1
|
Combs DJ, Moult EM, England SK, Cohen AE. Mapping uterine calcium dynamics during the ovulatory cycle in live mice. PNAS NEXUS 2024; 3:pgae446. [PMID: 39430221 PMCID: PMC11487293 DOI: 10.1093/pnasnexus/pgae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Uterine contraction patterns vary during the ovulatory cycle and throughout pregnancy, but prior measurements have produced limited and conflicting information on these patterns. We combined a virally delivered genetically encoded calcium reporter (GCaMP8m) and ultra-widefield imaging in live nonpregnant mice to characterize uterine calcium dynamics at organ scale throughout the estrous cycle. Prior to ovulation (proestrus and estrus), uterine excitations primarily initiated in a region near the oviduct, but after ovulation (metestrus and diestrus), excitations initiated at loci homogeneously distributed throughout the organ. The frequency of excitation events was lowest in proestrus and estrus, higher in metestrus, and highest in diestrus. These results establish a platform for mapping uterine activity and demonstrate that an anatomically localized trigger for uterine excitations depends on the estrous cycle phase.
Collapse
Affiliation(s)
- David J Combs
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
da Silva Frazão O, Brito MC, Macêdo CAF, Ribeiro TF, França JMG, Carvalho BAG, de Queiroz DB, Menezes PMN, de Almeida Ribeiro FP, Silva FS. (-)-Carvone Inhibits Oxytocin-induced Writhing Via Uterine Relaxation in Rodents. Reprod Sci 2024; 31:3039-3048. [PMID: 39090333 DOI: 10.1007/s43032-024-01663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
(-)-Carvone, a ketone monoterpene, is the main component of essential oils from several medicinal plants and has been reported to have anti-arthriric, anticonvulsive, antidiabetic, anti-inflammatory, anticancer, and immunomodulatory effects. Therefore, this study aimed to investigate the spasmolytic activity of (-)-carvone in rodent models. The isolated virgin rat uterus was mounted in an organ bath apparatus, and the relaxing effect of ( -)-carvone and its mechanism of action were evaluated in tonic contractions induced by carbachol, KCl, PGF2α, or oxytocin. The animal model of primary dysmenorrhea was replicated with the injection of estradiol benzoate in female mice for three consecutive days, followed by intraperitoneal administration of oxytocin. Non-clinical acute toxicity evaluation was also performed. (-)-Carvone potency and effectiveness were larger in carbachol (pEC50 = 5.41 ± 0.14 and Emax = 92.63 ± 1.90% at 10-3 M) or oxytocin (pEC50 = 4.29 ± 0.17 and Emax = 86.69 ± 1.56% at 10-3 M) contractions. The effect of ( -)-carvone was altered in the presence of 4-aminopyridine, glibenclamide, L-NAME, or methylene blue. Mice pre-treated with (-)-carvone at a dose of 100 mg/kg showed a significant reduction in the number of writhing after oxytocin administration. No toxicity was observed after oral administration of 1 g/kg ( -)-carvone. Taken together, we showed that (-)-carvone reduced writhing by a spasmolytic effect, probably through the participation of KV and KATP channels and the nitric oxide pathway.
Collapse
Affiliation(s)
- Olivaneide da Silva Frazão
- Postgraduate Program in Biosciences, Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Mariana Coelho Brito
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Cícero André Ferreira Macêdo
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
- Graduate Program in Biotechnology - State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Tiago Feitosa Ribeiro
- Northeast Biotechnology Network, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Jennifer Milene Gomes França
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Bárbara Artimis Gonçalves Carvalho
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | | | - Pedro Modesto Nascimento Menezes
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Fernanda Pires de Almeida Ribeiro
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Fabrício Souza Silva
- Postgraduate Program in Biosciences, Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil.
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil.
- Graduate Program in Biotechnology - State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil.
