1
|
Şeref B, Yıldıran H. A new perspective on obesity: perception of fat taste and its relationship with obesity. Nutr Rev 2025; 83:e486-e492. [PMID: 38497969 DOI: 10.1093/nutrit/nuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Obesity, which results from a long-term positive energy balance, is affected by many factors, especially nutrition. The sensory properties of foods are associated with increased food intake through hedonic appetite. Taste perception, a component of flavor, is also responsible for increased consumption, through reward and hedonic mechanisms. Foods with high fat and energy content are among the foods that create the reward perception. The perception of fat taste, the primary taste that has recently entered the literature, may also be associated with increased food consumption and body weight. Therefore, in this review, the relationship between fat taste and obesity is examined, using the latest literature. RESULTS Different hypotheses have been proposed regarding the mechanism of the relationship between fat-taste perception and obesity, such as hedonic appetite, microbiota, decreased taste perception, and increased taste threshold level. In addition, some studies examining this relationship reported significant associations between the level of fat-taste perception and obesity, whereas others did not find a significant difference. CONCLUSION Considering the prevalence and contribution to obesity of Western-style nutrition, characterized by high amounts of fat and sugar consumption, elucidating this relationship may be an essential solution for preventing and treating obesity.
Collapse
Affiliation(s)
- Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Forestell CA. Does Maternal Diet Influence Future Infant Taste and Odor Preferences? A Critical Analysis. Annu Rev Nutr 2024; 44:313-337. [PMID: 38724030 DOI: 10.1146/annurev-nutr-121222-101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The dietary choices a mother makes during pregnancy offer her developing fetus its earliest exposure to the family's culinary preferences. This comprehensive literature review synthesizes five decades of research, which has provided valuable insights into fetal flavor learning. Converging evidence across various species supports the functionality of fetal chemoreceptive systems by the end of gestation, enabling the detection of an extensive array of chemosensory cues derived from the maternal diet and transmitted to the amniotic fluid. The fetus effectively encodes these flavors, resulting in their enhanced acceptance after birth. While existing studies predominantly concentrate on fetal learning about odor volatiles, limited evidence suggests a capacity for learning about gustatory (i.e., taste) properties. Examining whether these prenatal odor, taste, and flavor experiences translate into enduring shifts in dietary behaviors beyond weaning remains a crucial avenue for further investigation.
Collapse
|
3
|
Wang W, Sun B, Deng J, Ai N. Addressing flavor challenges in reduced-fat dairy products: A review from the perspective of flavor compounds and their improvement strategies. Food Res Int 2024; 188:114478. [PMID: 38823867 DOI: 10.1016/j.foodres.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
In recent years, the demand for reduced-fat dairy products (RFDPs) has increased rapidly as the health risks associated with high-fat diets have become increasingly apparent. Unfortunately, lowering the fat content in dairy products would reduce the flavor perception of fat. Fat-derived flavor compounds are the main contributor to appealing flavor among dairy products. However, the contribution of fat-derived flavor compounds remains underappreciated among the flavor improvement factors of RFDPs. Therefore, this review aims to summarize the flavor perception mechanism of fat and the profile of fat-derived flavor compounds in dairy products. Furthermore, the characteristics and influencing factors of flavor compound release are discussed. Based on the role of these flavor compounds, this review analyzed the current and potential flavor improvement strategies for RFDPs, including physical processing, lipolysis, microbial applications, and fat replacement. Overall, promoting the synthesis of milk fat characteristic flavor compounds in RFDPs and aligning the release properties of flavor compounds from the RFDPs with those of equivalent full-fat dairy products are two core strategies to improve the flavor of reduced-fat dairy products. In the future, better modulation of the behavior of flavor compounds by various methods is promising to replicate the flavor properties of fat in RFDPs and meet consumer sensory demands.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China.
| |
Collapse
|
4
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Thomas DC, Chablani D, Parekh S, Pichammal RC, Shanmugasundaram K, Pitchumani PK. Dysgeusia: A review in the context of COVID-19. J Am Dent Assoc 2021; 153:251-264. [PMID: 34799014 PMCID: PMC8595926 DOI: 10.1016/j.adaj.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Background Taste disorders in general, and dysgeusia in particular, are relatively common disorders that may be a sign of a more complex acute or chronic medical condition. During the COVID-19 pandemic, taste disorders have found their way into the realm of general as well as specialty dentistry, with significance in screening for patients who potentially may have the virus. Types of Studies Reviewed The authors searched electronic databases (PubMed, Embase, Web of Science, Google Scholar) for studies focused on dysgeusia, ageusia, and other taste disorders and their relationship to local and systemic causes. Results The authors found pertinent literature explaining the normal physiology of taste sensation, proposals for suggested new tastes, presence of gustatory receptors in remote tissues of the body, and etiology and pathophysiology of taste disorders, in addition to the valuable knowledge gained about gustatory disorders in the context of COVID-19. Along with olfactory disorders, taste disorders are one of the earliest suggestive symptoms of COVID-19 infection. Conclusions Gustatory disorders are the result of local or systemic etiology or both. Newer taste sensations, such as calcium and fat tastes, have been discovered, as well as taste receptors that are remote from the oropharyngeal area. Literature published during the COVID-19 pandemic to date reinforces the significance of early detection of potential patients with COVID-19 by means of screening for recent-onset taste disorders. Practical Implications Timely screening and identification of potential gustatory disorders are paramount for the dental care practitioner to aid in the early diagnosis of COVID-19 and other serious systemic disorders.
