxicity, pharmacokinetics and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113164. [PMID: 32738391 DOI: 10.1016/j.jep.2020.113164] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodia rutaecarpa, a well-known herb medicine in China, is extensively applied in traditional Chinese medicine (TCM). The plant has the effects of dispersing cold and relieving pain, arresting vomiting, and helping Yang and stopping diarrhea. Modern research demonstrates that evodiamine, the main component of Evodia rutaecarpa, is the material basis for its efficacy. AIMS OF THE REVIEW This paper is primarily addressed to summarize the current studies on evodiamine. The progress in research on the pharmacology, toxicology, pharmacokinetics, preparation researches and clinical application are reviewed. Moreover, outlooks and directions for possible future studies concerning it are also discussed. MATERIALS AND METHODS The information of this systematic review was conducted with resources of multiple literature databases including PubMed, Google scholar, Web of Science and Wiley Online Library and so on, with employing a combination of keywords including "pharmacology", "toxicology", "pharmacokinetics" and "clinical application", etc. RESULTS: As the main component of Evodia rutaecarpa, evodiamine shows considerable pharmacological activities, such as analgesic, anti-inflammatory, anti-tumor, anti-microbial, heart protection and metabolic disease regulation. However, it is also found that it has significant hepatotoxicity and cardiotoxicity, thereby it should be monitored in clinical. In addition, available data demonstrate that the evodiamine has a needy solubility in aqueous medium. Scientific and reasonable pharmaceutical strategies should be introduced to improve the above defects. Meanwhile, more efforts should be made to develop novel efficient and low toxic derivatives. CONCLUSIONS This review summarizes the results from current studies of evodiamine, which is one of the valuable medicinal ingredients from Evodia rutaecarpa. With the assistance of relevant pharmacological investigation, some conventional application and problems in pharmaceutical field have been researched in recent years. In addition, unresolved issues include toxic mechanisms, pharmacokinetics, novel pharmaceutical researches and relationship between residues and intestinal environment, which are still being explored and excavate before achieving integration into clinical practice.
Collapse
Affiliation(s)
- Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
3
|
Endothelial Nitric Oxide Mediates the Anti-Atherosclerotic Action of Torenia concolor Lindley var. Formosama Yamazaki. Int J Mol Sci 2020; 21:ijms21041532. [PMID: 32102326 PMCID: PMC7073175 DOI: 10.3390/ijms21041532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022] Open
Abstract
Torenia concolor Lindley var. formosama Yamazaki ethanolic extract (TCEE) is reported to have anti-inflammatory and anti-obesity properties. However, the effects of TCEE and its underlying mechanisms in the activation of endothelial nitric oxide synthase (eNOS) have not yet been investigated. Increasing the endothelium-derived nitric oxide (NO) production has been known to be beneficial against the development of cardiovascular diseases. In this study, we investigated the effect of TCEE on eNOS activation and NO-related endothelial function and inflammation by using an in vitro system. In endothelial cells (ECs), TCEE increased NO production in a concentration-dependent manner without affecting the expression of eNOS. In addition, TCEE increased the phosphorylation of eNOS at serine 635 residue (Ser635) and Ser1179, Akt at Ser473, calmodulin kinase II (CaMKII) at threonine residue 286 (Thr286), and AMP-activated protein kinase (AMPK) at Thr172. Moreover, TCEE-induced NO production, and EC proliferation, migration, and tube formation were diminished by pretreatment with LY294002 (an Akt inhibitor), KN62 (a CaMKII inhibitor), and compound C (an AMPK inhibitor). Additionally, TCEE attenuated the tumor necrosis factor-α-induced inflammatory response as evidenced by the expression of adhesion molecules in ECs and monocyte adhesion onto ECs. These inflammatory effects of TCEE were abolished by L-NG-nitroarginine methyl ester (an NOS inhibitor). Moreover, chronic treatment with TCEE attenuated hyperlipidemia, systemic and aortic inflammatory response, and the atherosclerotic lesions in apolipoprotein E-deficient mice. Collectively, our findings suggest that TCEE may confer protection from atherosclerosis by preventing endothelial dysfunction.
