1
|
Fu X, Ma J, Ma F, Guo S, Wang X, Li Y, Tang Y, Qi J, Zhang W, Ye L. MISP-mediated enhancement of pancreatic cancer growth through the Wnt/β-catenin signaling pathway is suppressed by Fisetin. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167515. [PMID: 39278512 DOI: 10.1016/j.bbadis.2024.167515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Pancreatic cancer is a highly malignant tumor characterized by high mortality and low survival rates. The mitotic interactor and substrate of Plk1 (MISP) is a cancer-associated protein that regulates mitotic spindle localization and is highly expressed in several malignant tumors, contributing to tumor development. However, the function and regulatory mechanisms of MISP in pancreatic cancer remain unclear. In this study, we analyzed RNA sequencing data related to pancreatic cancer from the TCGA and GEO databases, identifying MISP as a potential prognostic marker for the disease. MISP was significantly upregulated in pancreatic cancer cells and tissues compared to normal pancreatic cells and tissues. Notably, in pancreatic cancer cells, high MISP protein expression promoted cell proliferation and growth. Mechanistically, the upregulation of MISP facilitated the nuclear accumulation of β-catenin, thereby activating the Wnt/β-catenin signaling pathway and promoting pancreatic cancer growth. In search of effective inhibitors of MISP expression, we screened an FDA-approved drug library and identified Fisetin as a potential suppressor of MISP expression. Fisetin was found to downregulate the transcription factor MYB, thereby reducing MISP expression. Further experiments demonstrated that Fisetin effectively inhibited the in vitro and in vivo growth of pancreatic cancer by suppressing the MISP/Wnt/β-catenin signaling axis. In summary, our research has identified MISP as a novel therapeutic target in pancreatic cancer and uncovered its associated regulatory mechanisms.
Collapse
Affiliation(s)
- Xueli Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiaqi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shiman Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanxin Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingwei Qi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90001, USA
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Costa Cerqueira M, Silva A, Martins Sousa S, Pinto-Ribeiro F, Baltazar F, Afonso J, Freitas Costa M. Chromene-based compounds as drug candidates for renal and bladder cancer therapy - A systematic review. Bioorg Chem 2024; 153:107865. [PMID: 39393199 DOI: 10.1016/j.bioorg.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Renal (RC) and bladder cancers (BC) are common urological malignancies prevalent in the male population. Incidence and mortality rates are expected to increase in the near future. Drug toxicity and development of drug resistance in both diseases are major obstacles to achieve successful treatments. Chromenes are heterocyclic compounds constituted by a benzene ring fused to a pyran nucleus. Natural and synthetic chromene-based compounds have proven to be promising anticancer agents. Additionally, re-sensitization of cancer cells to classical treatments has also been demonstrated. Thus, the aim of this systematic review is to assess the potential of chromene-based compounds in the treatment of RC and BC. Study collection was performed in six different databases, to compile existing information on preclinical (in vitro and in vivo) and clinical studies developed to date. Overall, multiple chromene-based compounds showed potent anticancer effects, affecting several biological features such as reduction in cell viability, proliferation, migration and invasion in vitro, and induction of cell cycle arrest and cell death. Tumor volume and weight were generally decreased in vivo upon chromene-based treatment. Modest results have been obtained in two clinical trials, with reports of a partial response and two objective responses in RC patients. Thus, the chromene family can be considered an attractive chemical scaffold, harboring promising drug candidates for RC and BC therapeutics.
