1
|
Liewhiran C, Punginsang M, Inyawilert K, Siriwalai M, Wisitsoraat A. Selectivity toward H2S against various gaseous disease markers in exhaled breath of flame-produced CuOx-loaded SnO2 nanosensors. SENSORS AND ACTUATORS B: CHEMICAL 2025; 424:136856. [DOI: 10.1016/j.snb.2024.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Mei H, Peng J, Wang T, Zhou T, Zhao H, Zhang T, Yang Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. NANO-MICRO LETTERS 2024; 16:269. [PMID: 39141168 PMCID: PMC11324646 DOI: 10.1007/s40820-024-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Jingyi Peng
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Zhang X, Zhang X, Yang Y. Update of gut gas metabolism in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:339-349. [PMID: 39031456 DOI: 10.1080/17474124.2024.2383635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the intestine. The intestinal microbiota is essential in the occurrence and development of UC. Gut gases are produced via bacterial fermentation or chemical interactions, which can reveal altered intestinal microbiota, abnormal cellular metabolism, and inflammation responses. Recent studies have demonstrated that UC patients have an altered gut gas metabolism. AREAS COVERED In this review, we integrate gut gas metabolism advances in UC and discuss intestinal gases' clinical values as new biomarkers or therapeutic targets for UC, providing the foundation for further research. Literature regarding gut gas metabolism and its significance in UC from inception to October 2023 was searched on the MEDLINE database and references from relevant articles were investigated. EXPERT OPINION Depending on their type, concentration, and volume, gut gases can induce or alleviate clinical symptoms and regulate intestinal motility, inflammatory responses, immune function, and oxidative stress, significantly impacting UC. Gut gases may function as new biomarkers and provide potential diagnostic or therapeutic targets for UC.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Medical School, Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuli Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
7
|
Laito S, Valkonen N, Laaksonen O, Kalliomäki M, Tuure T, Linderborg KM. Effect of oat or rice flour on pulse-induced gastrointestinal symptoms and breath hydrogen in subjects sensitive to pulses and controls - a randomised cross-over trial with two parallel groups. Br J Nutr 2022; 128:2181-2192. [PMID: 35086570 PMCID: PMC9661369 DOI: 10.1017/s0007114522000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
Pulses are healthy and sustainable but induce gut symptoms in people with a sensitive gut. Oats, on the contrary, have no fermentable oligo- di-, monosaccharides and polyols compounds and are known for the health effects of their fibres. This 4-day cross-over trial investigated the effects of oat and rice flour ingested with pulses on gut symptoms and exhaled gases (4th day only) in subjects with a sensitive gut or IBS (n 21) and controls (n 21). The sensitive group perceived more symptoms after both meals than controls (P = 0·001, P = 0·001). Frequency, intensity or quality of the symptoms did not differ between meals during the first 3 d in either group. More breath hydrogen was produced after an oat than rice containing meal in both groups (AUC, P = 0·001, P = 0·001). No between-group difference was seen in breath gases. During day 4, both sensitive and control groups perceived more symptoms after the oat flour meal (P = 0·001, P = 0·0104, respectively) as mainly mild flatulence. No difference in moderate or severe symptoms was detected. Increased hydrogen production correlated to a higher amount of perceived flatulence after the oat flour meal in both the sensitive and the control groups (P = 0·042, P = 0·003, respectively). In summary, ingestion of oat flour with pulses increases breath hydrogen levels compared with rice flour, but gastrointestinal symptoms of subjects sensitive to pulses were not explained by breath hydrogen levels. Additionally, consumer mindsets towards pulse consumption and pulse-related gut symptoms were assessed by an online survey, which implied that perceived gut symptoms hinder the use of pulses in sensitive subjects.
Collapse
Affiliation(s)
- Salla Laito
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland
| | | | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland
| | - Marko Kalliomäki
- Department of Pediatrics, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | | | - Kaisa M. Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland
| |
Collapse
|
8
|
Li ZT, Wang JW, Hu XH, Zhu L, Jiang Y, Gao MJ, Zhan XB. The effects of high-fat foods on gut microbiota and small molecule intestinal gases: release kinetics and distribution in vitro colon model. Heliyon 2022; 8:e10911. [PMID: 36247129 PMCID: PMC9561747 DOI: 10.1016/j.heliyon.2022.e10911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Profiling intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. High-fat foods (HFF) can alter the gut microbiota and its metabolites, posing a potential health risk. However, little is known about the effects of HFF on intestinal gas distribution. Therefore, in this study, we used human fecal microorganisms as strains, an in vitro three-chamber colon model and an intestinal gas array sensor as tools. We performed in vitro fermentation using HFF as the fermentation substrate to reveal the effects of HFF on the kinetics of intestinal gas production and changes in the gut microbiota and its metabolites. We found that dietary fatty acids stimulated the production of H2S and volatile organic compounds in the colon, promoted Firmicutes abundance, and decreased Bacteroidetes abundance. These results highlight the potential role of HFF in altering the gut microbiota and intestinal gas, which can lead to health hazards. High-fat foods (HFF) can alter the gut microbiota and its metabolites. HFF stimulate H2S and volatile organic compound production in the colon. Specific intestinal gases can be used as disease markers.
Collapse
Affiliation(s)
- Zhi-tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia-wei Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing-hai Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Min-jie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China,Corresponding author.
| | - Xiao-bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China,Corresponding author.
| |
Collapse
|
9
|
Xia Q, Zhao Q, Zhu H, Cao Y, Yang K, Sun P, Cai M. Physicochemical characteristics of Ganoderma lucidum oligosaccharide and its regulatory effect on intestinal flora in vitro fermentation. Food Chem X 2022; 15:100421. [PMID: 36211736 PMCID: PMC9532794 DOI: 10.1016/j.fochx.2022.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/01/2022] Open
Abstract
G. lucidum oligosaccharide was obtained by ultrasonic enzymatic hydrolysis and Sephadex G25. GLO was a chain-like homogeneous oligosaccharide with a molecular weight of 1280 Da. GLO could not be easily degraded by digestion in the mouth, gastric and small intestine. GLO could be utilized and had good regulatory effects on intestinal flora.
This study explored the structure characteristics of an oligosaccharide from Ganoderma lucidum (GLO) and its regulatory functions on intestinal flora fermentation in vitro. GLO was extracted by ultrasonic-assisted enzymatic hydrolysis, and purified with a dextran gel column. Digestion properties and intestinal flora regulation effects of GLO were investigated by both simulation models. Results showed that GLO was a chain-like homogeneous oligosaccharide, composed of → 6)-β-d-Glcp-(1→, →4)-α-d-Glcp-(1→, β-d-Glcp-(1→, α-d-Manp-(1 →. Its structure could not be easily degraded by digestion in the mouth, gastric and small intestine. Accordingly, they can be utilized by the intestinal flora in large intestine. By evaluating the gas, short chain fatty acids, pH and flora abundance in vitro fermentation, it indicated that GLO had good regulatory effects on intestinal flora. Accordingly, GLO might be a potential prebiotic applied in functional foods.