| |
Collapse
|
3
|
Roesler MW, Garrett AS, Trew ML, Gerneke D, Amirapu S, Cheng LK, Clark AR. Three-dimensional virtual histology of the rat uterus musculature using micro-computed tomography. J Anat 2024. [PMID: 39253979 DOI: 10.1111/joa.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Contractions of the uterus play an important role in menstruation and fertility, and contractile dysfunction can lead to chronic diseases such as endometriosis. However, the structure and function of the uterus are difficult to interrogate in humans, and thus animal studies are often employed to understand its function. In rats, anatomical studies of the uterus have typically been based on histological assessment, have been limited to small segments of the uterine structure, and have been time-consuming to reconstruct at the organ scale. This study used micro-computed tomography imaging to visualise the muscle structures in the entire non-pregnant rat uterus and assess its use for 3D virtual histology. An assessment of the rodent uterus is presented to (i) quantify muscle thickness variations along the horns, (ii) identify predominant fibre orientations of the muscles and (iii) demonstrate how the anatomy of the uterus can be mapped to 3D volumetric meshes via virtual histology. Micro-computed tomography measurements were validated against measurements from histological sections. The average thickness of the myometrium was found to be 0.33 ± 0.11 mm and 0.31 ± 0.09 mm in the left and right horns, respectively. The micro-computed tomography and histology thickness calculations were found to correlate strongly at different locations in the uterus: at the cervix, r = 0.87, and along the horn from the cervical end to the ovarian end, respectively, r = 0.77, r = 0.89 and r = 0.54, with p < 0.001 in every location. This study shows that micro-computed tomography can be used to quantify the musculature in the whole non-pregnant uterus and can be used for 3D virtual histology.
Collapse
Affiliation(s)
- Mathias W Roesler
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Amy S Garrett
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark L Trew
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Dane Gerneke
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Wray S, Taggart MJ. An update on pacemaking in the myometrium. J Physiol 2024. [PMID: 39073139 DOI: 10.1113/jp284753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/30/2024] Open
Abstract
Timely and efficient contractions of the smooth muscle of the uterus - the myometrium - are crucial to a successful pregnancy outcome. These episodic contractions are regulated by spontaneous action potentials changing cell and tissue electrical excitability. In this short review we will document and discuss current knowledge of these processes. Those seeking a conclusive account of myometrial pacemaking mechanisms, or indeed a definitive description of the anatomical site of uterine pacemaking, may be disappointed. Rather, after almost a century of investigation, and in spite of promising studies in the last decade or so, there remain many gaps in our knowledge. We review the progress that has been made using recent technologies including in vivo and ex vivo imaging and electrophysiology and computational modelling, taking evidence from studies of animal and human myometrium, with particular emphasis on what may occur in the latter. We have prioritized physiological studies that bring us closer to understanding function. From our analyses we suggest that in human myometrium there is no fixed pacemaking site, but rather mobile, initiation sites produce the connectivity for synchronizing electrical and contractile activity. We call for more studies and funding, as physiological understanding of pacemaking gives hope to being better able to treat clinical conditions such as preterm and dysfunctional labours.
Collapse
Affiliation(s)
- Susan Wray
- Women's & Children's Health, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, Merseyside, UK
| | - Michael J Taggart
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle, UK
| |
Collapse
|
5
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Cortes DRE, Stapleton MC, Schwab KE, West D, Coulson NW, O’Donnell MG, Christodoulou AG, Powers RW, Wu YL. Modeling normal mouse uterine contraction and placental perfusion with non-invasive longitudinal dynamic contrast enhancement MRI. PLoS One 2024; 19:e0303957. [PMID: 38950083 PMCID: PMC11216620 DOI: 10.1371/journal.pone.0303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. OBJECTIVE Our goal is to create a non-invasive preclinical imaging pipeline that can longitudinally probe murine placental health in vivo. We use advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. METHODOLOGY We implement dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and analysis pipeline to quantify uterine contraction and placental perfusion dynamics. We use optic flow and time-frequency analysis to quantify and characterize contraction-related placental motion. Our novel imaging and analysis pipeline uses subcutaneous administration of gadolinium for steepest slope-based perfusion evaluation, enabling non-invasive longitudinal monitoring. RESULTS We demonstrate that the placenta exhibits spatially asymmetric contractile motion that develops from E14.5 to E17.5. Additionally, we see that placental perfusion, perfusion delivery rate, and substrate delivery all increase from E14.5 to E17.5, with the High Perfusion Chamber (HPC) leading the placental changes that occur from E14.5 to E17.5. DISCUSSION We advance the placental perfusion chamber paradigm with a novel, physiologically based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and remodeling throughout gestation. CONCLUSION Our pipeline enables the non-invasive, longitudinal assessment of multiple placenta functions from a single imaging session. Our pipeline serves as a key toolbox for advancing research in mouse models of placental disease and disorder.