Collapse
Affiliation(s)
- Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia Martins Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
3
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Tavenier J, Nehlin JO, Houlind MB, Rasmussen LJ, Tchkonia T, Kirkland JL, Andersen O, Rasmussen LJH. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev 2024; 222:111995. [PMID: 39384074 DOI: 10.1016/j.mad.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Fisetin, a flavonoid naturally occurring in plants, fruits, and vegetables, has recently gained attention for its potential role as a senotherapeutic agent for the treatment of age-related chronic diseases. Senotherapeutics target senescent cells, which accumulate with age and disease, in both circulating immune cell populations and solid organs and tissues. Senescent cells contribute to development of many chronic diseases, primarily by eliciting systemic chronic inflammation through their senescence-associated secretory phenotype. Here, we explore whether fisetin as a senotherapeutic can eliminate senescent cells, and thereby alleviate chronic diseases, by examining current evidence from in vitro studies and animal models that investigate fisetin's impact on age-related diseases, as well as from phase I/II trials in various patient populations. We discuss the application of fisetin in humans, including challenges and future directions. Our review of available data suggests that targeting senescent cells with fisetin offers a promising strategy for managing multiple chronic diseases, potentially transforming future healthcare for older and multimorbid patients. However, further studies are needed to establish the safety, pharmacokinetics, and efficacy of fisetin as a senotherapeutic, identify relevant and reliable outcome measures in human trials, optimize dosing, and better understand the possible limitations of fisetin as a senotherapeutic agent.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; The Hospital Pharmacy, Marielundsvej 25, Herlev 2730, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Tamara Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark; The Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 West Main Street Suite 201, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
6
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
7
|
Qaed E, Al-Hamyari B, Al-Maamari A, Qaid A, Alademy H, Almoiliqy M, Munyemana JC, Al-Nusaif M, Alafifi J, Alyafeai E, Safi M, Geng Z, Tang Z, Ma X. Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies. Glob Med Genet 2023; 10:205-220. [PMID: 37565061 PMCID: PMC10412067 DOI: 10.1055/s-0043-1772219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Background Cancer remains a critical global health challenge and a leading cause of mortality. Flavonoids found in fruits and vegetables have gained attention for their potential anti-cancer properties. Fisetin, abundantly present in strawberries, apples, onions, and other plant sources, has emerged as a promising candidate for cancer prevention. Epidemiological studies linking a diet rich in these foods to lower cancer risk have sparked extensive research on fisetin's efficacy. Objective This review aims to comprehensively explore the molecular mechanisms of fisetin's anticancer properties and investigate its potential synergistic effects with other anticancer drugs. Furthermore, the review examines the therapeutic and preventive effects of fisetin against various cancers. Methods A systematic analysis of the available scientific literature was conducted, including research articles, clinical trials, and review papers related to fisetin's anticancer properties. Reputable databases were searched, and selected studies were critically evaluated to extract essential information on fisetin's mechanisms of action and its interactions with other anticancer drugs. Results Preclinical trials have demonstrated that fisetin inhibits cancer cell growth through mechanisms such as cell cycle alteration, induction of apoptosis, and activation of the autophagy signaling pathway. Additionally, fisetin reduces reactive oxygen species levels, contributing to its overall anticancer potential. Investigation of its synergistic effects with other anticancer drugs suggests potential for combination therapies. Conclusion Fisetin, a bioactive flavonoid abundant in fruits and vegetables, exhibits promising anticancer properties through multiple mechanisms of action. Preclinical trials provide a foundation for further exploration in human clinical trials. Understanding fisetin's molecular mechanisms is vital for developing novel, safe, and effective cancer prevention and treatment strategies. The potential synergy with other anticancer drugs opens new avenues for combination therapies, enhancing cancer management approaches and global health outcomes.
Collapse
Affiliation(s)
- Eskandar Qaed
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Bandar Al-Hamyari
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Yemen
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Murad Al-Nusaif
- Department of Neurology and Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Jameel Alafifi
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Mohammed Safi
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Zeyao Tang
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaodong Ma
- Department of Pharmacy, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
8
|
Zhou C, Huang Y, Nie S, Zhou S, Gao X, Chen G. Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent. Eur J Med Res 2023; 28:297. [PMID: 37626424 PMCID: PMC10464434 DOI: 10.1186/s40001-023-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin, a natural flavonoid, possesses numerous biological activities that have been extensively studied in various diseases. When it comes to cancer, fisetin exhibits a range of biological effects, such as suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration. Moreover, fisetin has the ability to enhance the effectiveness of chemotherapy. The anticancer properties of fisetin can be attributed to a diverse array of molecules and signaling pathways, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1. Consequently, fisetin holds promise as a therapeutic agent for anticancer treatment. In this review, we place emphasis on the biological functions and various molecular targets of fisetin in anticancer therapy.
