1
|
Mebrahtu A, Smith IC, Liu S, Abusara Z, Leonard TR, Joumaa V, Herzog W. Reconsidering assumptions in the analysis of muscle fibre cross-sectional area. J Exp Biol 2024; 227:jeb248187. [PMID: 39319442 DOI: 10.1242/jeb.248187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Cross-sectional area (CSA) is a fundamental variable in characterizing muscle mechanical properties. Typically, the CSA of a single muscle fibre is assessed by measuring either one or two diameters, and assuming the cross-section is either circular or elliptical in shape. However, fibre cross-sections have irregular shapes. The accuracy and precision of CSAs determined using circular and elliptical shape assumptions are unclear for mammalian skinned muscle fibres. Second harmonic generation imaging of skinned rabbit soleus fibres revealed that the circular assumption overstated real CSA by 5.3±25.9% whereas the elliptical assumption overstated real CSA by 2.8±6.9%. A preferred rotational alignment can bias the circular assumption, as real CSA was overstated by 22.1±24.8% when using the larger fibre diameter and understated by 11.4±13% when using the smaller fibre diameter. With 73% lower variable error and reduced bias, the elliptical assumption is superior to the circular assumption when assessing the CSA of skinned mammalian fibres.
Collapse
Affiliation(s)
- Abel Mebrahtu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Ian C Smith
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada, K1Y 4E9
| | - Shuyue Liu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Timothy R Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
2
|
Meyer GA, Ferey JLA, Sanford JA, Fitzgerald LS, Greenberg AE, Svensson K, Greenberg MJ, Schenk S. Insights into posttranslational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP. J Appl Physiol (1985) 2024; 136:1559-1567. [PMID: 38722753 PMCID: PMC11365544 DOI: 10.1152/japplphysiol.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jeremie L A Ferey
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - James A Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Liam S Fitzgerald
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, San Diego, California, United States
- Medical Scientist Training Program, School of Medicine, University of California San Diego, San Diego, California, United States
| | - Akiva E Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, San Diego, California, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, San Diego, California, United States
| |
Collapse
|
3
|
López-Dávila AJ, Lomonte B, Gutiérrez JM. Alterations of the skeletal muscle contractile apparatus in necrosis induced by myotoxic snake venom phospholipases A 2: a mini-review. J Muscle Res Cell Motil 2024; 45:69-77. [PMID: 38063951 PMCID: PMC11096208 DOI: 10.1007/s10974-023-09662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/07/2023] [Indexed: 05/16/2024]
Abstract
Skeletal muscle necrosis is a common clinical manifestation of snakebite envenoming. The predominant myotoxic components in snake venoms are catalytically-active phospholipases A2 (PLA2) and PLA2 homologs devoid of enzymatic activity, which have been used as models to investigate various aspects of muscle degeneration. This review addresses the changes in the contractile apparatus of skeletal muscle induced by these toxins. Myotoxic components initially disrupt the integrity of sarcolemma, generating a calcium influx that causes various degenerative events, including hypercontraction of myofilaments. There is removal of specific sarcomeric proteins, owing to the hydrolytic action of muscle calpains and proteinases from invading inflammatory cells, causing an initial redistribution followed by widespread degradation of myofibrillar material. Experiments using skinned cardiomyocytes and skeletal muscle fibers show that these myotoxins do not directly affect the contractile apparatus, implying that hypercontraction is due to cytosolic calcium increase secondary to sarcolemmal damage. Such drastic hypercontraction may contribute to muscle damage by generating mechanical stress and further sarcolemmal damage.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
4
|
Meyer GA, Ferey JLA, Sanford JA, Fitzgerald LS, Greenberg AE, Svensson K, Greenberg MJ, Schenk S. Insights into post-translational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582179. [PMID: 38463996 PMCID: PMC10925228 DOI: 10.1101/2024.02.27.582179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca 2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca 2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice. New & Noteworthy The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both p300 and CBP in skeletal muscle remains unknown. Here we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca 2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca 2+ and bypasses membrane depolarization.
Collapse
|
5
|
Blemker SS, Brooks SV, Esser KA, Saul KR. Fiber-type traps: revisiting common misconceptions about skeletal muscle fiber types with application to motor control, biomechanics, physiology, and biology. J Appl Physiol (1985) 2024; 136:109-121. [PMID: 37994416 PMCID: PMC11212792 DOI: 10.1152/japplphysiol.00337.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Skeletal muscle is a highly complex tissue that is studied by scientists from a wide spectrum of disciplines, including motor control, biomechanics, exercise science, physiology, cell biology, genetics, regenerative medicine, orthopedics, and engineering. Although this diversity in perspectives has led to many important discoveries, historically, there has been limited overlap in discussions across fields. This has led to misconceptions and oversimplifications about muscle biology that can create confusion and potentially slow scientific progress across fields. The purpose of this synthesis paper is to bring together research perspectives across multiple muscle fields to identify common assumptions related to muscle fiber type that are points of concern to clarify. These assumptions include 1) classification by myosin isoform and fiber oxidative capacity is equivalent, 2) fiber cross-sectional area (CSA) is a surrogate marker for myosin isoform or oxidative capacity, and 3) muscle force-generating capacity can be inferred from myosin isoform. We address these three fiber-type traps and provide some context for how these misunderstandings can and do impact experimental design, computational modeling, and interpretations of findings, from the perspective of a range of fields. We stress the dangers of generalizing findings about "muscle fiber types" among muscles or across species or sex, and we note the importance for precise use of common terminology across the muscle fields.
