1
|
Madrigal JM, Troisi R, Surcel HM, Öhman H, Kivelä J, Kiviranta H, Rantakokko P, Koponen J, Medgyesi DN, Kitahara CM, McGlynn KA, Sampson J, Albert PS, Ward MH, Jones RR. Prediagnostic serum concentrations of per- and polyfluoroalkyl substances and risk of papillary thyroid cancer in the Finnish Maternity Cohort. Int J Cancer 2024; 154:979-991. [PMID: 37902275 PMCID: PMC11286200 DOI: 10.1002/ijc.34776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.
Collapse
Affiliation(s)
- Jessica M. Madrigal
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | | | - Heljä-Marja Surcel
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Kivelä
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hannu Kiviranta
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Jani Koponen
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Danielle N. Medgyesi
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | - Mary H. Ward
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| |
Collapse
|
2
|
Chen Z, Chen Z, Gao S, Shi J, Li X, Sun F. PFOS exposure destroys the integrity of the blood-testis barrier (BTB) through PI3K/AKT/mTOR-mediated autophagy. Reprod Biol 2024; 24:100846. [PMID: 38160586 DOI: 10.1016/j.repbio.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Ao J, Tang W, Liu X, Ao Y, Zhang Q, Zhang J. Polyfluoroalkyl phosphate esters (PAPs) as PFAS substitutes and precursors: An overview. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133018. [PMID: 37984148 DOI: 10.1016/j.jhazmat.2023.133018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are emerging substitutes for legacy per- and polyfluoroalkyl substances (PFAS), which are widely applied in consumer products and closely related to people's daily lives. Increasing concern has been raised about the safety of PAPs due to their metabolism into perfluorooctanoic acid (PFOA) and other perfluorinated carboxylates (PFCAs) in vivo. This review summarizes the current knowledge on PAPs and highlights the knowledge gaps. PAPs dominated the PFAS profiles in wastewater, sludge, household dust, food-contact materials, paper products, paints, and cosmetics. They exhibit biomagnification due to their higher levels in top predators. PAPs have been detected in human blood worldwide, with the highest mean levels being found in the United States (1.9 ng/mL) and China (0.4 ng/mL). 6:2 diPAP is the predominant PAP among all identified matrices, followed by 8:2 diPAP. Toxicokinetic studies suggest that after entering the body, most PAPs undergo biotransformation, generating phase Ⅰ (i.e., PFCAs), phase II, and intermediate products with toxicity to be verified. Several epidemiological and toxicological studies have reported the antiandrogenic effect, estrogenic effect, thyroid disruption, oxidative damage, and reproductive toxicity of PAPs. More research is urgently needed on the source and fate of PAPs, human exposure pathways, toxicity other than reproductive and endocrine systems, toxic effects of metabolites, and mixed exposure effects.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoning Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
4
|
Würth A, Mechler M, Menberg K, Ikipinar MA, Martus P, Söhlmann R, Boeddinghaus RS, Blum P. Phytoscreening for Per- and Polyfluoroalkyl Substances at a Contaminated Site in Germany. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4122-4132. [PMID: 36853970 DOI: 10.1021/acs.est.2c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to perform a phytoscreening of per- and polyfluoroalkyl substances (PFAS) at a contaminated site in Germany, to investigate the applicability of this technique for PFAS contaminations. Foliage of three species, namely, white willow (Salix alba L.), black poplar (Populus nigra L.), and black alder (Alnus glutinosa L.), were sampled to evaluate seasonal and annual variations in PFAS concentrations. The results of the phytoscreening clearly indicated species and specific differences, with the highest PFAS sum concentrations ∑23 observed in October for white willow (0-1800 μg kg-1), followed by black poplar (6.7-32 μg kg-1) and black alder (0-13 μg kg-1). The bulk substances in leaves were highly mobile short-chain perfluoroalkyl carboxylic acids (PFCAs). In contrast, the PFAS composition in soil was dominated by long-chain PFCAs, perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), as a result of the lower mobility with ∑23PFAS ranging between 0.18 and 26 μg L-1 (eluate) and between 66 and 420 μg kg-1 (solid). However, the PFAS composition in groundwater was comparable to the spectrum observed in leaves. Spatial interpolations of PFAS in groundwater and foliage correspond well and demonstrate the successful application of phytoscreening to detect and delineate the impact of the studied PFAS on groundwater.