Collapse
Affiliation(s)
- Devin Raine Everaldo Cortes
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Margaret C. Stapleton
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kristina E. Schwab
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dalton West
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Noah W. Coulson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | - Anthony G. Christodoulou
- Department of Radiological Sciences and Engineering, University of California, Los Angeles, California, United States of America
| | - Robert W. Powers
- Magee-Womens Research Institute, Pittsburgh, PA, United States of America
| | - Yijen L. Wu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
7
|
Oreščanin Dušić Z, Kovačević S, Ristić N, Vojnović Milutinović D, Vidonja Uzelac T, Blagojević D, Djordjevic A, Brkljačić J. Effects of Liquid Fructose Supplementation and Chronic Unpredictable Stress on Uterine Contractile Activity in Nonpregnant Rats. Int J Mol Sci 2024; 25:6770. [PMID: 38928475 PMCID: PMC11204023 DOI: 10.3390/ijms25126770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Increased fructose consumption and chronic stress, the major characteristics of modern lifestyle, impact human health; however, the consequences of their combination on the uterus remain understudied. In this study, we investigated contractile activity, morphology, and intracellular activity of antioxidant enzymes in uteri from virgin Wistar rats subjected to liquid fructose supplementation and/or unpredictable stress over 9 weeks. Contractile activity and uterine response to oxytocin or adrenaline were examined ex vivo using isolated bath chambers. Fructose supplementation, irrespective of stress, affected uterine morphology by increasing endometrium while decreasing myometrium volume density, attenuated uterine response to increasing doses of oxytocin, and increased glutathione peroxidase activity. Stress, irrespective of fructose, attenuated dose-dependent adrenaline-induced uterine relaxation. Stress, when applied solely, decreased mitochondrial superoxide dismutase activity. In the combined treatment, irregular estrous cycles and both reduced response to oxytocin and to adrenaline (as a consequence of fructose consumption and exposure to stress), along with fructose-related alteration of uterine morphology, were detected. In conclusion, fructose and stress affect uterine contractile activity, irrespective of each other, by inducing completely distinct responses in isolated uteri. In the combined treatment, the effects of both factors were evident, suggesting that the combination exerts more detrimental effects on the uterus than each factor individually.
Collapse
Affiliation(s)
- Zorana Oreščanin Dušić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (Z.O.D.); (T.V.U.); (D.B.)
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (S.K.); (D.V.M.); (A.D.)
| | - Nataša Ristić
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia;
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (S.K.); (D.V.M.); (A.D.)
| | - Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (Z.O.D.); (T.V.U.); (D.B.)
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (Z.O.D.); (T.V.U.); (D.B.)
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (S.K.); (D.V.M.); (A.D.)
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia; (S.K.); (D.V.M.); (A.D.)
| |
Collapse
|
8
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Combs DJ, Moult EM, England SK, Cohen AE. Mapping uterine calcium dynamics during the ovulatory cycle in live mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578395. [PMID: 38370720 PMCID: PMC10871303 DOI: 10.1101/2024.02.02.578395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Uterine contraction patterns vary during the ovulatory cycle and throughout pregnancy but prior measurements have produced limited and conflicting information on these patterns. We combined a virally delivered genetically encoded calcium reporter (GCaMP8m) and ultra-widefield imaging in live nonpregnant mice to characterize uterine calcium dynamics at organ scale throughout the estrous cycle. Prior to ovulation (proestrus and estrus) uterine excitations primarily initiated in a region near the oviduct, but after ovulation (metestrus and diestrus), excitations initiated at loci homogeneously distributed throughout the organ. The frequency of excitation events was lowest in proestrus and estrus, higher in metestrus and highest in diestrus. These results establish a platform for mapping uterine activity, and show that the question of whether there is an anatomically localized trigger for uterine excitations depends on the estrous cycle phase.
