1
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Vyas N, Wimberly CE, Beaman MM, Kaplan SJ, Rasmussen LJH, Wertz J, Gifford EJ, Walsh KM. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 2023; 151:106071. [PMID: 36857833 PMCID: PMC10073327 DOI: 10.1016/j.psyneuen.2023.106071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
There is continued interest in identifying dysregulated biomarkers that mediate associations between adverse childhood experiences (ACEs) and negative long-term health outcomes. However, little is known regarding how ACE exposure modulates neural biomarkers to influence poorer health outcomes in ACE-exposed children. To address this, we performed a systematic review and meta-analysis of the impact of ACE exposure on Brain Derived Neurotrophic Factor (BDNF) levels - a neural biomarker involved in childhood and adult neurogenesis and long-term memory formation. Twenty-two studies were selected for inclusion within the systematic review, ten of which were included in meta-analysis. Most included studies retrospectively assessed impacts of childhood maltreatment in clinical populations. Sample size, BDNF protein levels in ACE-exposed and unexposed subjects, and standard deviations were extracted from ten publications to estimate the BDNF ratio of means (ROM) across exposure categories. Overall, no significant difference was found in BDNF protein levels between ACE-exposed and unexposed groups (ROM: 1.08; 95 % CI: 0.93-1.26). Age at sampling, analyte type (e.g., sera, plasma, blood), and categories of ACE exposure contributed to high between-study heterogeneity, some of which was minimized in subset-based analyses. These results support continued investigation into the impact of ACE exposure on neural biomarkers and highlight the potential importance of analyte type and timing of sample collection on study results.
Collapse
Affiliation(s)
- Neha Vyas
- Duke University, Trinity College of Arts and Sciences, Durham, NC, USA
| | - Courtney E Wimberly
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA
| | - M Makenzie Beaman
- Duke University School of Medicine, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA
| | | | - Line J H Rasmussen
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Jasmin Wertz
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; University of Edinburgh, Department of Psychology, Edinburgh, UK
| | - Elizabeth J Gifford
- Duke Children's Health and Discovery Initiative, Durham, NC, USA; Duke University Sanford School of Public Policy, Center for Child and Family Policy, Durham, NC, USA
| | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA.
| |
Collapse
|
4
|
Bartolomé F, Rosa L, Valenti P, Lopera F, Hernández-Gallego J, Cantero JL, Orive G, Carro E. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Front Immunol 2022; 13:878201. [PMID: 35547737 PMCID: PMC9083828 DOI: 10.3389/fimmu.2022.878201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús Hernández-Gallego
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Luis Cantero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Shurin MR, Shurin GV, Zlotnikov SB, Bunimovich YL. The Neuroimmune Axis in the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2020; 204:280-285. [PMID: 31907270 DOI: 10.4049/jimmunol.1900828] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a complex ecosystem and should be considered in the context of its cellular and molecular microenvironment, which includes the nerves. Peripheral nerves can modulate phenotype and behavior of the malignant cells and thus affect tumor growth and metastasis. Only recently has the role of neuroimmune cross-talk surfaced as a key contributor to cancer progression. However, little is known about the immunomodulatory role of the neuroglial cells in cancer progression and metastasis and the response to therapy. Schwann cells, the principal glial cells of the peripheral nervous system, are now considered to be important players in the tumor microenvironment. They can directly accelerate malignant cell migration and the formation of metastases. Better understanding of the neuroimmune circuits in the tumor milieu will be instrumental in the development of novel therapeutic approaches for the malignancies known to be associated with inflammation and dysregulated immune responses.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; .,Department of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; and
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Samuel B Zlotnikov
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
7
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
8
|
Cowan CSM, Dinan TG, Cryan JF. Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. J Child Psychol Psychiatry 2020; 61:353-371. [PMID: 31773737 DOI: 10.1111/jcpp.13156] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a vast, complex, and fascinating ecosystem of microorganisms that resides in the human gastrointestinal tract. As an integral part of the microbiota-gut-brain axis, it is now being recognized that the microbiota is a modulator of brain and behavior, across species. Intriguingly, periods of change in the microbiota coincide with the development of other body systems and particularly the brain. We hypothesize that these times of parallel development are biologically relevant, corresponding to 'sensitive periods' or 'critical windows' in the development of the microbiota-gut-brain axis. Specifically, signals from the microbiota during these periods are hypothesized to be crucial for establishing appropriate communication along the axis throughout the life span. In other words, the microbiota is hypothesized to act like an expected input to calibrate the development of the microbiota-gut-brain axis. The absence or disruption of the microbiota during specific developmental windows would therefore be expected to have a disproportionate effect on specific functions or potentially for regulation of the system as a whole. Evidence for microbial modulation of neurocognitive development and neurodevelopmental risk is discussed in light of this hypothesis, finishing with a focus on the challenges that lay ahead for the future study of the microbiota-gut-brain axis during development.