Collapse
Affiliation(s)
- Andreas Würth
- Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Melanie Mechler
- Center for Agricultural Technology Augustenberg (LTZ), Neßlerstraße 25, 76227 Karlsruhe, Germany
| | - Kathrin Menberg
- Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Mehmet A Ikipinar
- Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Peter Martus
- AECOM Deutschland GmbH, Siemensstraße 10, 63263 Neu-Isenburg, Germany
| | - Reiner Söhlmann
- District Council Office Rastatt, Environmental Agency, Am Schlossplatz 5, 76437 Rastatt, Germany
| | - Runa S Boeddinghaus
- Center for Agricultural Technology Augustenberg (LTZ), Neßlerstraße 25, 76227 Karlsruhe, Germany
| | - Philipp Blum
- Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences (AGW), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Goodrich JA, Walker D, Lin X, Wang H, Lim T, McConnell R, Conti DV, Chatzi L, Setiawan VW. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep 2022; 4:100550. [PMID: 36111068 PMCID: PMC9468464 DOI: 10.1016/j.jhepr.2022.100550] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Background & Aims Exposure to poly- and perfluoroalkyl substances (PFAS), a class of persistent organic pollutants, is ubiquitous. Animal studies suggest that PFAS may increase risk of fatty liver and hepatocellular carcinoma (HCC) via impacts on hepatic lipid, amino acid, and glucose metabolism, but human data is lacking. We examined associations between PFAS exposure, altered metabolic pathways, and risk of non-viral HCC. Methods In this nested case-control study, pre-diagnostic plasma PFAS and metabolomics were measured in 50 incident HCC cases and 50 individually matched controls from the Multiethnic Cohort (MEC) study. Cases/controls were matched by age, sex, race, and study area. PFAS exposure and risk of HCC were examined using conditional logistic regression. A metabolome-wide association study and pathway enrichment analysis was performed for PFAS exposure and HCC risk, and key metabolites/metabolic pathways were identified using a meet in the middle approach. Results High perfluorooctane sulfonic acid (PFOS) levels (90th percentile from NHANES; >55 μg/L) were associated with 4.5-fold increased risk of HCC (odds ratio 4.5, 95% CI 1.2-16.0). Pathway enrichment analysis showed that PFOS exposure was associated with alterations in amino acid and glycan biosynthesis pathways, which were also associated with HCC risk. We identified 4 metabolites linking PFOS exposure with HCC, including glucose, butyric acid (a short-chain fatty acid), α-ketoisovaleric acid (a branched-chain α-keto acid), and 7α-hydroxy-3-oxo-4-cholestenoate (a bile acid), each of which was positively associated with PFOS exposure and risk of HCC. Conclusion This proof-of-concept analysis shows that exposure to high PFOS levels was associated with increased risk of non-viral HCC, likely via alterations in glucose, amino acid, and bile acid metabolism. Larger studies are needed to confirm these findings. Lay summary Per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals” because they are difficult to break down and stay in the human body for years, are extremely common and can cause liver damage. In a first of its kind study, we found that exposure to high levels of perfluorooctanesulfonic acid, one of the most common PFAS chemicals, was linked to increased risk of hepatocellular carcinoma in humans. Hepatocellular carcinoma is difficult to treat and is one of the most common forms of liver cancer, and these findings may provide new avenues for helping to prevent this disease. Associations of PFAS and risk of hepatocellular carcinoma were tested in humans. PFAS and untargeted metabolomics were assessed in pre-diagnostic samples. Exposure to high PFOS levels was linked to increased hepatocellular carcinoma risk. The likely mechanisms were via alterations in glucose, amino acid, and bile acid metabolism.