Collapse
|
10
|
Jimenez AC, Heist CA, Navaei M, Yeago C, Roy K. Longitudinal two-dimensional gas chromatography mass spectrometry as a non-destructive at-line monitoring tool during cell manufacturing identifies volatile features correlative to cell product quality. Cytotherapy 2022; 24:1136-1147. [PMID: 35882596 DOI: 10.1016/j.jcyt.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/14/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Cell therapies have emerged as a potentially transformative therapeutic modality in many chronic and incurable diseases. However, inherent donor and patient variabilities, complex manufacturing processes, lack of well-defined critical quality attributes and unavailability of in-line or at-line process or product analytical technologies result in significant variance in cell product quality and clinical trial outcomes. New approaches for overcoming these challenges are needed to realize the potential of cell therapies. METHODS Here the authors developed an untargeted two-dimensional gas chromatography mass spectrometry (GC×GC-MS)-based method for non-destructive longitudinal at-line monitoring of cells during manufacturing to discover correlative volatile biomarkers of cell proliferation and end product potency. RESULTS Specifically, using mesenchymal stromal cell cultures as a model, the authors demonstrated that GC×GC-MS of the culture medium headspace can effectively discriminate between media types and tissue sources. Headspace GC×GC-MS identified specific volatile compounds that showed a strong correlation with cell expansion and product functionality quantified by indoleamine-2,3-dioxygenase and T-cell proliferation/suppression assays. Additionally, the authors discovered increases in specific volatile metabolites when cells were treated with inflammatory stimulation. CONCLUSIONS This work establishes GC×GC-MS as an at-line process analytical technology for cell manufacturing that could improve culture robustness and may be used to non-destructively monitor culture state and correlate with end product function.
Collapse
Affiliation(s)
- Angela C Jimenez
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M), Georgia Institute of Technology, Atlanta, Georgia, USA; National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA
| | - Christopher A Heist
- Georgia Tech Research Institute (GTRI), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Milad Navaei
- Georgia Tech Research Institute (GTRI), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M), Georgia Institute of Technology, Atlanta, Georgia, USA; National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M), Georgia Institute of Technology, Atlanta, Georgia, USA; National Science Foundation Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Atlanta, Georgia, USA.
| |
Collapse
|
11
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
12
|
John TM, Shrestha NK, Procop GW, Grove D, Leal SM, Jacob CN, Butler R, Dweik R. Diagnosis of Clostridioides difficile infection by analysis of volatile organic compounds in breath, plasma, and stool: A cross-sectional proof-of-concept study. PLoS One 2021; 16:e0256259. [PMID: 34407120 PMCID: PMC8372889 DOI: 10.1371/journal.pone.0256259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is an important infectious cause of antibiotic-associated diarrhea, with significant morbidity and mortality. Current diagnostic algorithms are based on identifying toxin by enzyme immunoassay (EIA) and toxin gene by real-time polymerase chain reaction (PCR) in patients with diarrhea. EIA’s sensitivity is poor, and PCR, although highly sensitive and specific, cannot differentiate infection from colonization. An ideal test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection, and assess prognosis and recurrence. The study of volatile organic compounds (VOCs) has the potential to be an ideal diagnostic test. The presence of VOCs accounts for the characteristic odor of stool in CDI but their presence in breath and plasma has not been studied yet. A cross-sectional proof-of-concept study analyzing VOCs using selected ion flow tube mass spectrometry (SIFT-MS) was done on breath, stool, and plasma of patients with clinical features and positive PCR for CDI (cases) and compared with patients with clinical features but a negative PCR (control). Our results showed that VOC patterns in breath, stool, and plasma, had good accuracy [area under the receiver operating characteristic curve (ROC) 93%, 86%, and 91%, respectively] for identifying patients with CDI.
Collapse
Affiliation(s)
- Teny M. John
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Nabin K. Shrestha
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Gary W. Procop
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - David Grove
- Department of Pulmonary Medicine and Critical Care, Respiratory Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Sixto M. Leal
- Department of Laboratory Medicine and Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Laboratory Medicine and Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ceena N. Jacob
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Robert Butler
- Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Raed Dweik
- Department of Pulmonary Medicine and Critical Care, Respiratory Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
Weber M, Gierschner P, Klassen A, Kasbohm E, Schubert JK, Miekisch W, Reinhold P, Köhler H. Detection of Paratuberculosis in Dairy Herds by Analyzing the Scent of Feces, Alveolar Gas, and Stable Air. Molecules 2021; 26:2854. [PMID: 34064882 PMCID: PMC8150929 DOI: 10.3390/molecules26102854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.
Collapse
Affiliation(s)
- Michael Weber
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburgerstr. 96a, 07743 Jena, Germany; (M.W.); (A.K.); (P.R.)
| | - Peter Gierschner
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Department of Anesthesia and Intensive Care, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany; (P.G.); (J.K.S.); (W.M.)
- Albutec GmbH, Schillingallee 68, 18057 Rostock, Germany
| | - Anne Klassen
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburgerstr. 96a, 07743 Jena, Germany; (M.W.); (A.K.); (P.R.)
- Thüringer Tierseuchenkasse, Rindergesundheitsdienst (Thuringian Animal Health Fund, Cattle Health Service), Victor-Goerttler-Straße 4, 07745 Jena, Germany
| | - Elisa Kasbohm
- Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17489 Greifswald, Germany;
| | - Jochen K. Schubert
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Department of Anesthesia and Intensive Care, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany; (P.G.); (J.K.S.); (W.M.)
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Department of Anesthesia and Intensive Care, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany; (P.G.); (J.K.S.); (W.M.)
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburgerstr. 96a, 07743 Jena, Germany; (M.W.); (A.K.); (P.R.)
| | - Heike Köhler
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburgerstr. 96a, 07743 Jena, Germany; (M.W.); (A.K.); (P.R.)
- National Reference Laboratory for Paratuberculosis, Naumburger Straße 96a, 07743 Jena, Germany
| |
Collapse
|
14
|
Hu S, Png E, Gowans M, Ong DEH, de Sessions PF, Song J, Nagarajan N. Ectopic gut colonization: a metagenomic study of the oral and gut microbiome in Crohn's disease. Gut Pathog 2021; 13:13. [PMID: 33632307 PMCID: PMC7905567 DOI: 10.1186/s13099-021-00409-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study aims to characterize, the gut and oral microbiome in Asian subjects with Crohn's disease (CD) using whole genome shotgun sequencing, thereby allowing for strain-level comparison. METHODS A case-control study with age, sex and ethnicity matched healthy controls was conducted. CD subjects were limited to well-controlled patients without oral manifestations. Fecal and saliva samples were collected for characterization of gut and oral microbiome respectively. Microbial DNA were extracted, libraries prepared and sequenced reads profiled. Taxonomic diversity, taxonomic association, strain typing and microbial gene pathway analyses were conducted. RESULTS The study recruited 25 subjects with CD and 25 healthy controls. The oral microbe Streptococcus salivarius was found to be enriched and of concordant strains in the gut and oral microbiome of Crohn's disease subjects. This was more likely in CD subjects with higher Crohn's Disease Activity Index (184.3 ± 2.9 vs 67.1 ± 82.5, p = 0.012) and active disease status (Diarrhoea/abdominal pain/blood-in-stool/fever and fatigue) (p = 0.016). Gut species found to be significantly depleted in CD compared to control (Relative abundance: Median[Range]) include: Faecalibacterium prausnitzii (0.03[0.00-4.56] vs 13.69[5.32-18.71], p = 0.010), Roseburia inulinivorans (0.00[0.00-0.03] vs 0.21[0.01-0.53], p = 0.010) and Alistipes senegalensis (0.00[0.00-0.00] vs 0.00[0.00-0.02], p = 0.029). While Clostridium nexile (0.00[0.00-0.12] vs 0.00[0.00-0.00], p = 0.038) and Ruminococcus gnavus (0.43[0.02-0.33] vs 0.00[0.00-0.13], p = 0.043) were found to be enriched. C. nexile enrichment was not found in CD subjects of European descent. Microbial arginine (Linear-discriminant-analysis: 3.162, p = 0.001) and isoprene (Linear-discriminant-analysis: 3.058, p < 0.001) pathways were found at a higher relative abundance level in gut microbiome of Crohn's disease. CONCLUSIONS There was evidence of ectopic gut colonization by oral bacteria, especially during the active phase of CD. Previously studied gut microbial differences were detected, in addition to novel associations which could have resulted from geographical/ethnic differences to subjects of European descent. Differences in microbial pathways provide possible targets for microbiome modification.