Collapse
Affiliation(s)
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The Role of BDNF in the Neuroimmune Axis Regulation of Mood Disorders. Front Neurol 2019; 10:515. [PMID: 31231295 PMCID: PMC6559010 DOI: 10.3389/fneur.2019.00515] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
The neuroimmune system plays a crucial role in the regulation of mood disorders. Moreover, recent studies show that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is a key regulator in the neuroimmune axis. However, the potential mechanism of BDNF action in the neuroimmune axis' regulation of mood disorders remains unclear. Therefore, in this review, we focus on the recent progress of BDNF in influencing mood disorders, by participating in alterations of the neuroimmune axis. This may provide evidence for future studies in this field.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Song Bai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Delaney S, Hornig M. Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut-Immune-Brain Axis Play? Curr Environ Health Rep 2019; 5:158-169. [PMID: 29423662 DOI: 10.1007/s40572-018-0186-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Evidence is growing that environmental exposures-including xenobiotics as well as microbes-play a role in the pathogenesis of many neuropsychiatric disorders. Underlying mechanisms are likely to be complex, involving the developmentally sensitive interplay of genetic/epigenetic, detoxification, and immune factors. Here, we review evidence supporting a role for environmental factors and disrupted gut-immune-brain axis function in some neuropsychiatric conditions. RECENT FINDINGS Studies suggesting the involvement of an altered microbiome in triggering CNS-directed autoimmunity and neuropsychiatric disturbances are presented as an intriguing example of the varied mechanisms by which environmentally induced gut-immune-brain axis dysfunction may contribute to adverse brain outcomes. The gut-immune-brain axis is a burgeoning frontier for investigation of neuropsychiatric illness. Future translational research to define individual responses to exogenous exposures in terms of microbiome-dependent skew of the metabolome, immunity, and brain function may serve as a lens for illumination of pathways involved in the development of CNS disease and fuel discovery of novel interventions.
Collapse
Affiliation(s)
- Shannon Delaney
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mady Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St, Rm 1706, New York, NY, 10032, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St, Rm 1706, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Gabriel T, Paul S, Berger A, Massoubre C. Anorexia Nervosa and Autism Spectrum Disorders: Future Hopes Linked to Mucosal Immunity. Neuroimmunomodulation 2019; 26:265-275. [PMID: 31715599 DOI: 10.1159/000502997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
Mental health is becoming a public health priority worldwide. Anorexia nervosa and autism spectrum disorders are 2 important types of childhood disorders with a bad prognosis. They share cognitive impairments and, in both cases, the microbiota appears to be a crucial factor. Alteration of the microbiota-gut-brain axis is an appealing hypothesis to define new pathophysiological mechanisms. Mucosal immunity plays a key role between the microbiota and the brain. The mucosal immune system receives and integrates messages from the intestinal microenvironment and the microbiota and then transmits the information to the nervous system. Abnormalities in this sensorial system may be involved in the natural history of mental diseases and might play a role in their maintenance. This review aims to highlight data about the relationship between intestinal mucosal immunity and these disorders. We show that shared cognitive impairments could be found in these 2 disorders, which both present dysbiosis. This literature review provides details on the immune status of anorexic and autistic patients, with a focus on intestinal mucosal factors. Finally, we suggest future research hypotheses that seem important for understanding the implication of the gut-brain-axis in psychiatric diseases.
Collapse
Affiliation(s)
- Tristan Gabriel
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France
| | - Stéphane Paul
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Anne Berger
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Catherine Massoubre
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France,
| |
Collapse
|
12
|
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement 2018; 14:1602-1614. [DOI: 10.1016/j.jalz.2018.06.3040] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| | - Richard Lathe
- Division of Infection and Pathway Medicine; University of Edinburgh; Little France Edinburgh UK
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| |
Collapse
|
13
|
Isgren A, Sellgren C, Ekman CJ, Holmén-Larsson J, Blennow K, Zetterberg H, Jakobsson J, Landén M. Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes. Brain Behav Immun 2017; 65:195-201. [PMID: 28483660 DOI: 10.1016/j.bbi.2017.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Neuroimmune mechanisms have been linked to the pathophysiology of bipolar disorder based on studies of biomarkers in plasma, cerebrospinal fluid (CSF), and postmortem brain tissue. There are, however, no longitudinal studies investigating if CSF markers of neuroinflammation and neuronal injury predict clinical outcomes in patients with bipolar disorder. We have in previous studies found higher CSF concentrations of interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1/CCL-2), chitinase-3-like protein 1 (CHI3L1/YKL-40), and neurofilament light chain (NF-L) in euthymic patients with bipolar disorder compared with controls. Here, we investigated the relationship of these CSF markers of neuroinflammation and neuronal injury with clinical outcomes in a prospective study. 77 patients with CSF analyzed at baseline were followed for 6-7years. Associations of baseline biomarkers with clinical outcomes (manic/hypomanic and depressive episodes, suicide attempts, psychotic symptoms, inpatient care, GAF score change) were investigated. Baseline MCP-1 concentrations were positively associated with manic/hypomanic episodes and inpatient care during follow-up. YKL-40 concentrations were negatively associated with manic/hypomanic episodes and with occurrence of psychotic symptoms. The prospective negative association between YKL-40 and manic/hypomanic episodes survived multiple testing correction. Concentrations of IL-8 and NF-L were not associated with clinical outcomes. High concentrations of these selected CSF markers of neuroinflammation and neuronal injury at baseline were not consistently associated with poor clinical outcomes in this prospective study. The assessed proteins may be involved in adaptive immune processes or reflect a state of vulnerability for bipolar disorder rather than being of predictive value for disease progression.
