1
|
Rosenstock J, Frias J, Jastreboff AM, Du Y, Lou J, Gurbuz S, Thomas MK, Hartman ML, Haupt A, Milicevic Z, Coskun T. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 2023; 402:529-544. [PMID: 37385280 DOI: 10.1016/s0140-6736(23)01053-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND According to current consensus guidelines for type 2 diabetes management, bodyweight management is as important as attaining glycaemic targets. Retatrutide, a single peptide with agonist activity at the glucose-dependent insulinotropic polypeptide (GIP), GLP-1, and glucagon receptors, showed clinically meaningful glucose-lowering and bodyweight-lowering efficacy in a phase 1 study. We aimed to examine the efficacy and safety of retatrutide in people with type 2 diabetes across a range of doses. METHODS In this randomised, double-blind, double-dummy, placebo-controlled and active comparator-controlled, parallel-group, phase 2 trial, participants were recruited from 42 research and health-care centres in the USA. Adults aged 18-75 years with type 2 diabetes, glycated haemoglobin (HbA1c) of 7·0-10·5% (53·0-91·3 mmol/mol), and BMI of 25-50 kg/m2 were eligible for enrolment. Eligible participants were treated with diet and exercise alone or with a stable dose of metformin (≥1000 mg once daily) for at least 3 months before the screening visit. Participants were randomly assigned (2:2:2:1:1:1:1:2) using an interactive web-response system, with stratification for baseline HbA1c and BMI, to receive once-weekly injections of placebo, 1·5 mg dulaglutide, or retatrutide maintenance doses of 0·5 mg, 4 mg (starting dose 2 mg), 4 mg (no escalation), 8 mg (starting dose 2 mg), 8 mg (starting dose 4 mg), or 12 mg (starting dose 2 mg). Participants, study site personnel, and investigators were masked to treatment allocation until after study end. The primary endpoint was change in HbA1c from baseline to 24 weeks, and secondary endpoints included change in HbA1c and bodyweight at 36 weeks. Efficacy was analysed in all randomly assigned, except inadvertently enrolled, participants, and safety was assessed in all participants who received at least one dose of study treatment. The study is registered at ClinicalTrials.gov, NCT04867785. FINDINGS Between May 13, 2021, and June 13, 2022, 281 participants (mean age 56·2 years [SD 9·7], mean duration of diabetes 8·1 years [7·0], 156 [56%] female, and 235 [84%] White) were randomly assigned and included in the safety analysis (45 in the placebo group, 46 in the 1·5 mg dulaglutide group, and 47 in the retatrutide 0·5 mg group, 23 in the 4 mg escalation group, 24 in the 4 mg group, 26 in the 8 mg slow escalation group, 24 in the 8 mg fast escalation group, and 46 in the 12 mg escalation group). 275 participants were included in the efficacy analyses (one each in the retatrutide 0·5 mg group, 4 mg escalation group, and 8 mg slow escalation group, and three in the 12 mg escalation group were inadvertently enrolled). 237 (84%) participants completed the study and 222 (79%) completed study treatment. At 24 weeks, least-squares mean changes from baseline in HbA1c with retatrutide were -0·43% (SE 0·20; -4·68 mmol/mol [2·15]) for the 0·5 mg group, -1·39% (0·14; -15·24 mmol/mol [1·56]) for the 4 mg escalation group, -1·30% (0·22; -14·20 mmol/mol [2·44]) for the 4 mg group, -1·99% (0·15; -21·78 mmol/mol [1·60]) for the 8 mg slow escalation group, -1·88% (0·21; -20·52 mmol/mol [2·34]) for the 8 mg fast escalation group, and -2·02% (0·11; -22·07 mmol/mol [1·21]) for the 12 mg escalation group, versus -0·01% (0·21; -0·12 mmol/mol [2·27]) for the placebo group and -1·41% (0·12; -15·40 mmol/mol [1·29]) for the 1·5 mg dulaglutide group. HbA1c reductions with retatrutide were significantly greater (p<0·0001) than placebo in all but the 0·5 mg group and greater than 1·5 mg dulaglutide in the 8 mg slow escalation group (p=0·0019) and 12 mg escalation group (p=0·0002). Findings were consistent at 36 weeks. Bodyweight decreased dose dependently with retatrutide at 36 weeks by 3·19% (SE 0·61) for the 0·5 mg group, 7·92% (1·28) for the 4 mg escalation group, 10·37% (1·56) for the 4 mg group, 16·81% (1·59) for the 8 mg slow escalation group, 16·34% (1·65) for the 8 mg fast escalation group, and 16·94% (1·30) for the 12 mg escalation group, versus 3·00% (0·86) with placebo and 2·02% (0·72) with 1·5 mg dulaglutide. For retatrutide doses of 4 mg and greater, decreases in weight were significantly greater than with