Collapse
Affiliation(s)
- Shijia Hu
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore, 119085, Singapore.
| | - Eileen Png
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Michelle Gowans
- Division of Gastroenterology & Hepatology, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - David E H Ong
- Division of Gastroenterology & Hepatology, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Jie Song
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Chen T, Liu T, Li T, Zhao H, Chen Q. Exhaled breath analysis in disease detection. Clin Chim Acta 2021; 515:61-72. [PMID: 33387463 DOI: 10.1016/j.cca.2020.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Investigating the use of exhaled breath analysis to diagnose and monitor different diseases has attracted much interest in recent years. This review introduces conventionally used methods and some emerging technologies aimed at breath analysis and their relevance to lung disease, airway inflammation, gastrointestinal disorders, metabolic disorders and kidney diseases. One section correlates breath components and specific diseases, whereas the other discusses some unique ideas, strategies, and devices to analyze exhaled breath for the diagnosis of some common diseases. This review aims to briefly introduce the potential application of exhaled breath analysis for the diagnosis and screening of various diseases, thereby providing a new avenue for the detection of non-invasive diseases.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
16
|
Ho SSC, Keenan JI, Day AS. Parent Perspectives of Diagnostic and Monitoring Tests Undertaken by Their Child with Inflammatory Bowel Disease. Pediatr Gastroenterol Hepatol Nutr 2021; 24:19-29. [PMID: 33505890 PMCID: PMC7813576 DOI: 10.5223/pghn.2021.24.1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess parent perspectives of the current and potential future tests for their child with inflammatory bowel disease (IBD). METHODS New Zealand parents of a child with IBD were invited to complete an anonymous online survey. Experiences relating to their child's blood or faecal tests, medical imaging (abdominal ultrasound [US], abdominal computerised tomography [CT] and magnetic resonance enterography) and colonoscopy were collected. Perceived attitudes to potential future testing of urine, saliva, and breath, were sought. RESULTS Twenty-eight parents, 93% female completed the survey, and 86% were aged between 35 and 54 years. Baseline information was provided by parents for 27 of 28 children, 70.3% had Crohn's disease with a mean disease duration of 2.67 years. Blood tests were the most requested and completed tests, while CT was the least ordered and most refused test. Colonoscopy was rated as the least comfortable and generated the most worry. Explanation of test significantly improved parent's levels of understanding when their child had blood, faecal, imaging (US) or colonoscopy tests. Providing an explanation, test invasiveness and the impact of the blood results may have on their child's treatment significantly improved parents' comfort levels. However, explanation of colonoscopy generated a significant parental concerns. Saliva, urine and blood tests were chosen as the most preferred disease monitoring tests. CONCLUSION Parents preferred any tests less invasive than colonoscopy for monitoring their child's IBD. Although providing explanation of their child's tests enhanced parents' understanding, it can also affect parents' levels of concern and comfort.
Collapse
Affiliation(s)
- Shaun Siong Chung Ho
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | | | - Andrew Stewart Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
17
|
Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. CLINICAL MASS SPECTROMETRY 2020; 16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
18
|
Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol 2019; 16:733-747. [PMID: 31520080 DOI: 10.1038/s41575-019-0193-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. Indeed, different tools for measuring these intestinal gases have been developed, including newly developed gas-sensing capsule technology. Gases can, according to their type, concentration and volume, induce or relieve abdominal symptoms, and might also have physiological, pathogenic and therapeutic effects. Thus, profiling and modulating intestinal gases could be powerful tools for disease prevention and/or therapy. As the interactions between the microbiota, chemical constituents and fermentative substrates of the gut are principally influenced by dietary intake, altering the diet, which, in turn, changes gas profiles, is the main therapeutic approach for gastrointestinal disorders. An improved understanding of the complex interactions within the intestines that generate gases will enhance our ability to prevent, diagnose, treat and monitor many gastrointestinal disorders.
Collapse
|
19
|
Bannaga AS, Farrugia A, Arasaradnam RP. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: a systematic review. Expert Rev Gastroenterol Hepatol 2019; 13:1113-1122. [PMID: 31657950 DOI: 10.1080/17474124.2019.1685873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a common disease with significant morbidity. Noninvasive diagnostic techniques are lacking in IBD. Currently, fecal calprotectin is a sensitive marker of gut inflammation however is not specific to Crohn's disease (CD) or ulcerative colitis (UC) alone. Volatile organic compounds (VOCs) were shown to have potential in IBD diagnosis.Areas covered: This systematic review aimed to examine the next-generation diagnosis of IBD in adults and children using VOCs. An in-depth literature-based search of current clinical studies of VOCs in the diagnosis of IBD was undertaken. Accuracy of IBD detection varied according to the technologies applied. Breath VOCs studies were pooled giving an overall sensitivity of 85% (95%CI: 79-89%) and specificity of 79% (95%CI 73-84%) whilst pooled fecal VOCs studies revealed a sensitivity of 87% (95%CI 77-93%) and specificity of 91% (95%CI 82-96%). Studies were limited by the variance of techniques applied in VOCs detection and the absence of well-designed longitudinal studies.Expert opinion: VOCs can be consistently and effectively detected in urine, breath, and stool in IBD patients. The sensitivity of breath VOCs in detecting IBD was comparable to feces. However, optimal VOCs detection methodology and biological sampling still need to be standardized..
Collapse
Affiliation(s)
- Ayman S Bannaga
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Alexia Farrugia
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Ramesh P Arasaradnam
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Faculty of Health Science, University of Coventry, Coventry, UK.,Division of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Dorman DC. Use of Nasal Pathology in the Derivation of Inhalation Toxicity Values for Hydrogen Sulfide. Toxicol Pathol 2019; 47:1043-1048. [PMID: 31665998 DOI: 10.1177/0192623319878401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasal pathology can play an important role in the risk assessment process. For example, olfactory neuron loss (ONL) is one of the most sensitive end points seen in subchronic rodent hydrogen sulfide (H2S) studies and has been used by several agencies to derive health-protective toxicity values. Alternative methods that rely on computational fluid dynamics (CFD) models to account for the influence of airflow on H2S-induced ONL have been proposed. The use of CFD models result in toxicity values that are less conservative than those obtained using more traditional methods. These alternative approaches rely on anatomy-based CFD models. Model predictions of H2S delivery (flux) to the olfactory mucosal wall are highly correlated with ONL in rodents. Three major areas of focus for this review include a brief description of nasal anatomy, H2S-induced ONL in rodents, derivation of a chronic inhalation reference concentration for H2S, and the use of CFD models to derive alternative toxicity values for this gas.