Collapse
|
7
|
Laffitte A, Gibbs M, Hernangomez de Alvaro C, Addison J, Lonsdale ZN, Giribaldi MG, Rossignoli A, Vennegeerts T, Winnig M, Klebansky B, Skiles J, Logan DW, McGrane SJ. Kokumi taste perception is functional in a model carnivore, the domestic cat (Felis catus). Sci Rep 2021; 11:10527. [PMID: 34006911 PMCID: PMC8131363 DOI: 10.1038/s41598-021-89558-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023] Open
Abstract
Kokumi taste is a well-accepted and characterised taste modality and is described as a sensation of enhancement of sweet, salty, and umami tastes. The Calcium Sensing Receptor (CaSR) has been designated as the putative kokumi taste receptor for humans, and a number of kokumi-active ligands of CaSR have been discovered recently with activity confirmed both in vivo and in vitro. Domestic cats (Felis catus) are obligate carnivores and accordingly, their diet is abundant in proteins, peptides, and amino acids. We hypothesised that CaSR is a key taste receptor for carnivores, due to its role in the detection of different peptides and amino acids in other species. Using in silico, in vitro and in vivo approaches, here we compare human CaSR to that of a model carnivore, the domestic cat. We found broad similarities in ligand specificity, but differences in taste sensitivity between the two species. Indeed our in vivo data shows that cats are sensitive to CaCl2 as a kokumi compound, but don't show this same activity with Glutathione, whereas for humans the reverse is true. Collectively, our data suggest that kokumi is an important taste modality for carnivores that drives the palatability of meat-derived compounds such as amino acids and peptides, and that there are differences in the perception of kokumi taste between carnivores and omnivores.
Collapse
Affiliation(s)
- A Laffitte
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M Gibbs
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - C Hernangomez de Alvaro
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - J Addison
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Z N Lonsdale
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - M G Giribaldi
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - A Rossignoli
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - T Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - M Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,AXXAM S.p.A., OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | - B Klebansky
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA
| | - J Skiles
- BioPredict, Inc., 4 Adele Avenue, Demarest, NJ, 07627, USA.,Valis Pharma, Ins., 545 Bonair Way, La Jolla, CA, 92037, USA
| | - D W Logan
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - S J McGrane
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK.
| |
Collapse
|
8
|
Tarragon E, Cases Ceano-Vivas P, Gonzalez-Ogazón P, Moreno JJ. Perceived Intensity and Palatability of Fatty Culinary Preparations is Associated with Individual Fatty Acid Detection Threshold and the Fatty Acid Profile of Oils Used as Ingredients. Chem Senses 2021; 46:6208271. [PMID: 33821988 DOI: 10.1093/chemse/bjab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The term oleogustus was recently proposed to describe a sixth basic taste that could guide preference for fatty foods and dishes to an extent. However, experimental data on food preference based on fatty acid (FA) content is scarce. Our aim was to examine the role of FA profile of oils and preparations as well as FA sensory thresholds on the palatability of salty and sweet culinary preparations representative of traditional Spanish Mediterranean cooking. In this study, we used three oils with similar texture and odor profile but different in their FA composition (saturated, monounsaturated, and polyunsaturated) and compared subjects in regard to their FA detection threshold and perceived pleasantness and intensity. Our results indicate that whereas saturated FAs cannot be detected at physiological concentrations, individuals can be categorized as tasters and nontasters, according to their sensory threshold to linoleic acid, which is negatively associated with perceived intensity (r = -0.393, P < 0.001) but positively with palatability (r = 0.246, P = 0.018). These differences may be due to a possible response to a fat taste. This sixth taste, or oleogustus. would allow establishing differences in taste intensity/palatability considering the FA profile of the culinary preparations. Given that tasters can detect linoleic and oleic acid at lower concentrations than nontasters, a greater amount of unsaturated FAs in culinary preparations could provoke an unpleasant experience. This finding could be relevant in the context of the culinary sector and to further our understanding of food preference and eating behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Faculty of Health Sciences, Universidad Internacional de La Rioja, Logroño, Spain
| | - Pere Cases Ceano-Vivas
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
| | - Pol Gonzalez-Ogazón
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.,CIBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Abstract
Taste is of five basic types, namely, sourness, saltiness, sweetness, bitterness and umami. In this review, we focus on a potentiometric taste sensor that we developed and fabricated using lipid polymer membranes. The taste sensor can measure the taste perceived by humans and is called an electronic tongue with global selectivity, which is the property to discriminate taste qualities and quantify them without discriminating each chemical substance. This property is similar to the gustatory system; hence, the taste sensor is a type of biomimetic device. In this paper, we first explain the sensing mechanism of the taste sensor, its application to beer evaluation and the measurement mechanism. Second, results recently obtained are introduced; i.e., the application of the senor to high-potency sweeteners and the improvement of the bitterness sensor are explained. Last, quantification of the bitterness-masking effect of high-potency sweeteners is explained using a regression analysis based on both the outputs of bitterness and sweetness sensors. The taste sensor provides a biomimetic method different from conventional analytical methods.
Collapse
Affiliation(s)
- Xiao Wu
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Yusuke Tahara
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Rui Yatabe
- Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University.,Institute for Advanced Study, Kyushu University
| |
Collapse
|