Collapse
Affiliation(s)
- Chenhui Zhou
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China
| | - Xiang Gao
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, 315300, China.
| | - Gao Chen
- School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249009. [PMID: 36558146 PMCID: PMC9782831 DOI: 10.3390/molecules27249009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
- Correspondence:
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
10
|
Global Trends in Research of Treatment on Bladder Cancer with Chinese Medicine Monomer from 2000 to 2021: A Bibliometric Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3382360. [PMID: 36245973 PMCID: PMC9553534 DOI: 10.1155/2022/3382360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Bladder cancer is a malignant tumor that occurs on the mucous membrane of the bladder. It is the most common malignant tumor of the urinary system and one of the top ten common tumors in the whole body. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers about treatment on bladder cancer with Chinese medicine monomer over the past 22 years. We retrieved publications published from 2000 to 2021 and their recorded information from Web of Science Core Collection (WoSCC). VOSviewer and CiteSpace were used to analyze bibliometric indicators and visualize the trend and hotspots of researches on bladder cancer with Chinese medicine monomer. Altogether, 658 original articles were reviewed, and the results showed that the annual number of publications (Np) shows an upward trend over the past 22 years as a whole. The US produced the most papers, and the number of citations (Nc) and H-index of the US ranked first. Johns Hopkins University and BJU International were the most prolific affiliation and journal, respectively. Recently, the keywords “NF-kappa B” appeared frequently. Besides, quercetin is the most thorough research in the treatment of bladder cancer with Chinese herbal compound, but whether quercetin is the most potent compound needs further study.
Collapse
|
11
|
Zhang F, Ganesan K, Liu Q, Chen J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022; 11:cells11182885. [PMID: 36139460 PMCID: PMC9497142 DOI: 10.3390/cells11182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) has been extensively employed in Traditional Chinese Medicine to treat several ailments. SSD and its active compounds are effective therapeutic agents for treating a variety of diseases with negligible side effects. Therefore, we aimed to investigate its phytochemistry, pharmacology, and potential therapeutic effects exclusively in cancer prevention and treatment. Phytochemical and pharmacological information was collected and arranged in a rational order. SSD has been frequently attributed to having antioxidant, anti-diabetic, anti-inflammatory, hematopoietic, neuroprotective, antimicrobial, and anticancer properties. Evidence has indicated that the bioactive constituents in SSD have attracted increasing scientific attention due to their preventive role in cancers. Further, the present review provides the current information on the health implications of SSD, thus allowing for future clinical trials to explore its restorative benefits. All data of in vitro and animal investigations of SSD, as well as its effect on human health, were obtained from an electronic search and library database. The diverse pharmacological potential of SSD provides an opportunity for preclinical drug discovery, and this comprehensive review strongly indicates that SSD is an excellent anti-tumorigenic agent that modulates or prevents breast cancer.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3917-6479
| |
Collapse
|
12
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
13
|
Valorization of Onion Waste by Obtaining Extracts Rich in Phenolic Compounds and Feasibility of Its Therapeutic Use on Colon Cancer. Antioxidants (Basel) 2022; 11:antiox11040733. [PMID: 35453418 PMCID: PMC9032738 DOI: 10.3390/antiox11040733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, the total phenolic content, the antioxidant and antiproliferative activities of onion waste extracts were characterized. Some phenolic compounds present in the extracts were also identified and quantified by HPLC-DAD. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The onion extract possessed a high amount of phenolic compounds (177 ± 9 mg/g extract) and had an effective antioxidant capacity measured by ABTS, FRAP and DPPH assays. Regarding the antiproliferative activity, the onion extracts produced cell cycle arrest in the S phase with p53 activation, intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation. Likewise, onion waste increased intracellular ROS with possible NF-kB activation causing a proteasome down regulation. In addition, the extracts protected the intestine against oxidative stress induced by H2O2. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to protocatechuic acid. Therefore, this study provides new insights regarding the potential use of these types of extract as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress, such as cancer. In addition, its valorization would contribute to the circular economy.
Collapse
|
14
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
15
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
16
|
Miao L, Zhang H, Yang L, Chen L, Xie Y, Xiao J. Flavonoids. ANTIOXIDANTS EFFECTS IN HEALTH 2022:353-374. [DOI: 10.1016/b978-0-12-819096-8.00048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021; 13:nu13113750. [PMID: 34836005 PMCID: PMC8621729 DOI: 10.3390/nu13113750] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions.