Collapse
|
4
|
Kuo KL, Zhao JF, Huang PH, Guo BC, Tarng DC, Lee TS. Indoxyl sulfate impairs valsartan-induced neovascularization. Redox Biol 2020; 30:101433. [PMID: 31972507 PMCID: PMC6974788 DOI: 10.1016/j.redox.2020.101433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Studies revealed that the use of renin-angiotensin-aldosterone system antagonism is not associated with a statistically significant reduction in the risk of cardiovascular events in patients with chronic kidney disease (CKD) compared with that in the general population. We tested the hypothesis that indoxyl sulfate (IS) can interfere with the protective effect of valsartan-mediated on endothelial function in vitro and neovascularization in mice underwent subtotal nephrectomy. In human aortic endothelial cells, we first demonstrated that IS impaired the valsartan-mediated phosphorylation of eNOSThr495, nitric oxide production and tube formation via NADPH oxidase (NOX) and protein kinase C (PKC) phosphorylation, but this effect was suppressed by cotreatment with apocynin and calphostin C. In vivo, IS attenuated valsartan-induced angiogenesis in Matrigel plugs in mice. Moreover, in subtotal nephrectomy mice who underwent hindlimb ischemic surgery, valsartan significantly increased the mobilization of endothelial progenitor cells in circulation as well as the reperfusion of blood flow and density of CD31+ capillaries in ischemic limbs. However, IS attenuated the protective effect of valsartan-induced neovascularization and increased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Cotreatment of apocynin and calphostin C reversed the IS impaired-neovascularization and decreased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Our study suggests that the NOX/PKC/eNOS signaling pathway plays a pivotal role in the IS-mediated inhibition of valsartan-conferred beneficial effects on endothelial function in vitro and neovascularization in subtotal nephrectomy mice. We proposed a novel causative role for IS in cardiovascular complications in CKD patients. The use of renin-angiotensin-aldosterone system antagonism fails to reduce in the risk cardiovascular events in patients with CKD. Indoxyl sulfate interferes with the protective effect of angiotensin II receptor blocker-mediated neovascularization in CKD mice. Indoxyl sulfate interferes with the beneficial effect of of valsartan on endothelial function by activating the NOX/PKC signaling pathway. This article proposed a novel causative role for indoxyl sulfate in cardiovascular complications in CKD patients.
Collapse
Affiliation(s)
- Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Po-Hsun Huang
- Institutes of Clinical Medicine, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Divisions of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Der-Cherng Tarng
- Institutes of Clinical Medicine, Taipei, Taiwan; Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Department of Medicine and Immunology Research Centre, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
5
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
6
|
Zhang Y, Li M, Li X, Zhang T, Qin M, Ren L. Isoquinoline Alkaloids and Indole Alkaloids Attenuate Aortic Atherosclerosis in Apolipoprotein E Deficient Mice: A Systematic Review and Meta-Analysis. Front Pharmacol 2018; 9:602. [PMID: 29922166 PMCID: PMC5996168 DOI: 10.3389/fphar.2018.00602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Several studies have attempted to relate the bioactive alkaloid with atherosclerotic cardiovascular diseases prevention in animal models, providing inconsistent results. Moreover, the direct anti-atherosclerotic effects of alkaloid have hardly been studied in patients. Therefore, the aim of this systematic review was to assess the reported effects of alkaloids on aortic atherosclerosis in ApoE−/− mouse models. Methods: Pubmed and Embase were searched to identify studies which estimated the effect of isolated alkaloids on atherosclerosis in apolipoprotein E deficient mice. Study quality was assessed using SYRCLE's risk of bias tool. We conducted a meta-analysis across 14 studies using a random-effect model to determine the overall effect of the alkaloids, and performed subgroup analyses to compare the effects of the isoquinolone alkaloids and indole alkaloids. Results: The quality of the included studies was low in the majority of included studies. We clarified that alkaloid administration was significantly associated with reduced aortic atherosclerotic lesion area (SMD −3.19, 95% CI −3.88, −2.51). It is important to remark that the experimental characteristics of studies were quite diverse, and the methodological variability could also contribute to heterogeneity. Subgroup analyses suggested that the isoquinoline alkaloids (SMD −4.19, 95% CI −5.18, −3.20), and the indole alkaloids (SMD −2.73, 95% CI −3.56, −1.90) obviously decreased atherosclerotic burden. Conclusion: Isoquinoline alkaloids and indole alkaloids appear to have a direct anti-atherosclerotic effect in ApoE−/− mice. Besides the limitations of animal modal studies, this systematic review could provide an important reference for future preclinical animal trials of good quality and clinical development.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.,Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiangjun Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Tong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Meng Qin