Collapse
Key Words
- Chemical exposure
- HCC, hepatocellular carcinoma
- HILIC, hydrophilic interaction chromatography
- HRMS, high-resolution mass spectrometry
- LC, liquid chromatography
- MEC, Multiethnic Cohort
- MWAS, metabolome-wide association
- NAFLD, non-alcoholic fatty liver disease
- PFAS, perfluoroalkyl substances
- PFDA, perfluorodecanoate
- PFHxS, perfluorohexane sulfonate
- PFNA, perfluorononanoate
- PFOA, perfluorooctanoate
- PFOS, perfluorooctane sulfonate
- PFUnDA, perfluoroundecanoic acid
- RP, reverse phase
- SEER, Surveillance, Epidemiology, and End Results
- bile acid
- exposome
- hepatocellular carcinoma
- metabolic pathway
- metabolome
- perfluorinated alkyl substance
Collapse
Affiliation(s)
- Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiangping Lin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tiffany Lim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Zweigle J, Bugsel B, Schmitt M, Zwiener C. Electrochemical Oxidation of 6:2 Polyfluoroalkyl Phosphate Diester-Simulation of Transformation Pathways and Reaction Kinetics with Hydroxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11070-11079. [PMID: 34327989 DOI: 10.1021/acs.est.1c02106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyfluoroalkyl phosphate diesters (diPAPs) are widely used for paper and cardboard impregnation and discharged via waste streams from production processes and consumer products. To improve the knowledge about the environmental fate of diPAPs, electrochemical oxidation (EO) was used to characterize the transformation pathways and reaction kinetics. 6:2 diPAP was transformed electrochemically to perfluorocarboxylic acids (C5-C7 PFCAs) and two intermediates (6:2 fluorotelomer carboxylic acid, FTCA, and 6:2 fluorotelomer unsaturated carboxylic acid, FTUCA). EO of potential intermediates 6:2 monoPAP and 6:2 fluorotelomer alcohol (FTOH) showed similar transformation products but with different ratios. We show that 6:2 diPAP is initiated by OH radical (•OH) reactions, as evidenced by the measured steady-state concentrations of •OH with the probe molecule terephthalic acid, quenching experiments, and pH dependency of the reaction. PFHpA was the main product of 6:2 diPAP oxidation, and it was formed in a pseudo-first-order reaction for which a bimolecular rate constant was estimated to be k O • H , diPAP form PFHpA = 9.4(±1.4) × 107 M-1 s-1 by an initial rate approach. This can be utilized to estimate the environmental half-life of 6:2 diPAP for the reaction with •OH and the formation kinetics of persistent PFCAs.
Collapse
Affiliation(s)
- Jonathan Zweigle
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Boris Bugsel
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Markus Schmitt
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| |
Collapse
|
7
|
Chen M, Zhu L, Wang Q, Shan G. Tissue distribution and bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115887. [PMID: 33120332 DOI: 10.1016/j.envpol.2020.115887] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
Tissue distribution of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in several kinds of edible fishes collected from Meiliang bay of Taihu Lake, China were investigated and the related human health risks were assessed. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) were the most abundant legacy perfluoroalkyl acid (PFAA), PFOS related precursor (PreFOS), and the emerging PFASs in all fish tissues, respectively. Similar to the legacy PFAAs, 6:2 diPAP and 6:6 perfluorophosphinate (6:6 PFPiA) had the highest levels in the fish liver, whereas the highest level of PFOSA was in kidney, which might be due to its intensive transformation in fish liver. The concentrations of PFASs were generally positively correlated with the trophic levels. The profiles of PFASs were significantly different among bitterling, crucian and other fish, which might be related to their different metabolic capacities. Bioaccumulation factors (BAFs) of PreFOSs, 6:2 diPAP, and 6:6 PFPiA were lower than those of PFAAs with the same number of perfluorinated carbons. The calculated hazard ratios (HR) of PFOS (Range: 0.0100-0.655) and perfluorooctanoic acid (PFOA) (<0.00200) in all fish muscles were less than 1.0. However, the HR of the ∑PFASs in crucian muscle was 1.04, which implied that frequent consumption of crucian collected from Meiliang Bay might pose potential risks to human health.
Collapse
Affiliation(s)
- Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan, Shandong, 250014, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
8
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Feng X, Ye M, Li Y, Zhou J, Sun B, Zhu Y, Zhu L. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122124. [PMID: 32004838 DOI: 10.1016/j.jhazmat.2020.122124] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/01/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Emerging per/polyfluoroalkyl substances (PFASs) have received great concerns, but there are few data in the coastal environment, which play an essential role in their global transport. In this study, surface water and sediment samples were collected in the South Yellow Sea close to Jiangsu Province China, and 26 legacy as well as emerging PFASs were investigated. Perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS) were predominant in the coastal water of the South Yellow Sea with a relatively higher level than other coastal regions in the world. PFBS and 6:2 fuorotelomer sulfonic acid (6:2 FTSA) were two major alternatives of perfluorooctane sulfonate (PFOS) which were used in textile surface treatment and fire-fighting foams, respectively. Multiple receptor models identified that fluoropolymer manufacture, textile and food packages were three major sources of PFASs in the South Yellow Sea. The partitioning behaviors of PFASs between sediment and pore water in the marine environment were compared, and the partitioning coefficients of hexafluoropropylene oxide trimer acid (HFPO-TA) and 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 F-53B) were reported for the first time, which exhibited stronger partition in sediment than their predecessors. The results provide important hints to understand the environmental transport of PFASs in the marine environment.