Collapse
Affiliation(s)
- David J. Combs
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School
- Department of Chemistry and Chemical Biology, Harvard University
| | - Eric M. Moult
- Department of Chemistry and Chemical Biology, Harvard University
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University
- Department of Physics, Harvard University
| |
Collapse
|
10
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Schröder SK. Overview of the expression patterns and roles of Lipocalin 2 in the reproductive system. Front Endocrinol (Lausanne) 2024; 15:1365602. [PMID: 38645429 PMCID: PMC11026566 DOI: 10.3389/fendo.2024.1365602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its β-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
11
|
Hargett SE, Leslie EF, Chapa HO, Gaharwar AK. Animal models of postpartum hemorrhage. Lab Anim (NY) 2024; 53:93-106. [PMID: 38528231 DOI: 10.1038/s41684-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Postpartum hemorrhage (PPH)-heavy bleeding following childbirth-is a leading cause of morbidity and mortality worldwide. PPH can affect individuals regardless of risks factors and its incidence has been increasing in high-income countries including the United States. The high incidence and severity of this childbirth complication has propelled research into advanced treatments and alternative solutions for patients facing PPH; however, the development of novel treatments is limited by the absence of a common, well-established and well-validated animal model of PPH. A variety of animals have been used for in vivo studies of novel therapeutic materials; however, each of these animals differs considerably from the anatomy and physiology of a postpartum woman, and the methods used for achieving a postpartum hemorrhagic condition vary widely. Here we critically evaluate the various animal models of PPH presented in the literature and propose additional and alternative methods for modeling PPH in in vivo studies. We highlight how current animal models successfully or unsuccessfully mimic the anatomy and physiology of a postpartum woman and how this may impact treatment development. We aim to equip researchers with the necessary background information to select appropriate animal models for their research related to PPH solutions, while supporting the goals of refinement, reduction and replacement (3Rs) in preclinical animal studies.
Collapse
Affiliation(s)
- Sarah E Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Elaine F Leslie
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Hector O Chapa
- Medical Education, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Cortes DRE, Stapleton MC, Schwab KE, West D, Coulson NW, O'Donnell MG, Powers RW, Wu YL. Modeling Normal Mouse Uterine Contraction and Placental Perfusion with Non-invasive Longitudinal Dynamic Contrast Enhancement MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.577398. [PMID: 38352563 PMCID: PMC10862875 DOI: 10.1101/2024.01.31.577398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Non-invasive imaging that can longitudinally probe murine placental health in vivo are critical to understanding placental development throughout pregnancy. We developed advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. We developed a dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) pipeline combined with advanced image process methods to model uterine contraction and placental perfusion dynamics. Our novel imaging pipeline uses subcutaneous administration of gadolinium for steepest-slope based perfusion evaluation. This enables non-invasive longitudinal monitoring. Additionally, we advance the placental perfusion chamber paradigm with a novel physiologically-based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and continuing remodeling throughout gestation. Lastly, using optic flow to quantify placental motions arisen from uterine contractions in conjunction with time-frequency analysis, we demonstrated that the placenta exhibited asymmetric contractile motion.
Collapse
Affiliation(s)
- Devin Raine Everaldo Cortes
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
| | - Margaret C Stapleton
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
| | - Kristina E Schwab
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Dalton West
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | - Noah W Coulson
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Rangos Research Center Animal Imaging Core, Children's Hospital of Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Madani T, Jahangiri N, Moosavisadat SM, Mirzaagha E, Maroufizadeh S, Irani S, Ahmadi F. Association between Myometrial Thickness and Assisted Reproductive Technologies Outcomes: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:123-127. [PMID: 38368514 PMCID: PMC10875306 DOI: 10.22074/ijfs.2023.555447.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/19/2023] [Accepted: 05/07/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Myometrial thickness has been expected to be a prognosticator for lower uterine segment function. An abnormal function of the uterine muscle layer can cause common and important reproductive problems. This study aimed to evaluate the relationship between baseline myometrial thickness and assisted reproductive technologies (ART) outcomes. MATERIALS AND METHODS In this prospective cohort study, 453 infertile women undergoing ART cycles without any obvious uterine pathology, participated in this prospective cohort study from February 2013 to May 2015. In order to measure the myometrial thickness in the anterior and posterior of the uterine, trans-vaginal ultrasounds were conducted on days 2-4 of the cycle (menstrual phase) preceding ovarian stimulation and the day of human chorionic gonadotropin (hCG) injection. We defined three groups based on the baseline myometrial thickness in the anterior and posterior, including (A) <25 mm, (B) 25-29.9 mm and (C) ≥30 mm. Ovarian stimulation, oocyte retrieval and luteal phase support were performed in accordance with the standard long protocol. Two weeks after embryo transfer, the patients underwent a pregnancy test by checking their serum β-hCG levels. The primary outcome measure was clinical pregnancy rate. Secondary outcome measures were, implantation rate, abortion rate and live birth rate. RESULTS The clinical pregnancy (P=0.013) and implantation (P=0.003) rates were significantly lower in group A than in two other groups. Although the live birth rate was lower in group A than two other groups, this decrease was not statistically significant (P=0.058). CONCLUSION The findings may be a way for clinicians to draw focus on providing therapeutic strategies and a specific supportive care for women with a baseline myometrial thickness <25 mm in order to improve the reproductive outcome of in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI).