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Ives SJ, Park SY, Kwon OS, Gifford JR, Andtbacka RHI, Hyngstrom JR, Richardson RS. TRPV 1 channels in human skeletal muscle feed arteries: implications for vascular function. Exp Physiol 2017; 102:1245-1258. [PMID: 28681979 DOI: 10.1113/ep086223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV1 activation and known endogenous activators (anandamide, reactive oxygen species, H+ , etc.), TRPV1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV1 agonist) and without (control). Specifically, phenylephrine (α1 -adrenergic receptor agonist), dexmedetomidine (α2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tensionmax (LTmax ) and capsaicin, 21 ± 5%LTmax ] and dexmedetomidine (control, 29 ± 12%LTmax and capsaicin, 2 ± 3%LTmax ), while robustly enhancing maximal vasorelaxation with ACh (control, 78 ± 8% vasorelaxation and capsaicin, 108 ± 13% vasorelaxation) and less clearly enhancing the sodium nitroprusside response. Denudation of the endothelium greatly attenuated the maximal ACh-induced vasorelaxation equally in the control and capsaicin conditions (∼17% vasorelaxation) and abolished the attenuating effect of capsaicin on the maximal phenylephrine response (denuded + capsaicin, 61 ± 20%LTmax ). Immunohistochemistry identified a relatively high density of TRPV1 channels in the endothelium compared with the smooth muscle of the SMFAs, but because of the far greater volume of smooth muscle, total TRPV1 protein content was not significantly attenuated by denudation. Thus, SMFAs ubiquitously express functional TRPV1 channels, which alter vascular function, in terms of α1 -receptors, in a predominantly endothelium-dependent manner, conceivably contributing to the functional sympatholysis and unveiling a therapeutic target.
Collapse
Affiliation(s)
- Stephen J Ives
- Geriatric Research, Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, USA
| | - Song Young Park
- Geriatric Research, Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Oh Sung Kwon
- Geriatric Research, Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Jayson R Gifford
- Geriatric Research, Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert H I Andtbacka
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Yu YB, Su KH, Kou YR, Guo BC, Lee KI, Wei J, Lee TS. Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase. Acta Physiol (Oxf) 2017; 219:465-477. [PMID: 27232578 DOI: 10.1111/apha.12723] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023]
Abstract
AIMS Erythropoietin (EPO), the key hormone involved in erythropoiesis, beneficially affects endothelial cells (ECs), but the detailed mechanisms are yet to be completely understood. In this study, we investigated the role of transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated non-selective calcium (Ca2+ ) channel, in EPO-mediated endothelial nitric oxide synthase (eNOS) activation and angiogenesis. METHODS AND RESULTS In ECs, EPO time dependently increased intracellular levels of calcium; this increase was abrogated by the Ca2+ chelators and pharmacological inhibitors of TRPV1 in bovine aortic ECs (BAECs) and TRPV1-transfected HEK293 cells. In addition, EPO-induced nitrite oxide (NO) production, phosphorylation of eNOS, Akt and AMP-activated protein kinase (AMPK) and the formation of TRPV1-Akt-AMPK-eNOS complex as well as tube formation were diminished by the pharmacological inhibition of TRPV1 in BAECs. Moreover, EPO time dependently induced the phosphorylation of phospholipase C-γ1 (PLC-γ1). Inhibition of PLC-γ1 activity blunted the EPO-induced Ca2+ influx, eNOS phosphorylation, TRPV1-eNOS complex formation and NO production. The phosphorylated level of eNOS increased in the aortas of EPO-treated wild-type (WT) mice or EPO-transgenic (Tg) mice but not in those of EPO-treated TRPV1-deficient (TRPV1-/- ) mice or EPO-Tg/TRPV1-/- mice. Matrigel plug assay showed that EPO-induced angiogenesis was abrogated in TRPV1 antagonist capsazepine-treated WT mice and TRPV1-/- mice. CONCLUSION These findings indicate the EPO-induced Ca2+ influx via the activation of the PLC-γ1 signalling pathway, which leads to TRPV1 activation and consequently increases the association of the TRPV1-Akt-AMPK-eNOS complex, eNOS activation, NO production and angiogenesis.
