1
|
Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles of regulatory T cells in Alzheimer's disease. Cell Immunol 2023; 393-394:104778. [PMID: 37907046 DOI: 10.1016/j.cellimm.2023.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-β (Aβ) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. Int J Mol Sci 2023; 24:14434. [PMID: 37833882 PMCID: PMC10572745 DOI: 10.3390/ijms241914434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Celiac disease (CeD) is a T-cell-mediated immune disease, in which gluten-derived peptides activate lamina propria effector CD4+ T cells. While this effector T cell subset produces proinflammatory cytokines, which cause substantial tissue injury in vivo, additional subsets of T cells exist with regulatory functions (Treg). These subsets include CD4+ type 1 regulatory T cells (Tr1) and CD4+ CD25+ T cells expressing the master transcription factor forkhead box P3 (Foxp3) that may have important implications in disease pathogenesis. In this review, we provide an overview of the current knowledge about the effects of immunomodulating cytokines on CeD inflammatory status. Moreover, we outline the main Treg cell populations found in CeD and how their regulatory activity could be influenced by the intestinal microenvironment. Finally, we discuss the Treg therapeutic potential for the development of alternative strategies to the gluten-free diet (GFD).
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| |
Collapse
|
3
|
Talipova D, Smagulova A, Poddighe D. Toll-like Receptors and Celiac Disease. Int J Mol Sci 2022; 24:265. [PMID: 36613709 PMCID: PMC9820541 DOI: 10.3390/ijms24010265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder triggered by dietary gluten intake in some genetically predisposed individuals; however, the additional non-HLA-related genetic factors implicated in CD immunopathogenesis are not well-defined. The role of the innate immune system in autoimmunity has emerged in the last few years. Genetic polymorphisms of some pattern-recognition receptors, including toll-like receptors (TLRs), have been associated with several autoimmune disorders. In this review, we summarize and discuss the evidence from basic research and clinical studies as regards the potential role of TLRs in CD immunopathogenesis. The evidence supporting the role of TLRs in CD immunopathogenesis is limited, especially in terms of basic research. However, differences in the expression and activation of TLRs between active CD patients from one side, and controls and treated CD patients from the other side, have been described in some clinical studies. Therefore, TLRs may be part of those non-HLA-related genetic factors implicated in CD etiopathogenesis, considering their potential role in the interaction between the host immune system and some environmental factors (including viral infections and gut microbiota), which are included in the list of candidate agents potentially contributing to the determination of CD risk in genetically predisposed individuals exposed to dietary gluten intake. Further basic research and clinical studies focused on TLRs in the context of CD and other gluten-related disorders are needed.
Collapse
Affiliation(s)
- Diana Talipova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Aiganym Smagulova
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Reduced frequency of circulating regulatory T cells and their related immunosuppressive mediators in treated celiac patients. Mol Biol Rep 2022; 49:8527-8535. [PMID: 35723802 DOI: 10.1007/s11033-022-07674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) have an important role in the control of the immune responses. This study aimed to compare the frequency of peripheral blood (PB) CD4+ CD25+ FoxP3+ Treg cells and PB and duodenal expression levels of pro- and anti-inflammatory mediators in treated celiac disease (CD) patients and healthy controls. METHODS AND RESULTS Duodenal biopsy specimens and PB samples were collected from 60 treated CD patients and 60 controls. Flow cytometry analysis was conducted on peripheral blood mononuclear cell (PBMC) specimens and relative PB and duodenal mRNA expression levels of CD25, forkhead box P3 (Foxp3), interleukin (IL)-10 and granzyme B (GrzB) were evaluated using quantitative real-time PCR. The levels of serum IL-10 and IL-6 were tested with sandwich enzyme-linked immunosorbent assay kits. p values < 0.05 were considered significant. Flow cytometry analysis showed a significant decrease in the number of Tregs in CD patients' PBMC specimens (p = 0.012). CD25 and Foxp3 PB mRNA expressions were also lower in CD patients without reaching the significance level (p > 0.05). IL-10 PB mRNA and protein expression did not differ between the groups (p > 0.05), and GrzB PB expression was significantly reduced in CD patients (p = 0.001). In duodenal specimens of CD patients, while significantly increased CD25, Foxp3 mRNA expression (p = 0.01 and 0.001, respectively) and decreased IL-10 mRNA expression (p = 0.02) were observed, GrzB mRNA expression did not differ between groups (p > 0.05). Moreover, a high serum level of IL-6 was observed in CD patients (p = 0.001). CONCLUSIONS Despite following the gluten free diet, there may still be residual inflammation in the intestine of CD patients. Accordingly, finding a therapeutic approach based on strengthening the function of Treg cells in CD might be helpful.