Collapse
Affiliation(s)
- Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Minqiang Ye
- Jiangsu Lianyungang Environmental Monitoring Center, Lianyungang, Jiangsu 222000, PR China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
10
|
Mekni NH. Nucleophilic Vinyl/Allyl, CF3 and CF2α Perfluoroalkyl Groups Substitution and/or E1CB Elimination Reactions of Fluorine Atom(s) in Organofluorinated Compounds. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct substitution and elimination reactions of the fluorine atoms of difluoromethylene CF2α groups of nonspaced perfluoroalkyl chains, CF3 groups are very difficult to achieve. But, they become feasible with fluoro-alkenes, alkynes, imines or carbonyl derivatives, for which vinylic substitution and related carbanion-mediated pathways are available. In this review, we classify the major and unique fluorine substitution/elimination and rearrangement reactions and discuss their contribution to the synthesis of heterocyclic compounds.
Collapse
Affiliation(s)
- Nejib Hussein Mekni
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Munawarah, Saudi Arabia
| |
Collapse
|
11
|
Chen M, Guo T, He K, Zhu L, Jin H, Wang Q, Liu M, Yang L. Biotransformation and bioconcentration of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in common carp (Cyprinus carpio): Underestimated ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:201-208. [PMID: 30504021 DOI: 10.1016/j.scitotenv.2018.11.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 05/18/2023]
Abstract
Polyfluoroalkyl phosphates esters (PAPs) are widely used in a variety of commercial products, and have been detected in many aquatic organisms. In this study, common carps (Cyprinus carpio) were administered with 6:2 and 8:2 diPAP in water to investigate their bio-accumulation and transformation in fish. Several degradation products, including fluorotelomer unsaturated carboxylic acids (6:2 and 8:2 FTUCA), 5:3 and 7:3 fluorotelomer carboxylic acids (5:3 and 7:3 FTCA), perfluoroalkyl carboxylates (PFCAs) were identified in the carp liver. In addition, several phase-II metabolites, such as glutathione- and glucuronide-conjugated compounds were detected in the carp bile. 8:2 diPAP displayed lower accumulation potential than 6:2 diPAP probably due to its relatively large molecular size. However, 8:2 diPAP experienced more extensive transformation (transformation rate 6.78-14.6 mol%) and produced more phase I metabolites than 6:2 diPAP (0.49-0.66 mol%). The in vitro incubation with the liver S9 fraction confirmed that biotransformation of 6:2 and 8:2 diPAP took place in the carp liver. Further analyses of enzyme activities indicated that acid phosphatase (ACP) could be involved in mediating phase I while glutathione S-transferase (GST) involved in phase II metabolism of 6:2 and 8:2 diPAP in carp.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tingting Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Keyan He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| | - Hangbiao Jin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
12
|
von der Trenck KT, Konietzka R, Biegel-Engler A, Brodsky J, Hädicke A, Quadflieg A, Stockerl R, Stahl T. Significance thresholds for the assessment of contaminated groundwater: perfluorinated and polyfluorinated chemicals. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:19. [PMID: 29930891 PMCID: PMC5992233 DOI: 10.1186/s12302-018-0142-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Per- and polyfluorinated chemicals (PFC) do not occur naturally in the environment and are, therefore, of anthropogenic origin. As a consequence of their wide range of everyday applications and their extreme persistence in the environment, PFC have become ubiquitous in nature and can, therefore, be detected in groundwater as well as in many other environmental matrices. The German States' Water and Soil Consortia have compiled 'significance thresholds' (GFS) to assess groundwater contaminated with PFC. The GFS serve as criteria for the decision whether actions to remediate polluted groundwater are necessary. Thirteen of these PFC had been detected in groundwater at levels above their limit of quantitation and were assigned first priority. RESULTS The data regarding human health effects were sufficient to derive guide values according to the criteria of the German Drinking Water Ordinance for 7 of the 13 first-priority PFC. With regard to available ecotoxicological data, predicted no-effect concentration values from official risk assessments existed for 2 of the 13 first-priority PFC. A predicted no-effect concentration for protection of the aquatic biocenosis could be derived for eight more substances. CONCLUSIONS After evaluation of data from available literature regarding both human health and ecotoxicological effects, significance thresholds ranging from 0.06 to 10.0 µg/L could be derived for 7 of the 13 priority PFC in groundwater. As a practical guide valid solely for human health-based values, a summation rule was proposed for exposures to mixtures of these seven PFC.