placebo (p=0·0017 for the 4 mg escalation group and p<0·0001 for others) and 1·5 mg dulaglutide (all p<0·0001). Mild-to-moderate gastrointestinal adverse events, including nausea, diarrhoea, vomiting, and constipation, were reported in 67 (35%) of 190 participants in the retatrutide groups (from six [13%] of 47 in the 0·5 mg group to 12 [50%] of 24 in the 8 mg fast escalation group), six (13%) of 45 participants in the placebo group, and 16 (35%) of 46 participants in the 1·5 mg dulaglutide group. There were no reports of severe hypoglycaemia and no deaths during the study. INTERPRETATION In people with type 2 diabetes, retatrutide showed clinically meaningful improvements in glycaemic control and robust reductions in bodyweight, with a safety profile consistent with GLP-1 receptor agonists and GIP and GLP-1 receptor agonists. These phase 2 data also informed dose selection for the phase 3 programme. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
| | - Juan Frias
- Velocity Clinical Research, Los Angeles, CA, USA
| | - Ania M Jastreboff
- Department of Medicine (Endocrinology & Metabolism) and Department of Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Yu Du
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jitong Lou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
2
|
Pandey S, Mangmool S, Parichatikanond W. Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals (Basel) 2023; 16:836. [PMID: 37375783 DOI: 10.3390/ph16060836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
3
|
Liu Z, Bian N, Wu S, Fan Y, Li H, Yu J, Guo J, Chen D. A meta-analysis evaluating indirectly GLP-1 receptor agonists and arrhythmias in patients with type 2 diabetes and myocardial infarction. Front Cardiovasc Med 2022; 9:1019120. [PMID: 36277800 PMCID: PMC9581215 DOI: 10.3389/fcvm.2022.1019120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aims At present, the effects of Glucagon-Like Peptide 1 Receptor agonists (GLP-1RAs) on arrhythmia in patients with type 2 diabetes mellitus (T2DM) and myocardial infarction (MI) are still unclear. Hence, this systematic review and meta-analysis aimed to investigate this association. Methods and results PubMed, Embase, Cochrane Library, and Web of Science were searched from inception to 30 April 2022. Randomized controlled trials (RCTs) that compared GLP-1RAs with placebo and met the critical criterion of a proportion of patients with T2DM and MI > 30% were included to verify our purpose indirectly. The outcomes of interest included atrial arrhythmias, ventricular arrhythmias, atrioventricular block (AVB), sinus arrhythmia, and cardiac arrest. Relative risk (RR) and 95% confidence intervals (CI) were pooled using a random-effects model. We included five RCTs with altogether 31,314 patients. In these trials, the highest proportion of patients with T2DM and MI was 82.6%, while the lowest was 30.7%. Compared to placebo, GLP-1RAs were associated with a lower risk of atrial arrhythmias (RR 0.81, 95% CI 0.70-0.95). There was no significant difference in the risk of ventricular arrhythmias (RR 1.26, 95% CI 0.87-1.80), AVB (RR 0.95, 95% CI 0.63-1.42), sinus arrhythmia (RR 0.62, 95% CI 0.26-1.49), and cardiac arrest (RR 0.97, 95% CI 0.52-1.83) between groups. Conclusion GLP-1RAs may be associated with reduced risk for atrial arrhythmias, which seems more significant for patients with T2DM combined with MI. More studies are needed to clarify the definitive anti-arrhythmic role of this drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongdong Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Chen SY, Kong XQ, Zhang KF, Luo S, Wang F, Zhang JJ. DPP4 as a Potential Candidate in Cardiovascular Disease. J Inflamm Res 2022; 15:5457-5469. [PMID: 36147690 PMCID: PMC9488155 DOI: 10.2147/jir.s380285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of cardiovascular disease has become a global health concern. The occurrence of cardiovascular disease is the result of long-term interaction of many risk factors, one of which is diabetes. As a novel anti-diabetic drug, DPP4 inhibitor has been proven to be cardiovascular safe in five recently completed cardiovascular outcome trials. Accumulating studies suggest that DPP4 inhibitor has potential benefits in a variety of cardiovascular diseases, including hypertension, calcified aortic valve disease, coronary atherosclerosis, and heart failure. On the one hand, in addition to improving blood glucose control, DPP4 inhibitor is involved in controlling cardiovascular risk factors. On the other hand, DPP4 inhibitor directly regulates the occurrence and progression of cardiovascular diseases through a variety of mechanisms. In this review, we summarize the recent advances of DPP4 in cardiovascular disease, aiming to discuss DPP4 inhibitor as a potential option for cardiovascular therapy.