Collapse
Affiliation(s)
- David C Dorman
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
21
|
Hamilton BK, Rybicki LA, Grove D, Ferraro C, Starn J, Hodgeman B, Elberson J, Winslow V, Corrigan D, Gerds AT, Hanna R, Kalaycio ME, Sobecks RM, Majhail NS, Dweik RA. Breath analysis in gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Blood Adv 2019; 3:2732-2737. [PMID: 31530545 PMCID: PMC6759739 DOI: 10.1182/bloodadvances.2019000345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Volatile organic compounds (VOCs) are generated during pathologic processes, and their assessment can be used to diagnose and monitor a variety of diseases. Given the role of the microbiome in graft-versus-host disease (GVHD), we hypothesized that microorganisms producing volatile metabolites may alter VOCs expelled in breath in patients with gastrointestinal (GI) GVHD. In this pilot study, exhaled breath samples were obtained from 19 patients with grade 2 to 4 acute GI GVHD, 10 patients with no GVHD at day 100, and 10 healthy control subjects; the samples were analyzed by using mass spectrometry. Overall, nine (47%) patients had grade 2 GVHD, eight (42%) patients had grade 3 GVHD, and two (11%) patients had grade 4 GVHD; 26% had upper GI, 21% had lower GI, and 53% had both upper and lower GI manifestations. Stepwise canonical discriminant analysis identified 5 VOCs distinguishing patients with and without GI GVHD: 2-propanol, acetaldehyde, dimethyl sulfide, isoprene, and 1-decene (Wilks' Λ, 0.43; F statistic, 6.08; P = .001). The model correctly classified 89% (17 of 19) and 90% (9 of 10) of patients with and without GI GVHD, respectively. Breath analysis is a feasible and promising noninvasive method to detect acute GI GVHD. Further study of serial breath analysis and the gut microbiome in a larger cohort are ongoing to validate these findings.
Collapse
Affiliation(s)
- Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Lisa A Rybicki
- Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - David Grove
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, and
| | - Christina Ferraro
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Jamie Starn
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Brittany Hodgeman
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Jamie Elberson
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Victoria Winslow
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Donna Corrigan
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Aaron T Gerds
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Rabi Hanna
- Pediatric Hematology Oncology, Cleveland Clinic, Cleveland, OH
| | - Matt E Kalaycio
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Ronald M Sobecks
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Navneet S Majhail
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Raed A Dweik
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, and
| |
Collapse
|
22
|
Tiele A, Wicaksono A, Kansara J, Arasaradnam RP, Covington JA. Breath Analysis Using eNose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease-A Pilot Study. BIOSENSORS-BASEL 2019; 9:bios9020055. [PMID: 31013848 PMCID: PMC6627846 DOI: 10.3390/bios9020055] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Early diagnosis of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remains a clinical challenge with current tests being invasive and costly. The analysis of volatile organic compounds (VOCs) in exhaled breath and biomarkers in stool (faecal calprotectin (FCP)) show increasing potential as non-invasive diagnostic tools. The aim of this pilot study is to evaluate the efficacy of breath analysis and determine if FCP can be used as an additional non-invasive parameter to supplement breath results, for the diagnosis of IBD. Thirty-nine subjects were recruited (14 CD, 16 UC, 9 controls). Breath samples were analysed using an in-house built electronic nose (Wolf eNose) and commercial gas chromatograph-ion mobility spectrometer (G.A.S. BreathSpec GC-IMS). Both technologies could consistently separate IBD and controls [AUC ± 95%, sensitivity, specificity], eNose: [0.81, 0.67, 0.89]; GC-IMS: [0.93, 0.87, 0.89]. Furthermore, we could separate CD from UC, eNose: [0.88, 0.71, 0.88]; GC-IMS: [0.71, 0.86, 0.62]. Including FCP did not improve distinction between CD vs UC; eNose: [0.74, 1.00, 0.56], but rather, improved separation of CD vs controls and UC vs controls; eNose: [0.77, 0.55, 1.00] and [0.72, 0.89, 0.67] without FCP, [0.81, 0.73, 0.78] and [0.90, 1.00, 0.78] with FCP, respectively. These results confirm the utility of breath analysis to distinguish between IBD-related diagnostic groups. FCP does not add significant diagnostic value to breath analysis within this study.
Collapse
Affiliation(s)
- Akira Tiele
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | - Alfian Wicaksono
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | - Jiten Kansara
- Department of Gastroenterology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
| | - Ramesh P Arasaradnam
- Department of Gastroenterology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
- Applied Biological Sciences, Coventry University, Coventry CV1 5FB, UK.
- Health and Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
23
|
Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Peterová E, Chládek J, Kohoutová D, Knoblochová V, Morávková P, Vávrová J, Řezáčová M, Bureš J. Exhaled Breath Condensate: Pilot Study of the Method and Initial Experience in Healthy Subjects. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:8-16. [PMID: 30012244 DOI: 10.14712/18059694.2018.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Analysis of Exhaled breath condensate (EBC) is a re-discovered approach to monitoring the course of the disease and reduce invasive methods of patient investigation. However, the major disadvantage and shortcoming of the EBC is lack of reliable and reproducible standardization of the method. Despite many articles published on EBC, until now there is no clear consensus on whether the analysis of EBC can provide a clue to diagnosis of the diseases. The purpose of this paper is to investigate our own method, to search for possible standardization and to obtain our own initial experience. Thirty healthy volunteers provided the EBC, in which we monitored the density, pH, protein, chloride and urea concentration. Our results show that EBC pH is influenced by smoking, and urea concentrations are affected by the gender of subjects. Age of subjects does not play a role. The smallest coefficient of variation between individual volunteers is for density determination. Current limitations of EBC measurements are the low concentration of many biomarkers. Standardization needs to be specific for each individual biomarker, with focusing on optimal condensate collection. EBC analysis has a potential become diagnostic test, not only for lung diseases.
Collapse
Affiliation(s)
- Eva Peterová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic. .,Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jaroslav Chládek
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Veronika Knoblochová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Paula Morávková
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Ahmed I, Niaz Z, Ewbank F, Akarca D, Felwick R, Furnari M. Sniffing out causes of gastrointestinal disorders: a review of volatile metabolomic biomarkers. Biomark Med 2018; 12:1139-1148. [PMID: 30191735 DOI: 10.2217/bmm-2018-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct changes can be observed in the odor of human excretions during health and disease. Identifying underlying volatile metabolites responsible for these odorous changes can be correlated with the pathological process within the body. Advances in the technology have enabled us to interpret the volatile signature of these changes in the odor. This has opened a promising area to lay the foundations of a rapid, noninvasive and point of care diagnostic tool. This review explores the diagnostic potential of volatile organic metabolites as novel biomarkers and extends the discussion on the clinical applications of these biomarkers in gastrointestinal disorders.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- Department of Gastroenterology, Aldara Hospital & Medical Centre, Riyadh, Kingdom of Saudi Arabia
| | - Zafar Niaz
- Department of Medicine, Mayo Hospital Lahore, Pakistan
| | | | - Danyal Akarca
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard Felwick
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | | |
Collapse
|
26
|
Design and Construction of Electronic Nose for Multi-purpose Applications by Sensor Array Arrangement Using IBGSA. J INTELL ROBOT SYST 2017. [DOI: 10.1007/s10846-017-0759-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol 2017; 11:1119-1134. [PMID: 28849686 DOI: 10.1080/17474124.2017.1373017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.