Collapse
Affiliation(s)
- Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Katherine R Saul
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
6
|
López-Dávila AJ, Weber N, Nayak A, Fritz L, Moustafa KR, Gand LV, Wehry E, Kraft T, Thum T, Fernández J, Gutiérrez JM, Lomonte B. Skeletal muscle fiber hypercontraction induced by Bothrops asper myotoxic phospholipases A 2 ex vivo does not involve a direct action on the contractile apparatus. Pflugers Arch 2023; 475:1193-1202. [PMID: 37474774 PMCID: PMC10499977 DOI: 10.1007/s00424-023-02840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Leon Fritz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kian Rami Moustafa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Luis Vincens Gand
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Enke Wehry
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
7
|
Hubbard EF, Mashouri P, Pyle WG, Power GA. The effect of gradual ovarian failure on dynamic muscle function and the role of high-intensity interval training on mitigating impairments. Am J Physiol Cell Physiol 2023; 325:C1031-C1045. [PMID: 37661923 DOI: 10.1152/ajpcell.00318.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Skeletal muscle contractile function is impaired in menopause and exercise may mitigate this decline. We used the 4-vinylcyclohexene diepoxide (VCD) model of menopause to investigate the effects of gradual ovarian failure on skeletal muscle contractile function and whether high-intensity interval training (HIIT) can mitigate impairments. Sexually mature female CD-1 mice were assigned to one of three groups: control sedentary (n = 5), VCD-sedentary (n = 5), or VCD-training (n = 5). Following ovarian failure (a 4-mo process), the VCD-training group underwent 8 wk of uphill HIIT. Mice were euthanized 8 wk after ovarian failure, representing late menopause. Single fibers from the soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected, chemically permeabilized, and mechanically tested. Single muscle fibers were maximally activated (pCa 4.5), then isotonic load clamps were performed to evaluate force-velocity-power relationships. Absolute force and peak power were 31.0% and 32.2% lower in VCD-sedentary fibers compared with control fibers, respectively, in both SOL and EDL muscles. Despite reductions in absolute force, there were no concomitant increases in contractile velocity to preserve power production. HIIT attenuated force loss in the VCD-training group such that peak force was not different from the control group across muscles and was partially effective at mitigating power loss (21.7% higher peak power in VCD-training compared with VCD-sedentary) but only in fast-type SOL fibers. These findings indicate that ovarian failure impairs dynamic contractile function-likely through a combination of lower force-generating capacity and slower shortening velocity-and that HIIT may be insufficient to completely counteract the deleterious effects of menopause at the cellular level.NEW & NOTEWORTHY We used the VCD model of menopause to investigate the effects of gradual ovarian failure on skeletal muscle contractile function and whether high-intensity interval training (HIIT) can mitigate impairments. Our findings indicate that ovarian failure impairs dynamic contractile function-likely through a combination of lower force-generating capacity and slower shortening velocity-and that HIIT may be insufficient to completely counteract the deleterious effects of menopause at the cellular level.
Collapse
Affiliation(s)
- Emma F Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - W Glen Pyle
- IMPART Network, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Bothe TL, Pilz N, Patzak A, Opatz OS. Bridging the gap: The dichotomy between measurement and reality in physiological research. Acta Physiol (Oxf) 2023; 238:e14015. [PMID: 37354109 DOI: 10.1111/apha.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Affiliation(s)
- T L Bothe
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - N Pilz
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - A Patzak
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - O S Opatz
- Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Grosicki GJ, Zepeda CS, Sundberg CW. Single muscle fibre contractile function with ageing. J Physiol 2022; 600:5005-5026. [PMID: 36268622 PMCID: PMC9722590 DOI: 10.1113/jp282298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023] Open
Abstract
Ageing is accompanied by decrements in the size and function of skeletal muscle that compromise independence and quality of life in older adults. Developing therapeutic strategies to ameliorate these changes is critical but requires an in-depth mechanistic understanding of the underlying physiology. Over the past 25 years, studies on the contractile mechanics of isolated human muscle fibres have been instrumental in facilitating our understanding of the cellular mechanisms contributing to age-related skeletal muscle dysfunction. The purpose of this review is to characterize the changes that occur in single muscle fibre size and contractile function with ageing and identify key areas for future research. Surprisingly, most studies observe that the size and contractile function of fibres expressing slow myosin heavy chain (MHC) I are well-preserved with ageing. In contrast, there are profound age-related decrements in the size and contractile function of the fibres expressing the MHC II isoforms. Notably, lifelong aerobic exercise training is unable to prevent most of the decrements in fast fibre contractile function, which have been implicated as a primary mechanism for the age-related loss in whole-muscle power output. These findings reveal a critical need to investigate the effectiveness of other nutritional, pharmaceutical or exercise strategies, such as lifelong resistance training, to preserve fast fibre size and function with ageing. Moreover, integrating single fibre contractile mechanics with the molecular profile and other parameters important to contractile function (e.g. phosphorylation of regulatory proteins, innervation status, mitochondrial function, fibre economy) is necessary to comprehensively understand the ageing skeletal muscle phenotype.