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| | - Ke-Fan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Wu J, Xie F, Qin Y, Liu J, Yang Z. Notch signaling is involved in the antiapoptotic effects of liraglutide on rat H9c2 cardiomyocytes exposed to hypoxia followed by reoxygenation. J Int Med Res 2021; 48:300060520948394. [PMID: 32967491 PMCID: PMC7521049 DOI: 10.1177/0300060520948394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Liraglutide (Lir) protects cardiomyocytes against high glucose-induced myocardial damage. This study investigated whether Notch signaling participated in the antiapoptotic effects of Lir on rat H9c2 cardiomyocytes subjected to hypoxia followed by reoxygenation (H/R). METHODS We used H9c2 rat cardiomyocytes as a model of H/R and measured viability, apoptosis, and expression of the apoptotic genes Bax and Bcl-2 and Notch signaling genes Notch1 and Jagged1. Notch1 was depleted by siRNA to test the effect of Notch1 deficiency on the antiapoptotic effects of Lir on H/R-treated H9c2 cardiomyocytes. RESULTS After H/R treatment, viability was significantly decreased, and the apoptosis rate was greater in the H/R group than in the control (CT). Lir at 50, 100, and 200 nM significantly increased viability and decreased apoptosis in H/R-treated H9c2 cells. Treatment with 50 nM Lir for 2 hours before H/R significantly increased the expression levels of Notch1, Jagged1, and Bcl-2 compared with the CT levels. Bax was downregulated, which indicated that Lir activated Notch signaling and inhibited apoptosis. Notch1 depletion partially abolished the antiapoptotic effect of Lir on H/R-treated H9c2 cells by altering apoptotic gene expression. CONCLUSION Lir activated Notch signaling, which was responsible for the antiapoptotic effect of Lir on H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Juan Wu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Fei Xie
- Department of Cardiovascular, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yali Qin
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jie Liu
- Department of General Practitioner, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Zihua Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Wang M, Yoon G, Song J, Jo J. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. Sci Rep 2021; 11:8326. [PMID: 33859286 PMCID: PMC8050263 DOI: 10.1038/s41598-021-87809-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome, which increases the risk of obesity and type 2 diabetes has emerged as a significant issue worldwide. Recent studies have highlighted the relationship between metabolic imbalance and neurological pathologies such as memory loss. Glucagon-like peptide 1 (GLP-1) secreted from gut L-cells and specific brain nuclei plays multiple roles including regulation of insulin sensitivity, inflammation and synaptic plasticity. Although GLP-1 and GLP-1 receptor agonists appear to have neuroprotective function, the specific mechanism of their action in brain remains unclear. We investigated whether exendin-4, as a GLP-1RA, improves cognitive function and brain insulin resistance in metabolic-imbalanced mice fed a high-fat diet. Considering the result of electrophysiological experiments, exendin-4 inhibits the reduction of long term potentiation (LTP) in high fat diet mouse brain. Further, we identified the neuroprotective effect of exendin-4 in primary cultured hippocampal and cortical neurons in in vitro metabolic imbalanced condition. Our results showed the improvement of IRS-1 phosphorylation, neuronal complexity, and the mature of dendritic spine shape by exendin-4 treatment in metabolic imbalanced in vitro condition. Here, we provides significant evidences on the effect of exendin-4 on synaptic plasticity, long-term potentiation, and neural structure. We suggest that GLP-1 is important to treat neuropathology caused by metabolic syndrome.
Collapse
Affiliation(s)
- Ming Wang
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
| | - Gwangho Yoon
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Jihoon Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.
- Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
7
|
Huang J, Liu Y, Cheng L, Li J, Zhang T, Zhao G, Zhang H. Glucagon-like peptide-1 cleavage product GLP-1(9-36) reduces neuroinflammation from stroke via the activation of insulin-like growth factor 1 receptor in astrocytes. Eur J Pharmacol 2020; 887:173581. [PMID: 32949596 DOI: 10.1016/j.ejphar.2020.173581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous gut hormone and a key regulator in maintaining glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36), which was formerly considered a "bio-inactive" metabolite mainly due to its low affinity for GLP-1 receptor, possesses unique properties such as cardiovascular protection. Little is known about the effects and mechanisms of GLP-1 (9-36) in cerebral ischemia and reperfusion injury. Here, we report that systemic application of GLP-1 (9-36) in adult mice facilitated functional recovery and reduced infarct volume, astrogliosis, and neuronal apoptosis following middle cerebral artery occlusion and reperfusion. Interestingly, these effects were still observed in GLP-1 receptor knockout (Glp-1rKO) mice but were partially reversed in insulin-like growth factor 1 (IGF-1) receptor knockdown (Igf-1rKD) mice. Primary astrocytes were cultured and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R), and enzyme-linked immunosorbent assay indicated that GLP-1 (9-36) pretreatment reduces tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels. This effect was not diminished in Glp-1rKO astrocytes but was reversed in Igf-1rKO astrocytes, emphasizing that the anti-inflammatory effect of GLP-1 (9-36) in astrocytes is independent of GLP-1 receptor signaling and is instead mediated by IGF-1 receptor. Immunoprecipitation experiments showed that GLP-1 (9-36) directly interacts with IGF-1 receptor in astrocytes. Western blot data indicated that GLP-1 (9-36) activates IGF-1 receptor and downstream PI3K-AKT pathway in astrocytes upon OGD/R injury, which was abrogated by preincubation with IGF-1 receptor autophosphorylation inhibitor picropodophyllin. Thus, our findings suggest that GLP-1 (9-36) improved stroke outcome by reducing inflammation in astrocytes via interaction with IGF-1 receptor.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China; Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunhan Liu
- Department of Neurology Impatient, Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liusiyuan Cheng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Jihong Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Tangrui Zhang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huinan Zhang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China.
| |
Collapse
|
8
|
Chen J, Xu S, Zhou W, Wu L, Wang L, Li W. Exendin-4 Reduces Ventricular Arrhythmia Activity and Calcium Sparks-Mediated Sarcoplasmic Reticulum Ca Leak in Rats with Heart Failure. Int Heart J 2020; 61:145-152. [DOI: 10.1536/ihj.19-327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jingjing Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Shunen Xu
- Department of Orthopedic, The Affiliated Hospital of Guizhou Medical University
| | - Wei Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Long Wang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| |
Collapse
|
9
|
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17:157. [PMID: 30545359 PMCID: PMC6292070 DOI: 10.1186/s12933-018-0800-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes (T2DM) have a substantial risk of developing cardiovascular disease. The strong connection between the severity of hyperglycaemia, metabolic changes secondary to T2DM and vascular damage increases the risk of macrovascular complications. There is a challenging demand for the development of drugs that control hyperglycaemia and influence other metabolic risk factors to improve cardiovascular outcomes such as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina and heart failure (major adverse cardiovascular events). In recent years, introduction of the new drug class of glucagon-like peptide-1 receptor agonists (GLP-1RAs) has changed the treatment landscape as GLP-1RAs have become well-established therapies in T2DM. The benefits of GLP-1RAs are derived from their pleiotropic effects, which include appetite control, glucose-dependent secretion of insulin and inhibition of glucagon secretion. Importantly, their beneficial effects extend to the cardiovascular system. Large clinical trials have evaluated the cardiovascular effects of GLP-1RAs in patients with T2DM and elevated risk of cardiovascular disease and the results are very promising. However, important aspects still require elucidation, such as the specific mechanisms involved in the cardioprotective effects of these drugs. Careful interpretation is necessary because of the heterogeneity across the trials concerning the definition of cardiovascular risk or cardiovascular disease, baseline characteristics, routine care and event rates. The aim of this review is to describe the main clinical aspects of the GLP-1RAs, compare them using data from both the mechanistic and randomized controlled trials and discuss potential reasons for improved cardiovascular outcomes observed in these trials. This review may help clinicians to decide which treatment is most appropriate in reducing cardiovascular risk in patients with T2DM.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil.
