1
|
Butanda-Nuñez A, Rodríguez-Cortés O, Ramos-Martínez E, Cerbón MA, Escobedo G, Chavarría A. Silybin restores glucose uptake after tumour necrosis factor-alpha and lipopolysaccharide stimulation in 3T3-L1 adipocytes. Adipocyte 2024; 13:2374062. [PMID: 38953241 PMCID: PMC11221471 DOI: 10.1080/21623945.2024.2374062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.
Collapse
Affiliation(s)
- Alejandra Butanda-Nuñez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Espiridión Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marco Antonio Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, Hospital General de México “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Li M, Li L, Cheng X, Li L, Tu K. Hypoxia promotes the growth and metastasis of ovarian cancer cells by suppressing ferroptosis via upregulating SLC2A12. Exp Cell Res 2023; 433:113851. [PMID: 37940066 DOI: 10.1016/j.yexcr.2023.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Ovarian cancer has been a worldwide health burden for women and its progression is highly hypoxia-independent. Here, we investigated the exact mechanisms by which hypoxia contributes to the malignant progression of ovarian cancer. METHOD MTT, transwell, colony formation, and scratch wound healing assays were carried out for cellular functions. The underlying mechanism by which hypoxia functions was explored by RNA-seq, enrichment analysis, western blotting, qRT-PCR, flow cytometry, ChIP, luciferase reporter, and ELISA. Finally, animal experiments including the xenograft model and tumor metastasis model were constructed to validate the role of SLC2A12 in vivo. RESULTS Hypoxia treatment promoted the cell proliferation, mobility, and colony growth abilities of the two ovarian cancer cell lines HO-8910 and A2780. RNA-seq and enrichment analysis showed that SLC2A12 was hyper-expressed under hypoxia condition and it may be related to glutathione and lipid metabolism. Besides, the expression of SLC2A12 was negatively correlated with overall survival. Hypoxia suppressed ferroptosis by SLC2A12 because silencing SLC2A12 declined the cell viability of HO-8910 and A2780 cells under hypoxia conditions, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) breached that result and upregulated the expression of glutathione peroxidase 4 (GPX4). Moreover, hypoxia increased the expression of hypoxia inducible factor 1 A (HIF-1A), and the accumulated HIF-1A binds to hypoxia inducible factor 1 B (HIF1B) to form HIF-1 complex, then promoted the binding of hypoxic response elements (HRE) to SLC2A12 promoter by HIF-1/HRE signal. Subsequently, SLC2A12 regulated glutathione metabolism and in turn inhibited ferroptosis. The animal experiments indicated that silencing SLC2A12 could significantly inhibit tumor growth and metastasis in vivo. CONCLUSION Hypoxia promoted ovarian cancer progression by upregulating SLC2A12 and then regulating glutathione metabolism to inhibit ferroptosis.
Collapse
Affiliation(s)
- Mingmei Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Li Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Xiaoxiao Cheng
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Longyu Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| | - Kaijia Tu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants (Basel) 2022; 11:antiox11071281. [PMID: 35883772 PMCID: PMC9311506 DOI: 10.3390/antiox11071281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), Javanese ginger (Curcuma zanthorrhiza Roxb.), and Thai ginger (Alpinia galanga L.). This review focuses on two main classes of bioactive compounds: the gingerols (and their derivatives) and the curcuminoids. These compounds are known for their antioxidant activity against several maladies. We highlight the centrality of their antioxidant activities with notable biological activities, including anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, and anticancer effects. We also outline various strategies that have been applied to enhance these activities and make suggestions for research areas that require attention.
Collapse
|
5
|
Comparing 2 crystal structures and 12 AlphaFold2-predicted human membrane glucose transporters and their water-soluble glutamine, threonine and tyrosine variants. QRB DISCOVERY 2022. [PMID: 37529287 PMCID: PMC10392618 DOI: 10.1017/qrd.2022.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Membrane transporters including glucose transporters (GLUTs) are involved in cellular energy supplies, cell metabolism and other vital biological activities. They have also been implicated in cancer proliferation and metastasis, thus they represent an important target in combatting cancer. However, membrane transporters are very difficult to study due to their multispan transmembrane properties. The new computational tool, AlphaFold2, offers highly accurate predictions of three-dimensional protein structures. The glutamine, threonine and tyrosine (QTY) code provides a systematic method of rendering hydrophobic sequences into hydrophilic ones. Here, we present computational studies of native integral membrane GLUTs with 12 transmembrane helical segments determined by X-ray crystallography and CryoEM, comparing the AlphaFold2-predicted native structure to their water-soluble QTY variants predicted by AlphaFold2. In the native structures of the transmembrane helices, there are hydrophobic amino acids leucine (L), isoleucine (I), valine (V) and phenylalanine (F). Applying the QTY code, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, glutamine (Q), threonine (T) and tyrosine (Y) rendering them water-soluble. We present the superposed structures of native GLUTs and their water-soluble QTY variants. The superposed structures show remarkable similar residue mean square distance values between 0.47 and 3.6 Å (most about 1–2 Å) despite >44% transmembrane amino acid differences. We also show the differences of hydrophobicity patches between the native membrane transporters and their QTY variants. We explain the rationale why the membrane protein QTY variants become water-soluble. Our study provides insight into the differences between the hydrophobic helices and hydrophilic helices, and offers confirmation of the QTY method for studying multispan transmembrane proteins and other aggregated proteins through their water-soluble variants.