Collapse
Affiliation(s)
- Gerard Cummins
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Diana E Yung
- b The Royal Infirmary of Edinburgh , Endoscopy Unit , Edinburgh , UK
| | - Ben F Cox
- c School of Medicine , University of Dundee , Dundee , UK
| | | | - Marc P Y Desmulliez
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Sandy Cochran
- d Medical and Industrial Ultrasonics, School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
28
|
Monasta L, Pierobon C, Princivalle A, Martelossi S, Marcuzzi A, Pasini F, Perbellini L. Inflammatory bowel disease and patterns of volatile organic compounds in the exhaled breath of children: A case-control study using Ion Molecule Reaction-Mass Spectrometry. PLoS One 2017; 12:e0184118. [PMID: 28859138 PMCID: PMC5578606 DOI: 10.1371/journal.pone.0184118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) profoundly affect quality of life and have been gradually increasing in incidence, prevalence and severity in many areas of the world, and in children in particular. Patients with suspected IBD require careful history and clinical examination, while definitive diagnosis relies on endoscopic and histological findings. The aim of the present study was to investigate whether the alveolar air of pediatric patients with IBD presents a specific volatile organic compounds’ (VOCs) pattern when compared to controls. Patients 10–17 years of age, were divided into four groups: Crohn’s disease (CD), ulcerative colitis (UC), controls with gastrointestinal symptomatology, and surgical controls with no evidence of gastrointestinal problems. Alveolar breath was analyzed by ion molecule reaction mass spectrometry. Four models were built starting from 81 molecules plus the age of subjects as independent variables, adopting a penalizing LASSO logistic regression approach: 1) IBDs vs. controls, finally based on 18 VOCs plus age (sensitivity = 95%, specificity = 69%, AUC = 0.925); 2) CD vs. UC, finally based on 13 VOCs plus age (sensitivity = 94%, specificity = 76%, AUC = 0.934); 3) IBDs vs. gastroenterological controls, finally based on 15 VOCs plus age (sensitivity = 94%, specificity = 65%, AUC = 0.918); 4) IBDs vs. controls, built starting from the 21 directly or indirectly calibrated molecules only, and finally based on 12 VOCs plus age (sensitivity = 94%, specificity = 71%, AUC = 0.888). The molecules identified by the models were carefully studied in relation to the concerned outcomes. This study, with the creation of models based on VOCs profiles, precise instrumentation and advanced statistical methods, can contribute to the development of new non–invasive, fast and relatively inexpensive diagnostic tools, with high sensitivity and specificity. It also represents a crucial step towards gaining further insights on the etiology of IBD through the analysis of specific molecules which are the expression of the particular metabolism that characterizes these patients.
Collapse
Affiliation(s)
- Lorenzo Monasta
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
- * E-mail:
| | - Chiara Pierobon
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Andrea Princivalle
- Occupational Medicine, Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Annalisa Marcuzzi
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Francesco Pasini
- Occupational Medicine, Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Luigi Perbellini
- Occupational Medicine, Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Raninen K, Lappi J, Kolehmainen M, Kolehmainen M, Mykkänen H, Poutanen K, Raatikainen O. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms. Int J Food Sci Nutr 2017; 68:987-996. [PMID: 28391735 DOI: 10.1080/09637486.2017.1312296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential of utilising exhaled breath volatile organic compound (VOC) profiles in studying diet-derived metabolic changes was examined. After a four-week initial diet period with white wheat bread (WW), seven participants received in randomised order high-fibre diets containing sourdough whole grain rye bread (WGR) or white wheat bread enriched with bioprocessed rye bran (WW + BRB), both for 4 weeks. Alveolar exhaled breath samples were analysed with ChemPro®100i analyser (Environics OY, Mikkeli, Finland) at the end of each diet period in fasting state and after a standardised meal. The AIMS signal intensities in fasting state were different after the WGR diet as compared to other diets. The result suggests that WGR has metabolic effects not completely explained by the rye fibre content of the diet. This study encourages to utilise the exhaled breath VOC profile analysis as an early screening tool in studying physiological functionality of foods.
Collapse
Affiliation(s)
- Kaisa Raninen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Jenni Lappi
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Mikko Kolehmainen
- b Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio, Finland
| | - Marjukka Kolehmainen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Hannu Mykkänen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| | - Kaisa Poutanen
- c VTT Technical Research Centre of Finland , Espoo, Finland
| | - Olavi Raatikainen
- a Institute of Public Health and Clinical Nutrition, Ita-Suomen Yliopisto Kuopion Kampus , Kuopio, Finland
| |
Collapse
|
30
|
Kochhar G, Lashner B. Utility of Biomarkers in the Management of Inflammatory Bowel Disease. ACTA ACUST UNITED AC 2017; 15:105-115. [PMID: 28138859 DOI: 10.1007/s11938-017-0129-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Inflammatory bowel disease (IBD) is comprised of complex clinical and pathological conditions. It runs a chronic course, and proper management requires constant monitoring of disease activity. Recent evidence suggests that subjective patient scores have a poor correlation with disease activity. Endoscopy remains the gold standard for diagnosing and monitoring disease activity. As healthcare is moving towards less costly and less invasive treatments, the need for biomarkers in the management of IBD is evident. Over the last decade, several biomarkers have been found, which may correct the discrepancy between subjective patient scores and the need for endoscopy.
Collapse
Affiliation(s)
- Gursimran Kochhar
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute-A31, The Cleveland Clinic Foundation, 9500, Euclid Ave Cleveland, Cleveland, OH, 44195, USA
| | - Bret Lashner
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute-A31, The Cleveland Clinic Foundation, 9500, Euclid Ave Cleveland, Cleveland, OH, 44195, USA.
| |
Collapse
|
31
|
Barnes JW, Tonelli AR, Heresi GA, Newman JE, Mellor NE, Grove DE, Dweik RA. Novel methods in pulmonary hypertension phenotyping in the age of precision medicine (2015 Grover Conference series). Pulm Circ 2016; 6:439-447. [PMID: 28090286 PMCID: PMC5210071 DOI: 10.1086/688847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022] Open
Abstract
Among pulmonary vascular diseases, pulmonary hypertension (PH) is the best studied and has been the focus of our work. The current classification of PH is based on a relatively simple combination of patient characteristics and hemodynamics. This leads to inherent limitations, including the inability to customize treatment and the lack of clarity from a more granular identification based on individual patient phenotypes. Accurate phenotyping of PH can be used in the clinic to select therapies and determine prognosis and in research to increase the homogeneity of study cohorts. Rapid advances in the mechanistic understanding of the disease, improved imaging methods, and innovative biomarkers now provide an opportunity to define novel PH phenotypes. We have recently shown that altered metabolism may affect nitric oxide levels and protein glycosylation, the peripheral circulation (which may provide insights into the response to therapy), and exhaled-breath analysis (which may be useful in disease evaluation). This review is based on a talk presented during the 2015 Grover Conference and highlights the relevant literature describing novel methods to phenotype pulmonary arterial hypertension patients by using approaches that involve the pulmonary and systemic (peripheral) vasculature. In particular, abnormalities in metabolism, the pulmonary and peripheral circulation, and exhaled breath in PH may help identify phenotypes that can be the basis for a precision-medicine approach to PH management. These approaches may also have a broader scope and may contribute to a better understanding of other diseases, such as asthma, diabetes, and cancer.