Collapse
|
18
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
19
|
Ngoi NY, Liew AQ, Chong SJF, Davids MS, Clement MV, Pervaiz S. The redox-senescence axis and its therapeutic targeting. Redox Biol 2021; 45:102032. [PMID: 34147844 PMCID: PMC8220395 DOI: 10.1016/j.redox.2021.102032] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Significance Cellular growth arrest, associated with ‘senescence’, helps to safeguard against the accumulation of DNA damage which is often recognized as the underlying mechanism of a wide variety of age-related pathologies including cancer. Cellular senescence has also been described as a ‘double-edged sword’. In cancer, for example, the creation of an immune-suppressive milieu by senescent tumor cells through the senescence-associated secretory phenotype contributes toward carcinogenesis and cancer progression. Recent advances The potential for cellular senescence to confer multi-faceted effects on tissue fate has led to a rejuvenated interest in its landscape and targeting. Interestingly, redox pathways have been described as both triggers and propagators of cellular senescence, leading to intricate cross-links between both pathways. Critical issues In this review, we describe the mechanisms driving cellular senescence, the interface with cellular redox metabolism as well as the role that chemotherapy-induced senescence plays in secondary carcinogenesis. Notably, the role that anti-apoptotic proteins of the Bcl-2 family play in inducing drug resistance via mechanisms that involve senescence induction. Future directions Though the therapeutic targeting of senescent cells as cancer therapy remains in its infancy, we summarize the current development of senotherapeutics, including recognized senotherapies, as well as the repurposing of drugs as senomorphic/senolytic candidates.
Collapse
Affiliation(s)
- Natalie Yl Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Angeline Qx Liew
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stephen J F Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marie-Veronique Clement
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; Faculté de Medicine, University of Paris, Paris, France.
| |
Collapse
|
20
|
Farrag MA, Ezz MK, Ibrahim NK, Ahmed EK. Chemopreventive Potential of Myrtenal against Nitrosamine-Initiated, Radiation-Promoted Rat Bladder Carcinogenesis. Nutr Cancer 2021; 74:288-298. [PMID: 33511885 DOI: 10.1080/01635581.2021.1879881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study was undertaken to evaluate the chemopreventive activity of myrtenal, a natural monoterpene, against bladder carcinoma in rats induced with N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and promoted with γ-ionizing radiation (γ-IRR) as well as to assess the involvement of inflammation, apoptosis and oxidative damage in tumor development. Histopathological examination of rat bladder revealed the presence of noninvasive papillary transitional cell carcinoma (Grade 2) in sections from BBN group indicating the credibility of the applied carcinogenesis model. Myrtenal treatment caused improvement in urinary bladder mucosa with cells more likely in Grade 1. Administration of myrtenal to BBN-treated rats exhibited downregulation in the expressions of COX-2, NF-kB and STAT-3 associated with suppression of inflammatory cytokines levels of TNF-α and IL-6 as well as biomarkers of oxidative damage (MDA & NO). In addition, myrtenal treatment caused a significant increase in caspase-3 activity and Bax/Bcl-2 ratio. Data obtained suggested that the anti-inflammatory effect and the induction of apoptosis contributed largely to the beneficial antitumor effects of myrtenal in rats with BBN/γ-IRR-induced bladder carcinoma. Present findings, in addition to benefits described in other pathologies, indicated myrtenal as a potential adjuvant natural compound for the prevention of tumor progression of bladder cancer.