Collapse
Affiliation(s)
- Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, Georgia, USA
| | - Carlos S. Zepeda
- Exercise and Rehabilitation Sciences Graduate Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Christopher W. Sundberg
- Exercise and Rehabilitation Sciences Graduate Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Hubbard EF, Hinks A, Mashouri P, Power GA. Influence of 4 weeks of downhill running on calcium sensitivity of rat single muscle fibers. Physiol Rep 2022; 10:e15450. [PMID: 36222183 PMCID: PMC9554763 DOI: 10.14814/phy2.15450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
Improved Ca2+ sensitivity has been suggested as a mechanism behind enhancements in muscle mechanical function following eccentric training. However, little is known regarding the effects of eccentric training on single muscle fiber Ca2+ sensitivity. Adult male Sprague-Dawley rats (sacrificial age ~18 weeks; mass = 400.1 ± 34.8 g) were assigned to an eccentric training (n = 5) or sedentary control group (n = 6). Eccentric training consisted of 4 weeks of weighted downhill running 3×/week at a 15° decline and 16 m/min for 35 min per day in 5-min bouts. After sacrifice, vastus intermedius single muscle fibers were dissected, chemically permeabilized, and stored until testing. Fibers (n = 63) were isolated, and standard Ca2+ sensitivity, force, rate of force redevelopment (ktr ), and active instantaneous stiffness tests were performed using [Ca2+ ] ranging from 7.0 to 4.5. Following all mechanical testing, fiber type was determined using SDS-PAGE. There was no difference in pCa50 (i.e., [Ca2+ ] needed to elicit half of maximal force) between groups or between fiber types. However, when comparing normalized force across pCa values, fibers from the control group produced greater forces than fibers from the trained group at lower Ca2+ concentrations (p < 0.05), and this was most evident for Type I fibers (p = 0.002). Type II fibers produced faster (p < 0.001) ktr than Type I fibers, but there were no differences in absolute force, normalized force, or other measures of mechanical function between fibers from the trained and control groups. These findings indicate that eccentric training does not appear to improve single muscle fiber Ca2+ sensitivity.
Collapse
Affiliation(s)
- Emma F. Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
11
|
Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging. Eur J Appl Physiol 2022; 122:1383-1395. [DOI: 10.1007/s00421-022-04924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
|
12
|
Lewalle A, Campbell KS, Campbell SG, Milburn GN, Niederer SA. Functional and structural differences between skinned and intact muscle preparations. J Gen Physiol 2022; 154:e202112990. [PMID: 35045156 PMCID: PMC8929306 DOI: 10.1085/jgp.202112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.
Collapse
Affiliation(s)
- Alex Lewalle
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Stuart G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Gregory N. Milburn
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Steven A. Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
13
|
Ronaldson SM, Stephenson DG, Head SI. Calcium and strontium contractile activation properties of single skinned skeletal muscle fibres from elderly women 66-90 years of age. J Muscle Res Cell Motil 2022; 43:173-183. [PMID: 35987933 PMCID: PMC9708809 DOI: 10.1007/s10974-022-09628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/31/2022]
Abstract
The single freshly skinned muscle fibre technique was used to investigate Ca2+- and Sr2+-activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+-activation properties: slow-twitch (type I), fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (< 10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+-activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from young adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous oscillatory contractions (SPOC) (or force oscillations) occurring at submaximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in women's mobility with aging.
Collapse
Affiliation(s)
| | - D. George Stephenson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086 Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, 2751 Australia ,Chair of Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751 Australia
| |
Collapse
|
14
|
Wang MJ, Zhu YC, Shi J. A crucial physiological role of Piezo1 channel in differentiation rather than proliferation during myogenesis. Acta Physiol (Oxf) 2021; 233:e13728. [PMID: 34492170 DOI: 10.1111/apha.13728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Yi Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Jian Shi
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
- Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds Leeds UK
| |
Collapse
|