| | - Otávio Berwanger
- Academic Research Organization (ARO), Albert Einstein Hospital, Av. Albert Einstein 627, Sao Paulo, SP, 05651-901, Brazil
| | - Luiz Sérgio F de Carvalho
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil
| | - José Francisco Kerr Saraiva
- Cardiology Division, Pontifical Catholic University of Campinas Medicine School, Rua Engenheiro Carlos Stevenson 560, Campinas, Sao Paulo, 13092-132, Brazil
| |
Collapse
|
10
|
Kim HJ, Baek EB, Kim SJ. Potentiation of endothelium-dependent vasorelaxation of mesenteric arteries from spontaneously hypertensive rats by gemigliptin, a dipeptidyl peptidase-4 inhibitor class of anti-diabetic drug. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:713-719. [PMID: 30402032 PMCID: PMC6205934 DOI: 10.4196/kjpp.2018.22.6.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase4 (DPP4) inhibitors such as gemigliptin are anti-diabetic drugs elevating plasma concentration of incretins such as GLP-1. In addition to the DPP4 inhibition, gemigliptin might directly improve the functions of vessels under pathological conditions. To test this hypothesis, we investigated whether the acetylcholine-induced endothelium dependent relaxation (ACh-EDR) of mesenteric arteries (MA) are altered by gemigliptin pretreatment in Spontaneous Hypertensive Rats (SHR) and in Wistar-Kyoto rats (WKY) under hyperglycemia-like conditions (HG; 2 hr incubation with 50 mM glucose). ACh-EDR of WKY was reduced by the HG condition, which was significantly recovered by 1 µM gemigliptin while not by saxagliptin and sitagliptin up to 10 µM. The ACh-EDR of SHR MA was also improved by 1 µM gemigliptin while similar recovery was observed with higher concentration (10 µM) of saxagliptin and sitagliptin. The facilitation of ACh-EDR by gemigliptin in SHR was not observed under pretreatment with NOS inhibitor, L-NAME. In the endotheliumdenuded MA of SHR, sodium nitroprusside induced dose-dependent relaxation was not affected by gemigliptin. The ACh-EDR in WKY was decreased by treatment with 30 µM pyrogallol, a superoxide generator, which was not prevented by gemigliptin. Exendin-4, a GLP-1 analogue, could not enhance the ACh-EDR in SHR MA. The present results of ex vivo study suggest that gemigliptin enhances the NOS-mediated EDR of the HG-treated MA as well as the MA from SHR via GLP-1 receptor independent mechanism.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Hypoxic/Ischemic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Bok Baek
- Department of Regulatory Toxicology, Life Science R&D, LG Chem Ltd., LG Science Park, Seoul 07796, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Hypoxic/Ischemic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Packer M. Role of the sodium-hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes. Diabetes Obes Metab 2018; 20:800-811. [PMID: 29227582 DOI: 10.1111/dom.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is characterized by increased activity of the sodium-hydrogen exchanger (NHE) in the glomerulus and renal tubules, which contributes importantly to the development of nephropathy. Despite the established role played by the exchanger in experimental studies, it has not been specifically targeted by those seeking to develop novel pharmacological treatments for diabetes. This review demonstrates that many existing drugs that are commonly prescribed to patients with diabetes act on the NHE1 and NHE3 isoforms in the kidney. This action may explain their effects on sodium excretion, albuminuria and the progressive decline of glomerular function in clinical trials; these responses cannot be readily explained by the influence of these drugs on blood glucose. Agents that may affect the kidney in diabetes by virtue of an action on NHE include: (1) insulin and insulin sensitizers; (2) incretin-based agents; (3) sodium-glucose cotransporter 2 inhibitors; (4) antagonists of the renin-angiotensin system (angiotensin converting-enzyme inhibitors, angiotensin receptor blockers and angiotensin receptor neprilysin inhibitors); and (5) inhibitors of aldosterone action and cholesterol synthesis (spironolactone, amiloride and statins). The renal effects of each of these drug classes in patients with type 2 diabetes may be related to a single shared biological mechanism.