Collapse
Affiliation(s)
- Tahereh Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Nadia Jahangiri
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh Masoumeh Moosavisadat
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Asali Charity Hospital, Lorestan University of Medical Science, Lorestan, Iran
| | - Elaheh Mirzaagha
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Saman Maroufizadeh
- Department of Biostatistics and Epidemiology, School of Health, Guilan University of Medical Sciences, Gilan, Iran
| | - Shohreh Irani
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Firoozeh Ahmadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Hur YM, Yoo JY, You YA, Park S, Kim SM, Lee G, Kim YJ. A genome-wide and candidate gene association study of preterm birth in Korean pregnant women. PLoS One 2023; 18:e0294948. [PMID: 38019868 PMCID: PMC10686439 DOI: 10.1371/journal.pone.0294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Preterm birth (PTB) refers to delivery before 37 weeks of gestation. Premature neonates exhibit higher neonatal morbidity and mortality rates than term neonates; therefore, it is crucial to predict and prevent PTB. Advancements enable the prediction and prevention of PTB using genetic approaches, especially by investigating its correlation with single nucleotide polymorphisms (SNPs). We aimed to identify impactive and relevant SNPs for the prediction of PTB via whole-genome sequencing analyses of the blood of 31 pregnant women with PTB (n = 13) and term birth (n = 18) who visited the Ewha Womans University Mokdong Hospital from November 1, 2018 to February 29, 2020. A genome-wide association study was performed using PLINK 1.9 software and 256 SNPs were selected and traced through protein-protein interactions. Moreover, a validation study by genotyping was performed on 60 other participants (preterm birth, n = 30; term birth, n = 30) for 25 SNPs related to ion channel binding and receptor complex pathways. Odds ratios were calculated using additive, dominant, and recessive genetic models. The risk of PTB in women with the AG allele of rs2485579 (gene name: RYR2) was significantly 4.82-fold increase, and the risk of PTB in women with the AG allele of rs7903957 (gene name: TBX5) was significantly 0.25-fold reduce. Our results suggest that rs2485579 (in RYR2) can be a genetic marker of PTB, which is considered through the association with abnormal cytoplasmic Ca2+ concentration and dysfunctional uterine contraction due to differences of RYR2 in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jae Young Yoo
- Division of Biobank, Korea National Institute of Health (KNIH), Korea Disease Control and Prevention Agency (KDCA), Cheongju, Korea
| | - Young Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| |
Collapse
|
15
|
Shynlova O, Nadeem L, Lye S. Progesterone control of myometrial contractility. J Steroid Biochem Mol Biol 2023; 234:106397. [PMID: 37683774 DOI: 10.1016/j.jsbmb.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
During pregnancy, the primary function of the uterus is to be quiescent and not contract, which allows the growing fetus to develop and mature. A uterine muscle layer, myometrium, is composed of smooth muscle cells (SMCs). Before the onset of labor contractions, the uterine SMCs experience a complex biochemical and molecular transformation involving the expression of contraction-associated proteins. Labor is initiated when genes in SMCs are activated in response to a combination of hormonal, inflammatory and mechanical signals. In this review, we provide an overview of molecular mechanisms regulating the process of parturition in humans, focusing on the hormonal control of the myometrium, particularly the steroid hormone progesterone. The primary reason for discussing the regulation of myometrial contractility by progesterone is the importance of the clinical problem of preterm birth. It is thought that the hormonal mechanisms regulating premature uterine contractions represent an untimely triggering of the normal events occurring during term parturition. Yet, our knowledge of the complex and redundant hormonal pathways controlling uterine contractile activity leading to delivery of the neonate remains incomplete. Finally, we introduce recent animal studies using a novel class of drugs, Selective Progesterone Receptor Modulators, targeting progesterone signaling to prevent premature myometrial contractions.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada
| |
Collapse
|
16
|
Zangeneh FZ, Hantoushzadeh S. The physiological basis with uterine myometrium contractions from electro-mechanical/hormonal myofibril function to the term and preterm labor. Heliyon 2023; 9:e22259. [PMID: 38034762 PMCID: PMC10687101 DOI: 10.1016/j.heliyon.2023.e22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Most labor-related problems can be attributed to the uterine myometrium muscle, as this irritable tissue must suppress its irritability potential during pregnancy. Unfortunately, fewer studies have investigated the causes of this lack of suppression in preterm labor. Methods We conducted a scoping narrative review using three online databases (PubMed, Scopus, and Science Direct). Results The review focused on ion channel functions in the myometrium, including sodium channels [Na K-ATPase, Na-activated K channels (Slo2), voltage-gated (SCN) Na+, Na+ leaky channels, nonselective (NALCN) channels], potassium channels [KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), intermediate (KCNN4) conductance], and calcium channels [L-Type and T-type Ca2+ channels, calcium-activated chloride channels (CaCC)], as well as hyperpolarization-activated cation channels. These channels' functions are associated with hormonal effects such as oxytocin, estrogen/progesterone, and local prostaglandins. Conclusion Electromechanical/hormonal activity and environmental autocrine factors can serve as the primary practical basis for premature uterine contractions in term/preterm labor. Our findings highlight the significance of.1.the amplitude rate of hyperpolarization and the frequency of contractions,2.changes in the estrogen/progesterone ratio,3.Prostaglandins E/F involvement in initiating potential spikes and the increase of intracytoplasmic Ca2+.This narrative study highlights the range of hyperpolarization and the frequency of myometrium contractions as crucial factors. The synchronized complex progress of estrogen to progesterone ratio and prostaglandins plays a significant role in initiating potential spikes and increasing intracytoplasmic Ca2+, which further influences the contraction process during labor. Insights into myometrium physiology gained from this study may pave the way for much-needed new treatments to reduce problems associated with normal and preterm labor.