Collapse
Affiliation(s)
- Y.-B. Yu
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- Division of Hematology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- The Jackson Laboratory; Bar Harbor ME USA
| | - Y. R. Kou
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - B.-C. Guo
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
- Genome Research Center; National Yang-Ming University; Taipei Taiwan
- Aging and Health Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
9
|
DelloStritto DJ, Sinharoy P, Connell PJ, Fahmy JN, Cappelli HC, Thodeti CK, Geldenhuys WJ, Damron DS, Bratz IN. 4-Hydroxynonenal dependent alteration of TRPV1-mediated coronary microvascular signaling. Free Radic Biol Med 2016; 101:10-19. [PMID: 27682362 PMCID: PMC5490661 DOI: 10.1016/j.freeradbiomed.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca2+ entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.
Collapse
Affiliation(s)
- Daniel J DelloStritto
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Pritam Sinharoy
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Patrick J Connell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Joseph N Fahmy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Holly C Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA; Department of Biomedical Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, P.O. Box 9500, Morgantown, WV 26506, USA.
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH 44242, USA.
| | - Ian N Bratz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA.
| |
Collapse
|
10
|
Yamamoto T, Tamaki K, Shirakawa K, Ito K, Yan X, Katsumata Y, Anzai A, Matsuhashi T, Endo J, Inaba T, Tsubota K, Sano M, Fukuda K, Shinmura K. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2016; 310:H1003-14. [PMID: 26873964 DOI: 10.1152/ajpheart.00676.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/04/2016] [Indexed: 11/22/2022]
Abstract
Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting that cardiac Sirt1 regulates the local complement system during CR.
Collapse
Affiliation(s)
- Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Tamaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of General Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Ito
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Xiaoxiang Yan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Takaaki Inaba
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; and
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; and
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of General Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
11
|
Hong JH, Kang JW, Kim DK, Baik SH, Kim KH, Shanta SR, Jung JH, Mook-Jung I, Kim KP. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer's disease. J Lipid Res 2015; 57:36-45. [PMID: 26538545 DOI: 10.1194/jlr.m057869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia; however, at the present time there is no disease-modifying drug for AD. There is increasing evidence supporting the role of lipid changes in the process of normal cognitive aging and in the etiology of age-related neurodegenerative diseases. AD is characterized by the presence of intraneuronal protein clusters and extracellular aggregates of β-amyloid (Aβ). Disrupted Aβ kinetics may activate intracellular signaling pathways, including tau hyperphosphorylation and proinflammatory pathways. We analyzed and visualized the lipid profiles of mouse brains using MALDI-TOF MS. Direct tissue analysis by MALDI-TOF imaging MS (IMS) can determine the relative abundance and spatial distribution of specific lipids in different tissues. We used 5XFAD mice that almost exclusively generate and rapidly accumulate massive cerebral levels of Aβ-42 (1). Our data showed changes in lipid distribution in the mouse frontal cortex, hippocampus, and subiculum, where Aβ plaques are first generated in AD. Our results suggest that MALDI-IMS is a powerful tool for analyzing the distribution of various phospholipids and that this application might provide novel insight into the prediction of disease.