Collapse
Affiliation(s)
- Karl Theo von der Trenck
- LUBW-State Institute for the Environment of the Federal State of Baden-Wuerttemberg, Griesbachstr. 1-3, 76185 Karlsruhe, Germany
- Present Address: Birkenweg 33, 69469 Weinheim, Germany
| | - Rainer Konietzka
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | | | - Jan Brodsky
- Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustr. 186, 65203 Wiesbaden, Germany
| | - Andrea Hädicke
- Department 32: Soil Protection, Contaminated Sites, Ecotoxicology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Wallneyer Str. 6, 45133 Essen, Germany
| | - Arnold Quadflieg
- Hessian Ministry for Environment, Climate Protection, Agriculture and Consumer Protection, Mainzer Str. 80, 65189 Wiesbaden, Germany
| | - Rudolf Stockerl
- Bavarian Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Thorsten Stahl
- Hessian State Laboratory, Am Versuchsfeld 11, 34128 Kassel, Germany
| |
Collapse
|
13
|
Gao Y, Chen H, Xiao X, Lui WY, Lee WM, Mruk DD, Cheng CY. Perfluorooctanesulfonate (PFOS)-induced Sertoli cell injury through a disruption of F-actin and microtubule organization is mediated by Akt1/2. Sci Rep 2017; 7:1110. [PMID: 28439067 PMCID: PMC5430865 DOI: 10.1038/s41598-017-01016-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
PFOS (perfluorooctanesulfonate, or perfluorooctane sulfonic acid) is an anthropogenic fluorosurfactant widely used in consumer products. While its use in Europe, Canada and the U.S. has been banned due to its human toxicity, it continues to be used in China and other developing countries as a global pollutant. Herein, using an in vitro model of Sertoli cell blood-testis barrier (BTB), PFOS was found to induce Sertoli cell injury by perturbing actin cytoskeleton through changes in the spatial expression of actin regulatory proteins. Specifically, PFOS caused mis-localization of Arp3 (actin-related protein 3, a branched actin polymerization protein) and palladin (an actin bundling protein). These disruptive changes thus led to a dis-organization of F-actin across Sertoli cell cytosol, causing truncation of actin microfilament, thereby failing to support the Sertoli cell morphology and adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ß-catenin), through a down-regulation of p-Akt1-S473 and p-Akt2-S474. The use of SC79, an Akt1/2 activator, was found to block the PFOS-induced Sertoli cell injury by rescuing the PFOS-induced F-actin dis-organization. These findings thus illustrate PFOS exerts its disruptive effects on Sertoli cell function downstream through Akt1/2. As such, PFOS-induced male reproductive dysfunction can possibly be managed through an intervention on Akt1/2 expression.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA. .,Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA.
| |
Collapse
|
14
|
Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology 2017; 375:28-36. [DOI: 10.1016/j.tox.2016.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
|
15
|
Xing Z, Lu J, Liu Z, Li S, Wang G, Wang X. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1037. [PMID: 27775680 PMCID: PMC5086776 DOI: 10.3390/ijerph13101037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography-mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population.
Collapse
Affiliation(s)
- Zhenni Xing
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zilong Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Shanman Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Gehui Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaolong Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
16
|
Zhong SQ, Chen ZX, Kong ML, Xie YQ, Zhou Y, Qin XD, Paul G, Zeng XW, Dong GH. Testosterone-Mediated Endocrine Function and TH1/TH2 Cytokine Balance after Prenatal Exposure to Perfluorooctane Sulfonate: By Sex Status. Int J Mol Sci 2016; 17:E1509. [PMID: 27626407 PMCID: PMC5037786 DOI: 10.3390/ijms17091509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/28/2023] Open
Abstract
Little information exists about the evaluation of potential developmental immunotoxicity induced by perfluorooctane sulfonate (PFOS), a synthetic persistent and increasingly ubiquitous environmental contaminant. To assess potential sex-specific impacts of PFOS on immunological health in the offspring, using male and female C57BL/6 mice, pups were evaluated for developmental immunotoxic effects after maternal oral exposure to PFOS (0.1, 1.0 and 5.0 mg PFOS/kg/day) during Gestational Days 1-17. Spontaneous TH1/TH2-type cytokines, serum levels of testosterone and estradiol were evaluated in F1 pups at four and eight weeks of age. The study showed that male pups were more sensitive to the effects of PFOS than female pups. At eight weeks of age, an imbalance in TH1/TH2-type cytokines with excess TH2 cytokines (IL-4) was found only in male pups. As for hormone levels, PFOS treatment in utero significantly decreased serum testosterone levels and increased estradiol levels only in male pups, and a significant interaction between sex and PFOS was observed for serum testosterone at both four weeks of age (pinteraction = 0.0049) and eight weeks of age (pinteraction = 0.0227) and for estradiol alternation at four weeks of age (pinteraction = 0.0351). In conclusion, testosterone-mediated endocrine function may be partially involved in the TH1/TH2 imbalance induced by PFOS, and these deficits are detectable among both young and adult mice and may affect males more than females.