Collapse
Affiliation(s)
- Farideh Zafari Zangeneh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Hantoushzadeh
- Department of Fetal-Maternal Medicine, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
17
|
Salami SA, Oreagba FO, Salahdeen HM, Olatunji-Bello II, Murtala BA. Vitamin C supplementation modulates crude oil contaminated water induced gravid uterine impaired contractile mechanism and foetal outcomes in Wistar rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:548-555. [PMID: 37300330 DOI: 10.1515/jcim-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Crude oil is a common environmental contaminant that impacts the reproductive functions of women. Understanding the contractile mechanism of the gravid uterus and how it impacts fetal outcomes during crude oil-contaminated water (CCW) exposure is still evolving. This study investigates the effect of vitamin C supplementation during the ingestion of CCW from Bayelsa, Nigeria, on the contractile mechanism of the gravid uterus and fetal outcomes. METHODS Fifteen nulliparous pregnant rats were randomly divided into 3 groups of 5 rats each and treated with normal saline (control), CCW (2.5 mL), and CCW + vitamin C (10 mg/kg bwt), respectively. Treatments were via oral gavage from gestation days 1-19. Gas chromatography-mass spectrometry of CCW, uterine oxidative biomarkers, and in vitro contractile activity of excised uterine tissue to acetylcholine, oxytocin, magnesium, and potassium were determined. Furthermore, uterine responses to acetylcholine after incubation with nifedipine, indomethacin, and N-nitro-L-arginine methyl ester were also recorded using the Ugo Basile data capsule acquisition system. Fetal weights, morphometric indices, and anogenital distance were also determined. RESULTS Acetylcholine, oxytocin, magnesium, diclofenac, and indomethacin-mediated contractile mechanisms were significantly impaired with CCW exposure; however, vitamin C supplementation significantly attenuated the impaired uterine contractile activity. Maternal serum estrogen, weight, uterine superoxide dismutase, fetal weight, and anogenital distance were significantly reduced in the CCW group compared to the vitamin C supplemented group. CONCLUSIONS Ingestion of CCW impaired the uterine contractile mechanism, fetal developmental indices, oxidative biomarkers, and estrogen. Vitamin C supplementation modulated these by elevating uterine antioxidant enzymes and reducing free radicals.