Collapse
Affiliation(s)
- Mostafa A Farrag
- Radiation biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Magda K Ezz
- Department of Biochemistry, Faculty of science, Ain Shams University, Cairo, Egypt
| | - Nashwa K Ibrahim
- Radiation biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, Atif M, Tufail T, Anjum FM. Fisetin: An anticancer perspective. Food Sci Nutr 2021; 9:3-16. [PMID: 33473265 PMCID: PMC7802565 DOI: 10.1002/fsn3.1872] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the provision of safe and cost-effective chemopreventive cancer approaches, still there are requirements to enhance their efficiency. The use of dietary agents as phytochemicals plays an imperative role against different human cancer cell lines. Among these novel dietary agents, fisetin (3,3',4',7-tetrahydroxyflavone) is present in different fruits and vegetables such as apple, persimmon, grape, strawberry, cucumber, and onion. Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage, and modulate the expressions of Bcl-2 family proteins in different cancer cell lines (HT-29, U266, MDA-MB-231, BT549, and PC-3M-luc-6), respectively. Further, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF-κB activation, and down-regulates the level of the oncoprotein securin. Fisetin also inhibited cell division and proliferation and invasion as well as lowered the TET1 expression levels. The current review article highlights and discusses the anticancer role of fisetin in cell cultures and animal and human studies. Conclusively, fisetin as a polyphenol with pleiotropic pharmacological properties showed promising anticancer activity in a wide range of cancers. Fisetin suppresses the cancer cell stages, prevents progression in cell cycle and cell growth, and induces apoptosis.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial ResistanceOrel StateUniversity Named After I.S. TurgenevOrelRussia
| | - Ali Imran
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Atif
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | | |
Collapse
|
22
|
GSK-3β-Targeting Fisetin Promotes Melanogenesis in B16F10 Melanoma Cells and Zebrafish Larvae through β-Catenin Activation. Int J Mol Sci 2020; 21:ijms21010312. [PMID: 31906440 PMCID: PMC6982351 DOI: 10.3390/ijms21010312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Fisetin is found in many fruits and plants such as grapes and onions, and exerts anti-inflammatory, anti-proliferative, and anticancer activity. However, whether fisetin regulates melanogenesis has been rarely studied. Therefore, we evaluated the effects of fisetin on melanogenesis in B16F10 melanoma cell and zebrafish larvae. The current study revealed that fisetin slightly suppressed in vitro mushroom tyrosinase activity; however, molecular docking data showed that fisetin did not directly bind to mushroom tyrosinase. Unexpectedly, fisetin significantly increased intracellular and extracellular melanin production in B16F10 melanoma cells regardless of the presence or absence of α-melanocyte stimulating hormone (α-MSH). We also found that the expression of melanogenesis-related genes such as tyrosinase and microphthalmia-associated transcription factor (MITF), were highly increased 48 h after fisetin treatment. Pigmentation of zebrafish larvae by fisetin treatment also increased at the concentrations up to 200 µM and then slightly decreased at 400 µM, with no alteration in the heart rates. Molecular docking data also revealed that fisetin binds to glycogen synthase kinase-3β (GSK-3β). Therefore, we evaluated whether fisetin negatively regulated GSK-3β, which subsequently activates β-catenin, resulting in melanogenesis. As expected, fisetin increased the expression of β-catenin, which was subsequently translocated into the nucleus. In the functional assay, FH535, a Wnt/β-catenin inhibitor, significantly inhibited fisetin-mediated melanogenesis in zebrafish larvae. Our data suggested that fisetin inhibits GSK-3β, which activates β-catenin, resulting in melanogenesis through the revitalization of MITF and tyrosinase.
Collapse
|
23
|
Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Pakistan..