Collapse
Affiliation(s)
- Anniella Isgren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden.
| | - Carl Sellgren
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Johan Ekman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Holmén-Larsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joel Jakobsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Wu J, de Theije CGM, da Silva SL, Abbring S, van der Horst H, Broersen LM, Willemsen L, Kas M, Garssen J, Kraneveld AD. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain Behav Immun 2017; 59:273-287. [PMID: 27640900 DOI: 10.1016/j.bbi.2016.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Jiangbo Wu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Hilma van der Horst
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Linette Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martien Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
16
|
Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and Neurological Disorders: A Gut Feeling. Biores Open Access 2016; 5:137-45. [PMID: 27274912 PMCID: PMC4892191 DOI: 10.1089/biores.2016.0010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | - Iphigenia Kanara
- Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts
- Consulate General of Greece in Boston, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Boston, Massachusetts
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| |
Collapse
|
17
|
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6:153-166. [PMID: 29388597 PMCID: PMC5683266 DOI: 10.2147/phmt.s85717] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically determined neurodevelopmental brain disorder presenting with restricted, repetitive patterns of behaviors, interests, and activities, or persistent deficits in social communication and social interaction. ASD is characterized by many different clinical endophenotypes and is potentially linked with certain comorbidities. According to current recommendations, children with ASD are at risk of having alimentary tract disorders - mainly, they are at a greater risk of general gastrointestinal (GI) concerns, constipation, diarrhea, and abdominal pain. GI symptoms may overlap with ASD core symptoms through different mechanisms. These mechanisms include multilevel pathways in the gut-brain axis contributing to alterations in behavior and cognition. Shared pathogenetic factors and pathophysiological mechanisms possibly linking ASD and GI disturbances, as shown by most recent studies, include intestinal inflammation with or without autoimmunity, immunoglobulin E-mediated and/or cell-mediated GI food allergies as well as gluten-related disorders (celiac disease, wheat allergy, non-celiac gluten sensitivity), visceral hypersensitivity linked with functional abdominal pain, and dysautonomia linked with GI dysmotility and gastroesophageal reflux. Dysregulation of the gut microbiome has also been shown to be involved in modulating GI functions with the ability to affect intestinal permeability, mucosal immune function, and intestinal motility and sensitivity. Metabolic activity of the microbiome and dietary components are currently suspected to be associated with alterations in behavior and cognition also in patients with other neurodegenerative diseases. All the above-listed GI factors may contribute to brain dysfunction and neuroinflammation depending upon an individual patient's genetic vulnerability. Due to a possible clinical endophenotype presenting as comorbidity of ASD and GI disorders, we propose treating this situation as an "overlap syndrome". Practical use of the concept of an overlap syndrome of ASD and GI disorders may help in identifying those children with ASD who suffer from an alimentary tract disease. Unexplained worsening of nonverbal behaviors (agitation, anxiety, aggression, self-injury, sleep deprivation) should alert professionals about this possibility. This may shorten the time to diagnosis and treatment commencement, and thereby alleviate both GI and ASD symptoms through reducing pain, stress, or discomfort. Furthermore, this may also protect children against unnecessary dietary experiments and restrictions that have no medical indications. A personalized approach to each patient is necessary. Our understanding of ASDs has come a long way, but further studies and more systematic research are warranted.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Mark Klukowski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Wu J, de Theije CGM, da Silva SL, van der Horst H, Reinders MTM, Broersen LM, Willemsen LEM, Kas MJH, Garssen J, Kraneveld AD. mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits. Neuropharmacology 2015; 97:220-32. [PMID: 26027949 DOI: 10.1016/j.neuropharm.2015.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms.