Collapse
|
6
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
7
|
Gil-Iturbe E, Félix-Soriano E, Sáinz N, Idoate-Bayón A, Castilla-Madrigal R, Moreno-Aliaga MJ, Lostao MP. Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Appl Physiol Nutr Metab 2020; 45:957-967. [PMID: 32176854 DOI: 10.1139/apnm-2019-0721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Adrián Idoate-Bayón
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
| | | | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
- Institute of Health Carlos III (ISCIII), Biomedical Research Networking Center in Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
| |
Collapse
|
8
|
Khedkar PH. Intermittent fasting-The new lifestyle? Acta Physiol (Oxf) 2020; 229:e13518. [PMID: 32485083 DOI: 10.1111/apha.13518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Pratik H. Khedkar
- Charité—Universitätsmedizin Berlin, corporate member of the Freie Universität BerlinHumboldt Universität zu Berlin and the Berlin Institute of HealthInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|
9
|
Auge I. Intracellular events in diabetes mellitus - Behind the scenes. Acta Physiol (Oxf) 2020; 229:e13468. [PMID: 32174000 DOI: 10.1111/apha.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Isabel Auge
- Klinik für Innere Medizin III AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
10
|
Groeneveld K. Adipose tissue-more than just fat. Acta Physiol (Oxf) 2020; 228:e13451. [PMID: 32017398 DOI: 10.1111/apha.13451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
|
11
|
Gil-Iturbe E, Solas M, Cuadrado-Tejedo M, García-Osta A, Escoté X, Ramírez MJ, Lostao MP. GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Mol Neurobiol 2019; 57:798-805. [PMID: 31473905 DOI: 10.1007/s12035-019-01743-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels. We previously demonstrated GLUT12 upregulation in the frontal cortex of aged subjects that was even higher in aged Alzheimer's disease (AD) patients. However, the cause and the mechanism through which this increase occurs are still unknown. Here, we aimed to investigate whether the upregulation of GLUT12 in AD is related with aging or Aβ deposition in comparison with GLUT1, GLUT3, and GLUT4. In the frontal cortex of two amyloidogenic mouse models (Tg2576 and APP/PS1) GLUT12 levels were increased. Contrary, expression of GLUT1 and GLUT3 were decreased, while GLUT4 did not change. In aged mice and the senescence-accelerated model SAMP8, GLUT12 and GLUT4 were upregulated in comparison with young animals. GLUT1 and GLUT3 did not show significant changes with age. The effect of β-amyloid (Aβ) deposition was also evaluated in Aβ peptide i.c.v. injected mice. In the hippocampus, GLUT12 expression increased whereas GLUT4 was not modified. Consistent with the results in the amyloidogenic models, GLUT3 and GLUT1 were downregulated. In summary, Aβ increases GLUT12 protein expression in the brain pointing out a central role of the transporter in AD pathology and opening new perspectives for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.,Nutrition Research Centre, University of Navarra, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mar Cuadrado-Tejedo
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Center for Applied Medical Research (CIMA), Division of Neurosciences, University of Navarra, Pamplona, Spain
| | - Xavier Escoté
- Nutrition Research Centre, University of Navarra, Pamplona, Spain.,Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, Reus, Spain
| | - María Javier Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain. .,Nutrition Research Centre, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
12
|
Astiz M, Oster H. GLUT12-A promising new target for the treatment of insulin resistance in obesity and type 2 diabetes. Acta Physiol (Oxf) 2019; 226:e13329. [PMID: 31179587 DOI: 10.1111/apha.13329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Mariana Astiz
- Institute of Neurobiology University of Lübeck Lübeck Germany
| | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|