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Day SM, Yang W, Ewin S, Zhou X, Ma T. Glucagon-like peptide-1 cleavage product GLP-1 (9-36) amide enhances hippocampal long-term synaptic plasticity in correlation with suppression of Kv4.2 expression and eEF2 phosphorylation. Hippocampus 2017; 27:1264-1274. [PMID: 28833775 DOI: 10.1002/hipo.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous gut hormone and a key regulator in maintaining glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36), used to be considered a "bio-inactive" metabolite mainly because of its lack of insulinotropic effects and low affinity for GLP-1 receptors, possesses unique properties such as anti-oxidant and cardiovascular protection. Little is known about the role of GLP-1 (9-36) in central nervous system. Here we report that chronic, systemic application of GLP-1 (9-36) in adult mice facilitated both the induction and maintenance phases of hippocampal long-term potentiation (LTP), a major form of synaptic plasticity. In contrast, spatial learning and memory, as assessed by the Morris water maze test, was not altered by GLP-1 (9-36) administration. At the molecular level, GLP-1 (9-36) reduced protein levels of the potassium channel Kv4.2 in hippocampus, which is linked to elevated dendritic membrane excitability. Moreover, GLP-1(9-36) treatment inhibited phosphorylation of mRNA translational factor eEF2, which is associated with increased capacity for de novo protein synthesis. Finally, we showed that the LTP-enhancing effects by GLP-1 (9-36) treatment in vivo were blunted by application of exendin(9-39)amide [EX(9-39)], the GLP-1 receptor (GLP-1R) antagonist, suggesting its role as a GLP-1R agonist. These findings demonstrate that GLP-1 (9-36), which was considered a "bio-inactive" peptide, clearly exerts physiological effects on neuronal plasticity in the hippocampus, a brain region critical for learning and memory.
Collapse
Affiliation(s)
- Stephen M Day
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Wenzhong Yang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Sarah Ewin
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
13
|
Ying YL, Chen YC, Jandeleit-Dahm K, Peter K. GLP-1 receptor agonists: An example of the challenge for animal models to predict plaque instability/rupture and cardiovascular outcomes. Atherosclerosis 2017; 265:250-252. [PMID: 28870630 DOI: 10.1016/j.atherosclerosis.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Ya-Lan Ying
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Yung-Chih Chen
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | | | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Sassoon DJ, Tune JD, Mather KJ, Noblet JN, Eagleson MA, Conteh AM, Sturek JT, Goodwill AG. Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction. Diabetes 2017; 66:2230-2240. [PMID: 28483802 PMCID: PMC5521862 DOI: 10.2337/db16-1206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/30/2017] [Indexed: 01/15/2023]
Abstract
This study tested the hypothesis that glucagon-like peptide 1 (GLP-1) therapies improve cardiac contractile function at rest and in response to adrenergic stimulation in obese swine after myocardial infarction. Obese Ossabaw swine were subjected to gradually developing regional coronary occlusion using an ameroid occluder placed around the left anterior descending coronary artery. Animals received subcutaneous injections of saline or liraglutide (0.005-0.015 mg/kg/day) for 30 days after ameroid placement. Cardiac performance was assessed at rest and in response to sympathomimetic challenge (dobutamine 0.3-10 μg/kg/min) using a left ventricular pressure/volume catheter. Liraglutide increased diastolic relaxation (dP/dt; Tau 1/2; Tau 1/e) during dobutamine stimulation (P < 0.01) despite having no influence on the magnitude of myocardial infarction. The slope of the end-systolic pressure volume relationship (i.e., contractility) increased with dobutamine after liraglutide (P < 0.001) but not saline administration (P = 0.63). Liraglutide enhanced the slope of the relationship between cardiac power and pressure volume area (i.e., cardiac efficiency) with dobutamine (P = 0.017). Hearts from animals treated with liraglutide demonstrated decreased β1-adrenoreceptor expression. These data support that GLP-1 agonism augments cardiac efficiency via attenuation of maladaptive sympathetic signaling in the setting of obesity and myocardial infarction.