Collapse
Affiliation(s)
| | - Fatai O Oreagba
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | - Hussein M Salahdeen
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| | | | - Babatunde A Murtala
- Department of Physiology, Lagos State University College of Medicine, Lagos, Nigeria
| |
Collapse
|
18
|
Pich K, Rajewska J, Kamińska K, Tchurzyk M, Szlaga A, Sambak P, Błasiak A, Grzesiak M, Rak A. Effect of Vitamin D 3 on Chemerin and Adiponectin Levels in Uterus of Polycystic Ovary Syndrome Rats. Cells 2023; 12:2026. [PMID: 37626836 PMCID: PMC10453942 DOI: 10.3390/cells12162026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disorder with disrupted uterus structure and function. A positive effect of vitamin D3 (VD3) in female reproduction was observed. Chemerin (RARRES2) and adiponectin (ADIPOQ) are the main adipokines whose levels are altered in PCOS patients. Therefore, the aim of this study was to investigate the impact of VD3 supplementation on RARRES2 and ADIPOQ levels in the uterus of PCOS rats. METHODS We analyzed the plasma levels and uterine transcript and protein expression of RARRES2 and ADIPOQ and their receptors (CCRL2, CMKLR1, GPR1, and ADIPOR1 and ADIPOR2, respectively) in rats with letrozole-induced PCOS. RESULTS In control animals, VD3 did not change plasma levels of both adipokines, while in PCOS rats supplemented with VD3, they returned to control levels. The expression of RARRES2 and all investigated receptors increased in the uterus of VD3-treated rats; however, the levels of Rarres2 and Gpr1 genes remained unchanged. VD3 supplementation decreased RARRES2, CMKLR1, and GPR1 but increased CCRL2 level to the control value. In the uterus of VD3-treated rats, the transcript and protein levels of ADIPOQ and both receptors ADIPOR1 increased. At the same time, VD3 supplementation induced an increase in Adipoq, Adipor1, and Adipor2 gene expression and restored protein levels to control level values. CONCLUSIONS our findings indicate a new mechanism of VD3 action in the uterine physiology of PCOS rats.
Collapse
Affiliation(s)
- Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
| | - Jesika Rajewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
| | - Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Marcelina Tchurzyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Agata Szlaga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Patryk Sambak
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Anna Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
| |
Collapse
|
19
|
Means SA, Roesler MW, Garrett AS, Cheng L, Clark AR. Steady-state approximations for Hodgkin-Huxley cell models: Reduction of order for uterine smooth muscle cell model. PLoS Comput Biol 2023; 19:e1011359. [PMID: 37647265 PMCID: PMC10468033 DOI: 10.1371/journal.pcbi.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Multi-scale mathematical bioelectrical models of organs such as the uterus, stomach or heart present challenges both for accuracy and computational tractability. These multi-scale models are typically founded on models of biological cells derived from the classic Hodkgin-Huxley (HH) formalism. Ion channel behaviour is tracked with dynamical variables representing activation or inactivation of currents that relax to steady-state dependencies on cellular membrane voltage. Timescales for relaxation may be orders of magnitude faster than companion ion channel variables or phenomena of physiological interest for the entire cell (such as bursting sequences of action potentials) or the entire organ (such as electromechanical coordination). Exploiting these time scales with steady-state approximations for relatively fast-acting systems is a well-known but often overlooked approach as evidenced by recent published models. We thus investigate feasibility of an extensive reduction of order for an HH-type cell model with steady-state approximations to the full dynamical activation and inactivation ion channel variables. Our effort utilises a published comprehensive uterine smooth muscle cell model that encompasses 19 ordinary differential equations and 105 formulations overall. The numerous ion channel submodels in the published model exhibit relaxation times ranging from order 10-1 to 105 milliseconds. Substitution of the faster dynamic variables with steady-state formulations demonstrates both an accurate reproduction of the full model and substantial improvements in time-to-solve, for test cases performed. Our demonstration here of an effective and relatively straightforward reduction method underlines the particular importance of considering time scales for model simplification before embarking on large-scale computations or parameter sweeps. As a preliminary complement to more intensive reduction of order methods such as parameter sensitivity and bifurcation analysis, this approach can rapidly and accurately improve computational tractability for challenging multi-scale organ modelling efforts.
Collapse
Affiliation(s)
- Shawn A. Means
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mathias W. Roesler
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Amy S. Garrett
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Deng W, Wang X, Chen L, Wen B, Chen Y, Ji K, Liu H. Proteomic and miRNA Profiles of Exosomes Derived from Myometrial Tissue in Laboring Women. Int J Mol Sci 2022; 23:ijms232012343. [PMID: 36293200 PMCID: PMC9603981 DOI: 10.3390/ijms232012343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Myometrial contraction is essential for successful delivery. Recent studies have highlighted the vital roles of tissue-derived exosomes in disease diagnostic, prognostic, and therapeutic applications; however, the characteristics of uterine myometrium-derived exosomes are unclear. Here, we successfully isolated exosomes from myometrial tissues, human myometrial smooth muscle cells (HMSMCs), and human umbilical vein endothelial cells (HUVECs), then performed quantitative liquid chromatography-tandem mass spectrometry and miRNA sequencing to investigate the cargo of the exosomes. Fifty-two proteins and five miRNAs were differentially expressed (DE) in term non-labor and term labor myometrium-derived exosomes. Among them, seven proteins (SERPINE1, THBS1, MGAT1, VIM, FGB, FGG, and VWF) were differentially expressed both in the myometrial exosomes and tissues, three miRNAs (miR-363-3p, miR-203a-3p, and miR-205-5p) target 13 DE genes. The top three miRNA derived from HMSMCs (miR-125b-1-3p, miR-337-5p, and miR-503-5p) and HUVECs (miR-663a, miR-4463, and miR-3622a-5p) were identified. Two proteins, GJA1 and SLC39A14, exist in female blood exosomes and are highly expressed in HMSMCs exosomes, are also upregulated in the laboring myometrium, which verified increased in laboring blood samples, might be novel potential biomarkers for myometrial activation. The proteomic and miRNA profile of exosomes derived from laboring myometrium revealed some molecules in the exosomes that affect the intercellular communication and the function of the myometrium.