Collapse
Affiliation(s)
- Ji Hye Hong
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Dong Kyu Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Ho Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Selina Rahman Shanta
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
12
|
The molecular pathway of ATP-sensitive potassium channel in endothelial cells for mediating arteriole relaxation. Life Sci 2015; 137:164-9. [DOI: 10.1016/j.lfs.2015.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
13
|
Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase. Sci Rep 2015; 5:13524. [PMID: 26304753 PMCID: PMC4548251 DOI: 10.1038/srep13524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor–c-Src–increased Tyr phosphorylation of sEH and formation of an sEH–Akt–AMPK–eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt–AMPK–eNOS signaling cascade.
Collapse
|
14
|
Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Arch Toxicol 2015; 90:1211-24. [DOI: 10.1007/s00204-015-1539-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023]
|
15
|
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
16
|
Guo BC, Wei J, Su KH, Chiang AN, Zhao JF, Chen HY, Shyue SK, Lee TS. Transient receptor potential vanilloid type 1 is vital for (-)-epigallocatechin-3-gallate mediated activation of endothelial nitric oxide synthase. Mol Nutr Food Res 2015; 59:646-57. [PMID: 25581901 DOI: 10.1002/mnfr.201400699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022]
Abstract
SCOPE Epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, has beneficial effects on physiological functions of endothelial cells (ECs), yet the detailed mechanisms are not fully understood. In this study, we investigated the role of transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated nonselective calcium channel, in EGCG-mediated endothelial nitric oxide (NO) synthase (eNOS) activation and angiogenesis. METHODS AND RESULTS In ECs, treatment with EGCG time-dependently increased the intracellular level of Ca(2+) . Removal of extracellular calcium (Ca(2+) ) by EGTA or EDTA or inhibition of TRPV1 by capsazepine or SB366791 abrogated EGCG-increased intracellular Ca(2+) level in ECs or TRPV1-transfected HEK293 cells. Additionally, EGCG increased the phsophorylation of eNOS at Ser635 and Ser1179, Akt at Ser473, calmodulin-dependent protein kinase II (CaMKII) at Thr286 and AMP-activated protein kinase (AMPK) at Thr172, all abolished by the TRPV1 antagonist capsazepine. EGCG-induced NO production was diminished by pretreatment with LY294002 (an Akt inhibitor), KN62 (a CaMKII inhibitor), and compound C (an AMPK inhibitor). Moreover, blocking TRPV1 activation prevented EGCG-induced EC proliferation, migration, and tube formation, as well as angiogenesis in Matrigel plugs in mice. CONCLUSION EGCG may trigger activation of TRPV1-Ca(2+) signaling, which leads to phosphorylation of Akt, AMPK, and CaMKII; eNOS activation; NO production; and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- Bei-Chia Guo
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen L, Kaßmann M, Sendeski M, Tsvetkov D, Marko L, Michalick L, Riehle M, Liedtke WB, Kuebler WM, Harteneck C, Tepel M, Patzak A, Gollasch M. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiol (Oxf) 2015; 213:481-91. [PMID: 25069877 DOI: 10.1111/apha.12355] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/26/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
AIM Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. METHODS We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. RESULTS The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. CONCLUSION Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney.