| | - Marcella Reale
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Scalo (CH), Italy
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of Balearic Islands, Ctra. Valldemossa Km 75, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Ying Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
24
|
Hu LF, Feng J, Dai X, Sun Y, Xiong M, Lai L, Zhong S, Yi C, Chen G, Li H, Yang Q, Kuang Q, Long T, Zhan J, Tang T, Ge C, Tan J, Xu M. Oral flavonoid fisetin treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by regulation of multicombined signaling. J Nutr Biochem 2019; 77:108253. [PMID: 31835147 DOI: 10.1016/j.jnutbio.2019.108253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Excess high-fat diet (HFD) intake predisposes the occurrence of obesity-associated heart injury, but the mechanism is elusive. Fisetin (FIS), as a natural flavonoid, has potential activities to alleviate obesity-induced metabolic syndrome. However, the underlying molecular mechanisms of FIS against HFD-induced cardiac injury remain unclear. The present study was to explore the protective effects of FIS on cardiac dysfunction in HFD-fed mice. We found that FIS alleviated HFD-triggered metabolic disorder by reducing body weight, fasting blood glucose and insulin levels, and insulin resistance. Moreover, FIS supplements significantly alleviated dyslipidemia in both mouse hearts and cardiomyocytes stimulated by metabolic stress. FIS treatment abolished HFD-induced inflammatory response in heart tissues through suppressing TNF receptor-1/TNF receptor-associated factor-2 (Tnfr-1/Traf-2) signaling. Furthermore, FIS induced a strong reduction in the expression of fibrosis-related genes, contributing to the inhibition of fibrosis by inactivating transforming growth factor (Tgf)-β1/Smads/Erk1/2 signaling. Collectively, these results demonstrated that FIS could be a promising therapeutic strategy for the treatment of obesity-associated cardiac injury.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Geng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Tingting Tang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
25
|
Hou GR, Zeng K, Lan HM, Wang Q. Juglanin ameliorates UVB‑induced skin carcinogenesis via anti‑inflammatory and proapoptotic effects in vivo and in vitro. Int J Mol Med 2018; 42:41-52. [PMID: 29620254 PMCID: PMC5979868 DOI: 10.3892/ijmm.2018.3601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet (UV) radiation induces skin injury, and is associated with the development and formation of melanoma, which is a highly lethal form of skin cancer. Juglanin is a natural product, which is predominantly extracted from Polygonum aviculare, and is considered a functional component among its various compounds. Juglanin has been reported to exert marked protective effects in various diseases via the inhibition of inflammation and tumor cell growth. The present study aimed to explore the effects of juglanin on human skin cancer induced by UV and to reveal the underlying molecular mechanism. In the present study, immunohistochemical analysis, western blot analysis, RT-qPCR analysis and flow cytometry assays were mainly used in vivo and/or in vitro. The results indicated that in mice, UVB exposure increased susceptibility to carcinogens, and accelerated disease pathogenesis. Conversely, juglanin was able to ameliorate this condition via inhibition of inflammation, suppression of cell proliferation and induction of apoptosis via p38/c‑Jun N‑terminal kinase (JNK) blockage, nuclear factor (NF)‑κB inactivation and caspase stimulation in vivo. In addition, in vitro, the present study demonstrated that treatment of UVB‑stimulated B16F10 melanoma cells with juglanin resulted in a dose‑dependent decrease in cell viability, as well as increased apoptosis via the upregulation of caspase expression and poly (ADP‑ribose) polymerase cleavage. In addition, juglanin markedly attenuated p38/JNK signaling, inactivated the phosphoinositide 3‑kinase/protein kinase B pathway and suppressed UVB‑induced NF‑κB activation. Taken together, these results indicated the possibility of applying juglanin in combination with UVB as a potential therapeutic strategy for preventing skin cancer.
Collapse
Affiliation(s)
- Gui-Rong Hou
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Mei Lan
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
26
|
Jeng LB, Kumar Velmurugan B, Chen MC, Hsu HH, Ho TJ, Day CH, Lin YM, Padma VV, Tu CC, Huang CY. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol 2018; 233:7134-7142. [PMID: 29574877 DOI: 10.1002/jcp.26532] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 02/02/2018] [Indexed: 11/06/2022]
Abstract
Irinotecan (CPT11) and Oxaliplatin have been used in combination with fluorouracil and leucovorin for treating colorectal cancer. However, the efficacy of these drugs is reduced due to various side effects and drug resistance. Fisetin, a hydroxyflavone possess anti-proliferative, anti-cancer, anti-inflammatory, and antioxidant activity against various types of cancers. Apart from that, fisetin has been shown to induce cytotoxic effects when combined with other known chemotherapeutic drugs. In this study, we aimed to investigate whether Fisetin was capable of sensitizing both Irinotecan and Oxaliplatin resistance colon cancer cells and explored the possible signaling pathways involved using In vitro and In vivo models. The results showed that Fisetin treatment effectively inhibited cell viability and apoptosis of CPT11-LoVo cells than Oxaliplatin (OR) and parental LoVo cancer cells. Western blot assays suggested that apoptosis was induced by fisetin administration, promoting Caspase-8, and Cytochrome-C expressions possibly by inhibiting aberrant activation of IGF1R and AKT proteins. Furthermore, fisetin inhibited tumor growth in athymic nude mouse xenograft model. Overall, our results provided a basis for Fisetin as a promising agent to treat parental as well as chemoresistance colon cancer.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery and Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | | | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