Collapse
Affiliation(s)
- Jiangbo Wu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Hilma van der Horst
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Margot T M Reinders
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Martien J H Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands.
| |
Collapse
|
19
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
20
|
Moilanen E. Two faces of inflammation: an immunopharmacological view. Basic Clin Pharmacol Toxicol 2014; 114:2-6. [PMID: 24286361 DOI: 10.1111/bcpt.12180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation is a protective response intended to eliminate pathogens and other offending agents which have potential to cause cell injury, as well as malignant and necrotic cells. However, if the inflammatory response is dysregulated or inappropriately focused, it has considerable potential to cause harm and can lead to development of inflammatory diseases such as allergic and autoimmune diseases. Despite the recent success in cytokine-targeted therapies, for example by the use of specific biological drugs, there are still considerable unmet needs in the treatment of inflammatory diseases. Further, recent discoveries in many diseases in addition to the classical inflammatory diseases have revealed inflammation to be a major factor participating in the underlying pathophysiological processes, either through activation of inflammatory cells or through triggering of inflammatory signalling mechanisms in the tissue cells. Examples of such diseases and conditions are many cardiovascular, metabolic and degenerative diseases, as well as cancer, obesity and pain. This brings the immunopharmacological approach into a new perspective in the drug development in very wide therapeutic areas. Immunopharmacology investigates mechanisms of inflammation and potential molecules and targets to treat inflammatory diseases. The current issue of Basic and Clinical Pharmacology and Toxicology focuses on some of the novel inflammatory mechanisms with potential in anti-inflammatory drug development, including kinase pathways, TRP ion channels, eicosanoid system, obesity-related adipokines, autoantibodies against citrullinated proteins, eosinophils, platelets and pathways connecting nervous and immune systems. The MiniReviews are based on lectures given at the symposium "Novel Drugs and Drug Targets to Treat Inflammation" in Ylläs, Finland, in March 2013.
Collapse
Affiliation(s)
- Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Fiedler A, Grecksch G, Reinhold A, Schraven B, Becker A. Hippocampus-dependent learning in SKAP-HOM deficient mice. Behav Brain Res 2014; 270:125-30. [DOI: 10.1016/j.bbr.2014.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023]
|
22
|
Abelaira HM, Réus GZ, Petronilho F, Barichello T, Quevedo J. Neuroimmunomodulation in depression: a review of inflammatory cytokines involved in this process. Neurochem Res 2014; 39:1634-9. [PMID: 24996933 DOI: 10.1007/s11064-014-1372-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/02/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
Depression is a debilitating mental disease that affects a large number of people globally; however the pathophysiological mechanisms of this disease remain incompletely understood. Some studies have shown that depression is associated with inflammatory activity, and the mode of action of several antidepressants appears to involve immunomodulation. In this case, the induction of a pro-inflammatory state in healthy or depressive subjects induces a 'sickness behaviour' resembling depressive symptomatology. Potential mechanisms of pro-inflammatory cytokines are effects on monoamine levels, disruption of the hypothalamic-pituitary-adrenal axis, activation of the pathological microglial cells, such as the macrophages and alterations in neuroplasticity and brain functions. Thus, this review will highlight the role of inflammation in depression, the possible mechanisms involved, and also explore effective treatments that act on the immune system.
Collapse
Affiliation(s)
- Helena M Abelaira
- Laboratório de Neurociências, Unidade Acadêmica de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | |
Collapse
|
23
|
The potential biomarker panels for identification of Major Depressive Disorder (MDD) patients with and without early life stress (ELS) by metabonomic analysis. PLoS One 2014; 9:e97479. [PMID: 24870353 PMCID: PMC4037179 DOI: 10.1371/journal.pone.0097479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/20/2014] [Indexed: 12/04/2022] Open
Abstract
Objective The lack of the disease biomarker to support objective laboratory tests still constitutes a bottleneck in the clinical diagnosis and evaluation of major depressive disorder (MDD) and its subtypes. We used metabonomic techniques to screen the diagnostic biomarker panels from the plasma of MDD patients with and without early life stress (ELS) experience. Methods Plasma samples were collected from 25 healthy adults and 46 patients with MDD, including 23 patients with ELS and 23 patients without ELS. Furthermore, gas chromatography/mass spectrometry (GC/MS) coupled with multivariate statistical analysis was used to identify the differences in global plasma metabolites among the 3 groups. Results The distinctive metabolic profiles exist either between healthy subjects and MDD patients or between the MDD patients with ELS experience (ELS/MDD patients) and the MDD patients without it (non-ELS/MDD patients), and some diagnostic panels of feature metabolites' combination have higher predictive potential than the diagnostic panels of differential metabolites. Conclusions These findings in this study have high potential of being used as novel laboratory diagnostic tool for MDD patients and it with ELS or not in clinical application.
Collapse
|