Collapse
Affiliation(s)
- Wenfeng Deng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (K.J.); (H.L.)
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (K.J.); (H.L.)
| |
Collapse
|
21
|
Garrett AS, Means SA, Roesler MW, Miller KJW, Cheng LK, Clark AR. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review. Front Physiol 2022; 13:1017649. [PMID: 36277190 PMCID: PMC9585314 DOI: 10.3389/fphys.2022.1017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Qu M, Lu P, Bellve K, Lifshitz LM, ZhuGe R. Mode Switch of Ca 2 + Oscillation-Mediated Uterine Peristalsis and Associated Embryo Implantation Impairments in Mouse Adenomyosis. Front Physiol 2021; 12:744745. [PMID: 34803733 PMCID: PMC8599363 DOI: 10.3389/fphys.2021.744745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
23
|
de Sousa ÍA, de Meneses GMS, Cardoso JVM, Lopes PQ, de Sousa JA, Cavalcanti SMPG, da Silva Cavalcanti PM, Filho FC. Inhibitory effect of Pyr6 (an Orai channel blocker) on agonist-induced contractions in rat uterus. J Obstet Gynaecol Res 2021; 47:4306-4318. [PMID: 34571573 DOI: 10.1111/jog.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
AIM Both human and rat myometrium express stromal interaction molecule (STIM) and Orai/ transient receptor potential canonical (TRPC) proteins, which are components of plasma membrane Ca2+ store-operated channels. There are reports that these proteins mediate agonist-induced Ca2+ influx in cultured myometrial cells. In this study, we aimed to determine the effects of Pyr6, an Orai channel blocker, on different agonist-induced contractions in isolated segments of rat uterus. MAIN FINDINGS In Ca2+ -free Tyrode's solution, Pyr6 (3 μM) promoted a reduction in both the magnitude and frequency of Ca2+ (1 mM)-induced uterine contractions after the addition of carbachol (CCh, 100 μM), but not after the addition of oxytocin (OT, 150 nM). In Ca2+ (0.18 mM)-Tyrode's solution, Pyr6 completely relaxed uterine contractions induced by both CCh and cloprostenol (300 nM), but not those induced by either KCI (40-80 mM) or OT. The addition of Pyr6 abolished the oscillatory uterine contractions induced by Ca2+ after the addition of cyclopiazonic acid (CPA, 10 μM). When pre-incubated (5 min), Pyr6 reduced the magnitude of both CCh-induced phasic and tonic contractions. The addition of Pyr2 (3 μM), an Orai and TRPC channel blocker, abolished uterine contractions induced by CCh or OT. CONCLUSION Considering Pyr6 as an Orai channel blocker and its inhibitory effect on uterine contractions induced by CCh, CPA, and cloprostenol, we suggest that Orai channels are required for the maintenance of contractions induced by these agonists in rat uterus.
Collapse
Affiliation(s)
- Ícaro Araújo de Sousa
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| | | | - José Victor Miranda Cardoso
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| | - Pablo Queiroz Lopes
- Pharmacological Sciences Department, Health Sciences Center, Federal University of Paraíba, Cidade Universitária - Campus I. Castelo Branco, João Pessoa, Brazil
| | - Joubert Aires de Sousa
- Physiotherapy Department, Health Sciences Center, University of the State of Piauí, Teresina, Brazil
| | | | - Paulo Marques da Silva Cavalcanti
- Pharmacological Sciences Department, Health Sciences Center, Federal University of Paraíba, Cidade Universitária - Campus I. Castelo Branco, João Pessoa, Brazil
| | - Francisco Chagas Filho
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| |
Collapse
|
24
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|