28
|
Yang SL, Wang JJ, Chen M, Xu L, Li N, Luo YL, Bu L, Zhang MN, Li H, Su BL. Pioglitazone Use and Risk of Bladder Cancer: an In Vitro Study. Int J Med Sci 2018; 15:228-237. [PMID: 29483814 PMCID: PMC5820852 DOI: 10.7150/ijms.22408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Aims: Whether pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma agonist, increases the risk of developing bladder cancer has been debated for several years. The aim of this study was to investigate the in vitro effects of PIO on normal urothelial transitional epithelium (NUTE) cells and bladder cancer (J82) cells to further evaluate the risk. Methods: NUTE cells were obtained from Sprague-Dawley rats. NUTE and J82 cells were treated with different concentrations of PIO for various time periods. Cell proliferation was tested by the MTT assay. Cell apoptosis was evaluated by flow cytometry. The expressions of p53, cyclin D1, Bcl-2, and Bax were determined by qRT-PCR and western blots. Results: After 24 hours, the treatment of NUTE cells with 10 μmol/L PIO led to morphological changes, without changes in J82 cells. Moreover, PIO inhibited the proliferation and induced apoptosis of NUTE cells, but not J82 cells, in a time- and dose-dependent manner. However, PIO did not alter the growth of cells from other tissues. In addition, treatment with PIO for up to 72 hours did not result in changes in the expressions of p53, cyclin D1, Bcl-2, and Bax in NUTE cells and J82 cells. Interestingly, PIO significantly downregulated the protein levels of p53 and cyclin D1 in J82 cells, but not NUTE cells after more than 192 hours of treatment. Conclusions: PIO did not promote malignant alterations of NUTE cells or stimulate proliferation of J82 cells. PIO decreased the expression of p53 and cyclin D1 in J82 cells after long-term culture, which suggested that PIO may be helpful for diabetic patients with bladder cancer.
Collapse
Affiliation(s)
- Shao-Ling Yang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Soochow University School of Medicine, Suzhou, 215000, China
| | - Ji-Jiao Wang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Ming Chen
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, 210000, China
| | - Lu Xu
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Nan Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi-Li Luo
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Le Bu
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Man-Na Zhang
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hong Li
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ben-Li Su
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
29
|
Sung B. Role of Fisetin in Chemosensitization. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:111-139. [DOI: 10.1016/b978-0-12-812373-7.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
30
|
Sui X, Lei L, Chen L, Xie T, Li X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 2017; 8:93279-93294. [PMID: 29190997 PMCID: PMC5696263 DOI: 10.18632/oncotarget.21565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests the idea that chronic inflammation may play a critical role in various malignancies including bladder cancer and long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is significantly effective in reducing certain cancer incidence and mortality. However, the molecular mechanisms leading to malignant transformation and the progression of bladder cancer in a chronically inflammatory environment remain largely unknown. In this review, we will describe the role of inflammation in the formation and development of bladder cancer and summarize the possible molecular mechanisms by which chronic inflammation regulates cell immune response, proliferation and metastasis. Understanding the novel function orchestrating inflammation and bladder cancer will hopefully provide us insights into their future clinical significance in preventing bladder carcinogenesis and progression.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liming Lei
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xue Li
- Departments of Urology and Pathology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Liu J, Duan X. PA-MSHA induces apoptosis and suppresses metastasis by tumor associated macrophages in bladder cancer cells. Cancer Cell Int 2017; 17:76. [PMID: 28824336 PMCID: PMC5561576 DOI: 10.1186/s12935-017-0445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate effects of Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) on the inhibition of the proliferation of bladder cancer cell lines and to further define its functional mechanisms. METHODS A rat model of bladder tumor was induced by intravesical N-methyl-N nitrosourea. The dynamic growth of tumor was measured by whole-body fluorescent imaging system. Morphological analysis was observed by hematoxylin-eosin staining and microscopic examination. The expression of Caspase 3 and E-Ca were detected by immunohistochemistry technique. Macrophages were separated by flow cytometry. The expression of cytokines was measured by qRT-PCR and western blot. Apoptosis ability was conducted by means of annexin V and propidium iodide. The abilities of invasion and migration were determined by transwell migration assay and scratch assay. RESULTS PA-MSHA and PA-MSHA + Fisetin groups inhibited the growth of tumor and increased the ratio of M1/M2. For one thing, PA-MSHA suppressed the invasive ability of the bladder tumor cell and promoted bladder tumor cell apoptosis. For another, it facilitated the expression of M1 cytokines and reduced expression of M2 cytokines. Furthermore, treated with PA-MSHA, mouse M1 phagocytosis rates were higher than that of M2 macrophages for bladder cancer lines. CONCLUSIONS The data revealed that PA-MSHA might promote apoptosis and inhibit proliferation, invasion and migration of mouse bladder cancer cells by inducing M1 polarization.