Collapse
Affiliation(s)
- Jarrod W. Barnes
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adriano R. Tonelli
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jennie E. Newman
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Noël E. Mellor
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David E. Grove
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Raed A. Dweik
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
33
|
A Distinct Colon-Derived Breath Metabolome is Associated with Inflammatory Bowel Disease, but not its Complications. Clin Transl Gastroenterol 2016; 7:e201. [PMID: 27831543 PMCID: PMC5288568 DOI: 10.1038/ctg.2016.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES: The accuracy of available noninvasive biomarkers for diagnosis, stratification, and prediction of inflammatory bowel disease (IBD) courses is limited. We analyzed volatile organic compounds (VOCs) in the breath of IBD patients and controls for diagnosis and differentiation of IBD as well as their link with disease location, activity, and phenotype. METHODS: A prospective study of diagnostic testing was conducted, recruiting Crohn's disease (CD), ulcerative colitis (UC), other inflammatory gastrointestinal diseases (OGDs), and healthy controls (HCs), as well as subjects with ileal pouch anal anastomosis (IPAA). The breath VOC profile was analyzed using selective ion flow tube-mass spectrometry. RESULTS: One hundred and twenty-four subjects (n=24 CD, n=11 UC, n=6 OGD, n=53 HC, n=30 IPAA) were included. The breath metabolome was significantly different in patients with IBD, CD, or UC compared with OGD and HC (7 out of 22 VOCs), but not between CD and UC. No link between the level of VOCs with complications, disease location, and clinical or radiologic disease activity, as well as lab parameters or type of medication was found. Breath VOCs were markedly different in patients with IPAA compared with any other group (17 out of 22 VOCs) and the presence of pouch inflammation did not alter the VOC levels. CONCLUSIONS: A specific breath metabolome is associated with IBD and markedly changes in patients with IPAA. Analysis of a broader spectrum of VOCs can potentially aid in the development of breath prints to diagnose or differentiate inflammatory bowel disorders.
Collapse
|
34
|
Ahmed I, Fayyaz F, Nasir M, Niaz Z, Furnari M, Perry L. Extending landscape of volatile metabolites as novel diagnostic biomarkers of inflammatory bowel disease - a review. Scand J Gastroenterol 2016; 51:385-92. [PMID: 26541790 DOI: 10.3109/00365521.2015.1105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diagnosis of inflammatory bowel disease (IBD) remains a challenging task despite significant increase in the understanding of the disease aetiology and pathogenesis. Recent decade has seen a massive interest in the non-invasive diagnostic biomarkers of IBD, consequently a number of studies have explored a variety of potential biomarkers to diagnose the disease and monitor the disease activity. Volatile metabolites are the chemicals, which emanate from biological fluids and can reflect the status of health and disease of an individual. Recent advances in the analytical techniques have enabled the detection and interpretation of the changes in volatile metabolites in breath, urine, faeces and blood of an individual in correlation with various gastrointestinal (GI) disorders including IBD. This can provide a simple, fast and reproducible diagnosis at the point of care. This review focuses on the current and future novel approaches for detecting and the monitoring gut inflammation in IBD by using volatile organic metabolites.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- a Department of Gastroenterology , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Faisal Fayyaz
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| | - Moneeb Nasir
- c Department of Medicine , Basingstoke General Hospital , Basingstoke, Hampshire , UK
| | - Zafar Niaz
- d Department of Medicine , Mayo Hospital Lahore , Lahore , Pakistan
| | - Manuele Furnari
- e Department of Gastroenterology & Internal Medicine , University of Genova , Genova , Italy
| | - Lorna Perry
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| |
Collapse
|
35
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
36
|
Iborra M, Beltrán B, Nos P. Noninvasive Testing for Mucosal Inflammation in Inflammatory Bowel Disease. Gastrointest Endosc Clin N Am 2016; 26:641-56. [PMID: 27633593 DOI: 10.1016/j.giec.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomarkers have gained increasing attention for the diagnosis and follow-up of inflammatory bowel disease (IBD). Endoscopy remains the gold standard for assessing disease activity. Biomarkers are rapid, inexpensive, and noninvasive, and can be used in different stages of the disease with high sensitivity and specificity. Calprotectin and tests for C-reactive protein are used to assess the disease activity, predict relapse, and monitor treatment response. New noninvasive tests are being studied. This review discusses current evidence for these surrogate markers, their potential clinical applications, and limitations in disease management. We highlight recent advances in IBD biomarkers and future uses.
Collapse
Affiliation(s)
- Marisa Iborra
- Gastroenterology Department, Department of Digestive Disease, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell, 106, Valencia 46026, Spain
| | - Belén Beltrán
- Gastroenterology Department, Department of Digestive Disease, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell, 106, Valencia 46026, Spain
| | - Pilar Nos
- Gastroenterology Department, Department of Digestive Disease, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell, 106, Valencia 46026, Spain.
| |
Collapse
|
37
|
Karban A, Nakhleh MK, Cancilla JC, Vishinkin R, Rainis T, Koifman E, Jeries R, Ivgi H, Torrecilla JS, Haick H. Programmed Nanoparticles for Tailoring the Detection of Inflammatory Bowel Diseases and Irritable Bowel Syndrome Disease via Breathprint. Adv Healthc Mater 2016; 5:2339-44. [PMID: 27390291 DOI: 10.1002/adhm.201600588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/14/2016] [Indexed: 12/17/2022]
Abstract
Chemical sensors based on programmable molecularly modified gold nanoparticles are tailored for the detection and discrimination between the breathprint of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD). The sensors are examined in both lab- and real-world clinical conditions. The results reveal a discriminative power accuracy of 81% between IBD and IBS and 75% between Crohn's and Colitis states.