Collapse
Affiliation(s)
- Shou-Qiang Zhong
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, Guangdong, China.
| | - Zan-Xiong Chen
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, Guangdong, China.
| | - Min-Li Kong
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, Guangdong, China.
| | - Yan-Qi Xie
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, Guangdong, China.
| | - Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Xiao-Di Qin
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Gunther Paul
- Faculty of Health, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
17
|
Abstract
Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility".
Collapse
Affiliation(s)
- Polyxeni Nicolopoulou-Stamati
- School of Medicine, Department of Pathology, MSc "Environment and Health. Capacity Building for Decision Making", National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece.
| | - Luc Hens
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B2400, Mol, Belgium
| | - Annie J Sasco
- Epidemiology for Cancer Prevention, Team on HIV, Cancer and Global Health, Inserm U 897 - Epidemiology and Biostatistics, Bordeaux Segalen University, 146 rue Leo Saignat, 33076, Bordeaux cedex, France
| |
Collapse
|
18
|
Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W, Covaci A, Cox B, Nawrot TS, Van Larebeke N, D'Hooghe T. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. ENVIRONMENT INTERNATIONAL 2015; 84:154-160. [PMID: 26292060 DOI: 10.1016/j.envint.2015.07.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Dioxins, PCBs, chlorinated pesticides, brominated flame retardants, bisphenol A, triclosan, perfluorinated compounds and phthalates are known as endocrine disrupting chemicals (EDCs). OBJECTIVES The aim of our study was to investigate whether higher exposure to EDCs is associated with increased subfertility in men. METHODS We measured biomarkers of exposure in 163 men, recruited through four fertility clinics. According to WHO guidelines, we used a total motility count (TMC) of 20 million as cut-off value. We assigned patients to the case group when two semen samples - collected at least one week apart - had a TMC<20 and to the control group when both samples had a TMC≥20. To estimate the risk of subfertility and alteration in sex hormone concentrations we used multivariable-adjusted analysis, using logistic and linear regressions, respectively. RESULTS For an IQR increase in serum oxychlordane, the odds ratio for subfertility was 1.98 (95% CI: 1.07; 3.69). Furthermore, men with serum levels of BDE209 above the quantification limit had an odds of 7.22 (1.03; 50.6) for subfertility compared with those having values below the LOQ. Urinary levels of phthalates and triclosan were negatively associated with inhibin B and positively with LH. Urinary bisphenol A correlated negatively with testosterone levels. CONCLUSIONS Our study in men showed that internal body concentrations of endocrine disrupting chemicals are associated with an increased risk of subfertility together with alterations in hormone levels. The results emphasize the importance to reduce chemicals in the environment in order to safeguard male fertility.
Collapse
Affiliation(s)
- Elly Den Hond
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium; Directorate of Public Health and Surveillance, Scientific Institute of Public Health, Brussels, Belgium.
| | - Herman Tournaye
- Centre for Reproductive Medicine, University Hospital Brussels, Free University of Brussels (VUB), Brussels, Belgium
| | - Petra De Sutter
- Department of Reproductive Medicine, University Hospital Ghent, University of Ghent, Ghent, Belgium
| | - Willem Ombelet
- Department of Obstetrics & Gynaecology, Genk Institute for Fertility Technology, ZOL Hospitals, Genk, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Nik Van Larebeke
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent, Belgium
| | - Thomas D'Hooghe
- Division of Reproductive Medicine, University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Knudsen LE, Mathiesen L, Nielsen JB, Tahti H, Heinonen T. Workshop of Scandinavian Society for Cell Toxicology 25-27 September 2013 in Denmark. Basic Clin Pharmacol Toxicol 2014; 115:1-3. [PMID: 24702947 DOI: 10.1111/bcpt.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|