Collapse
Affiliation(s)
- Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Kieren J Mather
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jillian N Noblet
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Mackenzie A Eagleson
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Abass M Conteh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Joshua T Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
15
|
Persson PB, Persson AB. Vitamin supplementation. Acta Physiol (Oxf) 2017; 219:537-539. [PMID: 28103422 DOI: 10.1111/apha.12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P B Persson
- Institute of Vegetative Physiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - A B Persson
- Charité-Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Oren DA, Wei Y, Skrabanek L, Chow BKC, Mommsen T, Mojsov S. Structural Mapping and Functional Characterization of Zebrafish Class B G-Protein Coupled Receptor (GPCR) with Dual Ligand Selectivity towards GLP-1 and Glucagon. PLoS One 2016; 11:e0167718. [PMID: 27930690 PMCID: PMC5145181 DOI: 10.1371/journal.pone.0167718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022] Open
Abstract
GLP-1 and glucagon regulate glucose metabolism through a network of metabolic pathways initiated upon binding to their specific receptors that belong to class B G-protein coupled receptors (GPCRs). The therapeutic potential of glucagon is currently being evaluated, while GLP-1 is already used in the treatment of type 2 diabetes and obesity. Development of a second generation of GLP-1 based therapeutics depends on a molecular and structural understanding of the interactions between the GLP-1 receptor (GLP-1R) and its ligand GLP-1. There is considerable sequence conservation between GLP-1 and glucagon and between the hGLP-1R and human glucagon receptor (hGCGR), yet each receptor recognizes only its own specific ligand. Glucagon receptors in fish and frogs also exhibit ligand selectivity only towards glucagon and not GLP-1. Based on competitive binding experiments and assays of increase in intracellular cAMP, we demonstrate here that a GPCR in zebrafish (Danio rerio) exhibits dual ligand selectivity towards GLP-1 and glucagon, a characteristic not found in mammals. Further, many structural features found in hGLP-1R and hGCGR are also found in this zebrafish GPCR (zfGPCR). We show this by mapping of its sequence and structural features onto the hGLP-1R and hGCGR based on their partial and complementary crystal structures. Thus, we propose that zfGPCR represents a dual GLP-1R/GCGR. The main differences between the three receptors are in their stalk regions that connect their N-terminal extracellular domains (NECDs) with their transmembrane domains and the absence of loop 3 in the NECD in zfGLP-1R/GCGR. These observations suggest that the interactions between GLP-1 and glucagon with loop 3 and the stalk regions may induce different conformational changes in hGLP-1R and hGCGR upon ligand binding and activation that lead to selective recognition of their native ligands.
Collapse
Affiliation(s)
- Deena A. Oren
- The Rockefeller University, New York, New York, United States of America
| | - Yang Wei
- The Rockefeller University, New York, New York, United States of America
| | - Luce Skrabanek
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, New York, United States of America
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Mommsen
- Department of Biochemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Svetlana Mojsov
- The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nuevos tratamientos para la diabetes mellitus tipo 2 y enfermedad cardiovascular. La revolución ya ha empezado. Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2016.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Simó R, Hernández C. New Treatments for Type 2 Diabetes Mellitus and Cardiovascular Disease. The Revolution Has Begun. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2016; 69:1005-1007. [PMID: 27659856 DOI: 10.1016/j.rec.2016.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Rafael Simó
- Grupo de Investigación en Diabetes y Metabolismo y CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Investigación Hospital Vall d'Hebron (VHIR), Barcelona, Spain.
| | - Cristina Hernández
- Grupo de Investigación en Diabetes y Metabolismo y CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Investigación Hospital Vall d'Hebron (VHIR), Barcelona, Spain
| |
Collapse
|
19
|
Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials. Proc Nutr Soc 2016; 75:328-41. [PMID: 27150497 DOI: 10.1017/s0029665116000264] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The prevalence of cardiometabolic diseases is a significant public health burden worldwide. Emerging evidence supports the inverse association between greater dairy consumption and reduced risk of cardiometabolic diseases. Dairy proteins may have an important role in the favourable impact of dairy on human health such as blood pressure (BP), blood lipid and glucose control. The purpose of this review is to update and critically evaluate the evidence on the impacts of casein and whey protein in relation to metabolic function. Evidence from short-term clinical studies assessing postprandial responses to milk protein ingestion suggests benefits on vascular function independent of BP, as well as improvement in glycaemic homeostasis. Long-term interventions have been less conclusive, with some showing benefits and others indicating a lack of improvement in vascular function. During chronic consumption BP appears to be lowered and both dyslipidaemia and hyperglacaemia seem to be controlled. Limited number of trials investigated the effects of dairy proteins on oxidative stress and inflammation. Although the underlying mechanisms of milk proteins on cardiometabolic homeostasis remains to be elucidated, the most likely mechanism is to improve insulin resistance. The incorporation of meals enriched with dairy protein in the habitual diet may result in the beneficial effects on cardiometabolic health. Nevertheless, future well-designed, controlled studies are needed to investigate the relative effects of both casein and whey protein on BP, vascular function, glucose homeostasis and inflammation.
Collapse
|