Collapse
Affiliation(s)
- Amir Karban
- Internal Medicine C and Gastroenterology Departments at Rambam Medical Center, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 3109610, Israel
| | - Morad K Nakhleh
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - John C Cancilla
- Department of Chemical Engineering, Complutense University of Madrid, Madrid, 28040, Spain
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tova Rainis
- Department of Gastroenterology at Bnai Zion Hospital, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 31048, Israel
| | - Eduard Koifman
- Internal Medicine C and Gastroenterology Departments at Rambam Medical Center, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 3109610, Israel
| | - Raneen Jeries
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hodaya Ivgi
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jose S Torrecilla
- Department of Chemical Engineering, Complutense University of Madrid, Madrid, 28040, Spain
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
38
|
Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol Med 2016; 21:633-644. [PMID: 26432020 DOI: 10.1016/j.molmed.2015.08.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Medical diagnosis and phenotyping increasingly incorporate information from complex biological samples. This has promoted the development and clinical application of non-invasive metabolomics in exhaled air (breathomics). In respiratory medicine, expired volatile organic compounds (VOCs) are associated with inflammatory, oxidative, microbial, and neoplastic processes. After recent proof of concept studies demonstrating moderate to good diagnostic accuracies, the latest efforts in breathomics are focused on optimization of sensor technologies and analytical algorithms, as well as on independent validation of clinical classification and prediction. Current research strategies are revealing the underlying pathophysiological pathways as well as clinically-acceptable levels of diagnostic accuracy. Implementing recent guidelines on validating molecular signatures in medicine will enhance the clinical potential of breathomics and the development of point-of-care technologies.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands
| | - Marc P van der Schee
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands; Department of Pediatric Pulmonology, Emma's Children's Hospital, Academic Medical Centre Amsterdam, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Medical Centre Amsterdam, The Netherlands
| |
Collapse
|
39
|
Baranska A, Mujagic Z, Smolinska A, Dallinga JW, Jonkers DMAE, Tigchelaar EF, Dekens J, Zhernakova A, Ludwig T, Masclee AAM, Wijmenga C, van Schooten FJ. Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach. Aliment Pharmacol Ther 2016; 44:45-56. [PMID: 27136066 DOI: 10.1111/apt.13654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/30/2015] [Accepted: 04/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The diagnosis of irritable bowel syndrome (IBS) is challenging because of its heterogeneity and multifactorial pathophysiology. No reliable biomarkers of IBS have been identified so far. AIMS In a case-control study, using a novel application of breath analysis to distinguish IBS patients from healthy controls based on the analysis of volatile organic compounds (VOCs). Subsequently, the diagnostic VOC-biomarker set was correlated with self-reported gastrointestinal (GI) symptoms of subjects of the Maastricht IBS clinical cohort and of a general population cohort, LifeLines DEEP. METHODS Breath samples were collected from 170 IBS patients and 153 healthy controls in the clinical cohort and from 1307 participants in general population cohort. Multivariate statistics were used to identify the most discriminatory set of VOCs in the clinical cohort, and to find associations between VOCs and GI symptoms in both cohorts. RESULTS A set of 16 VOCs correctly predicted 89.4% of the IBS patients and 73.3% of the healthy controls (AUC = 0.83). The VOC-biomarker set correlated moderately with a set of GI symptoms in the clinical (r = 0.55, P = 0.0003) and general population cohorts (r = 0.54, P = 0.0004). A Kruskal-Wallis test showed no influence from possible confounding factors in distinguishing IBS patients from healthy controls. CONCLUSIONS A set of 16 breath-based biomarkers that distinguishes IBS patients from healthy controls was identified. The VOC-biomarker set correlated significantly with GI symptoms in two independent cohorts. We demonstrate the potential use of breath analysis in the diagnosis and monitoring of IBS, and a possible application of VOC analyses in a general population cohort.
Collapse
Affiliation(s)
- A Baranska
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Z Mujagic
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A Smolinska
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - J W Dallinga
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - E F Tigchelaar
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - J Dekens
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - A Zhernakova
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - T Ludwig
- Department of Developmental Physiology and Nutrition, Danone Nutricia Research, Utrecht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C Wijmenga
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
40
|
Dejous C, Hallil H, Raimbault V, Lachaud JL, Plano B, Delépée R, Favetta P, Agrofoglio L, Rebière D. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring. SENSORS (BASEL, SWITZERLAND) 2016; 16:E915. [PMID: 27331814 PMCID: PMC4934341 DOI: 10.3390/s16060915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP.
Collapse
Affiliation(s)
- Corinne Dejous
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Hamida Hallil
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Vincent Raimbault
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
- LAAS, CNRS UPR 8001, 31031 Toulouse, France.
| | - Jean-Luc Lachaud
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Bernard Plano
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| | - Raphaël Delépée
- Normandie Univ., UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France.
| | - Patrick Favetta
- ICOA, University Orléans, CNRS, CNRS UMR 7311, F-45067 Orléans, France.
| | - Luigi Agrofoglio
- ICOA, University Orléans, CNRS, CNRS UMR 7311, F-45067 Orléans, France.
| | - Dominique Rebière
- IMS, University Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France.
| |
Collapse
|
41
|
Jongen AC, Bosmans JW, Kartal S, Lubbers T, Sosef M, Slooter GD, Stoot JH, van Schooten FJ, Bouvy ND, Derikx JP. Predictive Factors for Anastomotic Leakage After Colorectal Surgery: Study Protocol for a Prospective Observational Study (REVEAL Study). JMIR Res Protoc 2016; 5:e90. [PMID: 27282451 PMCID: PMC4919551 DOI: 10.2196/resprot.5477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/07/2016] [Accepted: 02/07/2016] [Indexed: 12/28/2022] Open
Abstract
Background Anastomotic leakage (AL) remains the most important complication following colorectal surgery, and is associated with high morbidity and mortality rates. Previous research has focused on identifying risk factors and potential biomarkers for AL, but the sensitivity of these tests remains poor. Objective This prospective multicenter observational study aims at combining multiple parameters to establish a diagnostic algorithm for colorectal AL. Methods This study aims to include 588 patients undergoing surgery for colorectal carcinoma. Patients will be eligible for inclusion when surgery includes the construction of a colorectal anastomosis. Patient characteristics will be collected upon consented inclusion, and buccal swabs, breath, stool, and blood samples will be obtained prior to surgery. These samples will allow for the collection of information regarding patients’ inflammatory status, genetic predisposition, and intestinal microbiota. Additionally, breath and blood samples will be taken postoperatively and patients will be strictly observed during their in-hospital stay, and the period shortly thereafter. Results This study has been open for inclusion since August 2015. Conclusions An estimated 8-10% of patients will develop AL following surgery, and they will be compared to non-leakage patients. The objectives of this study are twofold. The primary aim is to establish and validate a diagnostic algorithm for the pre-operative prediction of the risk of AL development using a combination of inflammatory, immune-related, and genetic parameters. Previously established risk factors and novel parameters will be incorporated into this algorithm, which will aid in the recognition of patients who are at risk for AL. Based on these results, recommendations can be made regarding the construction of an anastomosis or deviating stoma, and possible preventive strategies. Furthermore, we aim to develop a new algorithm for the post-operative diagnosis of AL at an earlier stage, which will positively reflect on short-term survival rates. Trial Registration Clinicaltrials.gov: NCT02347735; https://clinicaltrials.gov/ct2/show/NCT02347735 (archived by WebCite at http://www.webcitation.org/6hm6rxCsA)
Collapse
Affiliation(s)
- Audrey Chm Jongen
- Department of General Surgery, Maastricht University Medical Centre, Maastricht, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Raninen KJ, Lappi JE, Mukkala ML, Tuomainen TP, Mykkänen HM, Poutanen KS, Raatikainen OJ. Fiber content of diet affects exhaled breath volatiles in fasting and postprandial state in a pilot crossover study. Nutr Res 2016; 36:612-9. [PMID: 27188907 DOI: 10.1016/j.nutres.2016.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/23/2023]
Abstract
Our pilot study examined the potential of exhaled breath analysis in studying the metabolic effects of dietary fiber (DF). We hypothesized that a high-fiber diet (HFD) containing whole grain rye changes volatile organic compound (VOC) levels in exhaled breath and that consuming a single meal affects these levels. Seven healthy men followed a week-long low-fiber diet (17 g/d) and HFD (44 g/d) in a randomized crossover design. A test meal containing 50 g of the available carbohydrates from wheat bread was served as breakfast after each week. Alveolar exhaled breath samples were analyzed at fasting state and 30, 60, and 120 minutes after this meal parallel to plasma glucose, insulin, and serum lipids. We used solid-phase microextraction and gas chromatography-mass spectrometry for detecting changes in 15 VOCs. These VOCs were acetone, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, hexanoic acid, acetoin, diacetyl, and phenol. Exhaled breath 2-methylbutyric acid in the fasting state and 1-propanol at 120 minutes decreased (P = .091 for both) after an HFD. Ingestion of the test meal increased ethanol, 1-propanol, acetoin, propionic acid, and butyric acid levels while reducing acetone, 1-butanol, diacetyl, and phenol levels. Both DF diet content and having a single meal affected breathVOCs. Exploring exhaled breath further could help to develop tools for monitoring the metabolic effects of DF.