Collapse
|
5
|
Zhang YY, Feng BS, Zhang H, Yang G, Jin QR, Luo XQ, Ma N, Huang QM, Yang LT, Zhang GH, Liu DB, Yu Y, Liu ZG, Zheng PY, Yang PC. Modulating oxidative stress counteracts specific antigen-induced regulatory T-cell apoptosis in mice. Eur J Immunol 2021; 51:1748-1761. [PMID: 33811758 DOI: 10.1002/eji.202049112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023]
Abstract
Treg are known to have a central role in orchestrating immune responses, but less is known about the destiny of Treg after being activated by specific Ags. This study aimed to investigate the role of superoxide dismutase, an active molecule in the regulation of oxidative stress in the body, in the prevention of Treg apoptosis induced by specific Ags. Ag-specific Tregs were isolated from the DO11.10 mouse intestine. A food allergy mouse model was developed with ovalbumin as the specific Ag and here, we observed that exposure to specific Ag induced Treg apoptosis through converting the precursor of TGF-β to its mature form inside the Tregs. Oxidative stress was induced in Tregs upon exposure to specific Ags, in which Smad3 bound the latency-associated peptide to induce its degradation, converting the TGF-β precursor to its mature form, TGF-β. Suppressing oxidative stress in Tregs alleviated the specific Ag-induced Treg apoptosis in in vitro experiments and suppressed experimental food allergy by preventing the specific Ag-induced Treg apoptosis in the intestine. In conclusion, exposure to specific Ags induces Treg apoptosis and it can be prevented by upregulating superoxide dismutase or suppressing reactive oxidative species in Tregs.
Collapse
Affiliation(s)
- Yuan-Yi Zhang
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, P. R. China.,Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, P. R. China
| | - Bai-Sui Feng
- Department of Gastroenterology, Second Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Huanping Zhang
- Department of Allergy Medicine, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, P. R. China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, P. R. China
| | - Qiao-Ruo Jin
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, P. R. China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, P. R. China
| | - Na Ma
- Department of Gastroenterology, Second Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Qin-Miao Huang
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Li-Teng Yang
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Guo-Hao Zhang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, P. R. China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, P. R. China
| | - Yong Yu
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, P. R. China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, P. R. China.,Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, P. R. China
| |
Collapse
|
6
|
Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction. Biochem Biophys Res Commun 2018; 506:668-673. [PMID: 30454704 DOI: 10.1016/j.bbrc.2018.10.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy is characterized by the deterioration of the myocardial function. Emerging evidences have indicated that leukocytic toll-like receptor 2 (TLR2) played an important role in the development of diabetic cardiomyopathy. Our study aimed to investigate whether TLR2 knockout (KO) exerted a cardioprotective effect in vivo. The establishment of diabetes model was set up in mice via intraperitoneal injection of streptozotocin (STZ). Results demonstrated that blocking of TLR2 significantly suppressed the enhanced left ventricular end-diastolic dimension (LVEDD), left ventricular end systolic diameter (LVESD) and the reduced the heart rate in diabetic cardiomyopathy mice. The decreased resting cell length, PS, TPS and + dL/dt while increased TR90 and - dL/dt caused by diabetic cardiomyopathy were remarkably inhibited by TLR2 KO. Besides that, the alleviated ΔFFI (360/380), decreased SERCA2a and p-NFATc3 expressions, extended Ca2+ decay time and elevated Calcineurin A induced by diabetic cardiomyopathy were vastly repressed by TLR2 KO in cardiocytes. Moreover, TLR2 gene silence could ameliorate oxidative stress-induced apoptosis, evidences were the up-regulated superoxide generation and Bax/Bcl-2 expression while restrained GSH/GSSG ratio caused by diabetic cardiomyopathy were tremendously repressed in TLR2 KO mice. Furthermore, blocking of TLR2 remarkably attenuated the augmented fibrosis areas of heart tissues in mice with diabetic cardiomyopathy. The result of the enhanced α-SMA and collagenⅠ caused by diabetic cardiomyopathy were suppressed in heart tissues of TLR2 KO mice further validate it. All in all, our study demonstrated that diabetes-induced cardiac dysfunction could be attenuated by TLR2 KO.
Collapse
|