Collapse
Affiliation(s)
- L. Chen
- Experimental and Clinical Research Center (ECRC); Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
- Xiamen Zhongshan Hospital; Xiamen University; Xiamen China
| | - M. Kaßmann
- Experimental and Clinical Research Center (ECRC); Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - M. Sendeski
- Institute of Vegetative Physiology; Charité University Medicine Berlin; Berlin Germany
| | - D. Tsvetkov
- Experimental and Clinical Research Center (ECRC); Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - L. Marko
- Experimental and Clinical Research Center (ECRC); Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
| | - L. Michalick
- German Heart Center Berlin; Institute of Physiology; Charité University Medicine Berlin; Berlin Germany
| | - M. Riehle
- Department of Pharmacology and Experimental Therapy; Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics; Interfaculty Center of Pharmacogenomics and Drug Research; University of Tübingen; Tübingen Germany
| | - W. B. Liedtke
- Department of Neurology and Neurobiology; Center for Translational Neuroscience; Duke University Medical Center; Durham NC USA
| | - W. M. Kuebler
- German Heart Center Berlin; Institute of Physiology; Charité University Medicine Berlin; Berlin Germany
| | - C. Harteneck
- Department of Pharmacology and Experimental Therapy; Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics; Interfaculty Center of Pharmacogenomics and Drug Research; University of Tübingen; Tübingen Germany
| | - M. Tepel
- Department of Cardiovascular and Renal Research; Department of Nephrology; University of Southern Denmark; Odense Denmark
| | - A. Patzak
- Institute of Vegetative Physiology; Charité University Medicine Berlin; Berlin Germany
| | - M. Gollasch
- Experimental and Clinical Research Center (ECRC); Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC); Berlin Germany
- Medical Clinic for Nephrology and Internal Intensive Care; Charité Campus Virchow; Berlin Germany
| |
Collapse
|
18
|
Su KH, Lin SJ, Wei J, Lee KI, Zhao JF, Shyue SK, Lee TS. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf) 2014; 212:191-204. [PMID: 25183024 DOI: 10.1111/apha.12378] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the role of transient receptor potential vanilloid receptor type 1 (TRPV1) in simvastatin-mediated activation of endothelial nitric oxide synthase (eNOS) and angiogenesis. METHODS Fluo-8 NW assay was for Ca(2+) detection; Griess's assay was for NO bioavailability; Western blotting and immunoprecipitation were for protein phosphorylation and interaction; tube formation and Matrigel plug assay were for angiogenesis. RESULTS In endothelial cells (ECs), treatment with simvastatin time-dependently increased intracellular level of Ca(2+). Pharmacological inhibition or genetic disruption of TRPV1 abrogated simvastatin-mediated elevation of intracellular Ca(2+) in ECs or TRPV1-transfected HEK293 cells. Loss of TRPV1 function abolished simvastatin-induced NO production and phosphorylation of eNOS and calmodulin protein kinase II (CaMKII) in ECs and in aortas of mice. Inhibition of TRPV1 activation prevented the simvastatin-elicited increase in the formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex. In mice, Matrigel plug assay showed that simvastatin-evoked angiogenesis was abolished by TRPV1 antagonist and genetic ablation of TRPV1. Additionally, our results demonstrated that TRP ankyrin 1 (TRPA1) is the downstream effector in the simvastatin-activated TRPV1-Ca(2+) signalling and in the consequent NO production and angiogenesis as evidence by that re-expression of TRPA1 further augmented simvastatin-elicited Ca(2+) influx in TRPV1-expressed HEK293 cells and ablation of TRPA1 function profoundly inhibited the simvastatin-induced increase in the phosphorylation of eNOS and CaMKII, formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex, NO bioavailability, tube formation and angiogenesis in ECs or mice. CONCLUSION Simvastatin-induced Ca(2+) influx may through the activation of TRPV1-TRPA1 signalling, which leads to phosphorylation of CaMKII, increases in the formation of TRPV1-CaMKII-AMPK-eNOS complex, eNOS activation, NO production and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-J. Lin
- Department of Internal Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J.-F. Zhao
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
19
|
Su KH, Lee KI, Shyue SK, Chen HY, Wei J, Lee TS. Implication of transient receptor potential vanilloid type 1 in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. Int J Biol Sci 2014; 10:990-6. [PMID: 25210497 PMCID: PMC4159690 DOI: 10.7150/ijbs.9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022] Open
Abstract
14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca2+ influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca2+. Removal of extracellular Ca2+, pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca2+ level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca2+ or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca2+ influx, NO production and angiogenesis.
Collapse
Affiliation(s)
- Kuo-Hui Su
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Kuan-I Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Song-Kun Shyue
- 2. Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Hsiang-Ying Chen
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Jeng Wei
- 3. Heart Center, Cheng-Hsin General Hospital, Taipei, 11221 Taiwan
| | - Tzong-Shyuan Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| |
Collapse
|