Collapse
Affiliation(s)
- Kaisa J Raninen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Jenni E Lappi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Maria L Mukkala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Hannu M Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Olavi J Raatikainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
43
|
Soubières AA, Poullis A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2016; 7:41-50. [PMID: 26855811 PMCID: PMC4734953 DOI: 10.4292/wjgpt.v7.i1.41] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
There is currently no gold standard test for the diagnosis of inflammatory bowel disease (IBD). Physicians must rely on a number of diagnostic tools including clinical and endoscopic evaluation as well as histologic, serologic and radiologic assessment. The real difficulty for physicians in both primary and secondary care is differentiating between patients suffering from functional symptoms and those with true underlying IBD. Alongside this, there is always concern regarding the possibility of a missed, or delayed diagnosis of ulcerative colitis (UC) or Crohn’s disease. Even once the diagnosis of IBD has been made, there is often uncertainty in distinguishing between cases of UC or Crohn’s. As a consequence, in cases of incorrect diagnosis, optimal treatment and management may be adversely affected. Endoscopic evaluation can be uncomfortable and inconvenient for patients. It carries significant risks including perforation and in terms of monetary cost, is expensive. The use of biomarkers to help in the diagnosis and differentiation of IBD has been increasing over time. However, there is not yet one biomarker, which is sensitive of specific enough to be used alone in diagnosing IBD. Current serum testing includes C-reactive protein and erythrocyte sedimentation rate, which are cheap, reliable but non-specific and thus not ideal. Stool based testing such as faecal calprotectin is a much more specific tool and is currently in widespread clinical use. Non-invasive sampling is of the greatest clinical value and with the recent advances in metabolomics, genetics and proteomics, there are now more tools available to develop sensitive and specific biomarkers to diagnose and differentiate between IBD. Many of these new advances are only in early stages of development but show great promise for future clinical use.
Collapse
|
44
|
Non-invasive exhaled volatile organic biomarker analysis to detect inflammatory bowel disease (IBD). Dig Liver Dis 2016; 48:148-53. [PMID: 26682719 DOI: 10.1016/j.dld.2015.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Early inflammatory bowel disease (IBD) diagnosis remains a clinical challenge. Volatile organic compounds (VOCs) have shown distinct patterns in Crohn's disease (CD) and ulcerative colitis (UC). VOC production, reflecting gut fermentome metabolites, is perturbed in IBD. VOC sampling is non-invasive, with various compounds identified from faecal, breath and urine samples. This study aimed to determine if FAIMS (field asymmetric ion mobility spectroscopy) analysis of exhaled VOCs could distinguish IBD from controls. METHODS Seventy-six subjects were recruited, 54 established IBD (25 CD, 29 UC) and 22 healthy controls. End expiratory breath was captured using a Warwick device and analysed by FAIMS. Data were pre-processed using wavelet transformation, and classification performed in a 10-fold cross-validation. Feature selection was performed using Wilcoxon rank sum test, and sparse logistic regression gave class predictions, to calculate sensitivity and specificity. RESULTS FAIMS breath VOC analysis showed clear separation of IBD from controls, sensitivity: 0.74 (0.65-0.82), specificity: 0.75 (0.53-0.90), AUROC: 0.82 (0.74-0.89), p-value 6.2×10(-7). IBD subgroup analysis distinguished UC from CD: sensitivity of 0.67 (0.54-0.79), specificity: 0.67 (0.54-0.79), AUROC: 0.70 (0.60-0.80), p-value 9.23×10(-4). CONCLUSION This confirms the utility of exhaled VOC analysis to distinguish IBD from healthy controls, and UC from CD. It conforms to other studies using different technology, whilst affirming exhaled VOCs as biomarkers for diagnosing IBD.
Collapse
|
45
|
Harshman SW, Geier BA, Fan M, Rinehardt S, Watts BS, Drummond LA, Preti G, Phillips JB, Ott DK, Grigsby CC. The identification of hypoxia biomarkers from exhaled breath under normobaric conditions. J Breath Res 2015; 9:047103. [PMID: 26505091 DOI: 10.1088/1752-7155/9/4/047103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pilots have reported experiencing in-flight hypoxic-like symptoms since the inception of high-altitude aviation. As a result, the need to monitor pilots, in-flight, for the onset of hypoxic conditions is of great interest to the aviation community. We propose that exhaled breath is an appropriate non-invasive medium for monitoring pilot hypoxic risk through volatile organic compound (VOC) analysis. To identify changes in the exhaled breath VOCs produced during periods of reduced O2 levels, volunteers were exposed to simulated flight profiles, i.e. sea level for 5 min, O2 levels found at elevated altitudes for 5 min or placebo and 5 min at 100% O2 recovery gas, using a modified flight mask interfaced with a reduced O2 breathing device. During the course of these test events, time series breath samples from the flight mask and pre/post bag samples were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven compounds (pentanal, 4-butyrolactone, 2-pentanone, 2-hexanone, 2-cyclopenten-1-one, 3-methylheptane and 2-heptanone) were found to significantly change in response to hypoxic conditions. Additionally, the isoprene, 2-methyl-1,3-butadiene, was found to increase following the overall exposure profile. This study establishes an experimental means for monitoring changes in VOCs in response to hypoxic conditions, a computational workflow for compound analysis via the Metabolite Differentiation and Discovery Lab and MatLab(©) software and identifies potential volatile organic compound biomarkers of hypoxia exposure.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHXBC, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, USA. Authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Koch CG, Blackstone EH. Reply: To PMID 25583464. Ann Thorac Surg 2015; 100:380-1. [PMID: 26140798 DOI: 10.1016/j.athoracsur.2015.03.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Colleen G Koch
- Department of Anesthesiology & Critical Care, The Johns Hopkins Medical Institutions, 600 N Wolfe St, Blalock 1415, Baltimore, MD21287.
| | - Eugene H Blackstone
- Department of Thoracic and Cardiovascular Surgery, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH44195
| |
Collapse
|