Collapse
Affiliation(s)
- Jianjun Liu
- Department of Urology, Henan Provincial People’s Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Xiaoyu Duan
- Department of Urology, Henan Provincial People’s Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| |
Collapse
|
32
|
Hytti M, Szabó D, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Petrovski G, Kauppinen A. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. J Nutr Biochem 2017; 42:37-42. [PMID: 28113103 DOI: 10.1016/j.jnutbio.2016.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Plant-derived polyphenols are known to possess anti-inflammatory and antioxidant effects. In recent years, several studies have investigated their potential benefits for treating chronic diseases associated with prolonged inflammation and excessive oxidative stress, such as age-related macular degeneration (AMD). Previously, two polyphenols, fisetin and luteolin, have been reported to increase the survival of retinal pigment epithelial (RPE) cells suffering from oxidative stress as well as decreasing inflammation but the benefits of polyphenol therapy seem to depend on the model system used. Our aim was to analyze the effects of fisetin and luteolin on inflammation and cellular viability in a model of nonoxidative DNA damage-induced cell death in human RPE (hRPE) cells. Pretreatment of ARPE-19 or primary hRPE cells with the polyphenols augmented etoposide-induced cell death as measured by the lactate dehydrogenase and 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. However, the treatment was able to reduce the release of two proinflammatory cytokines, IL-6 and IL-8, which were determined by enzyme-linked Immunosorbent assay. Analyses of caspase 3 activity, p53 acetylation and SIRT1 protein levels revealed the apoptotic nature of etoposide-evoked cell death and that fisetin and luteolin augmented the etoposide-induced acetylation of p53 and decreased SIRT1 levels. Taken together, our findings suggest that the cytoprotective effects of fisetin and luteolin depend on the stressor they need to combat, whereas their anti-inflammatory potential is sustained over a variety of model systems. Careful consideration of disease pathways will be necessary before fisetin or luteolin can be recommended as therapeutic agents for inflammatory diseases in general and specifically AMD.
Collapse
Affiliation(s)
- Maria Hytti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Dora Szabó
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Niina Piippo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Eveliina Korhonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Center of Eye Research, Department of Ophthalmology, and Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway.
| | - Anu Kauppinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
33
|
Youns M, Abdel Halim Hegazy W. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways. PLoS One 2017; 12:e0169335. [PMID: 28052097 PMCID: PMC5215656 DOI: 10.1371/journal.pone.0169335] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Collapse
Affiliation(s)
- Mаhmoud Youns
- Department of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- * E-mail:
| | - Wael Abdel Halim Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al-Sharqia, Egypt
| |
Collapse
|
34
|
Leu JD, Wang BS, Chiu SJ, Chang CY, Chen CC, Chen FD, Avirmed S, Lee YJ. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models. Oncol Lett 2016; 12:4975-4982. [PMID: 28105204 PMCID: PMC5228362 DOI: 10.3892/ol.2016.5345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.
Collapse
Affiliation(s)
- Jyh-Der Leu
- Department of Radiation Oncology, Taipei City Hospital, Renai Branch, Da'an, Taipei 106, Taiwan, R.O.C
| | - Bo-Shen Wang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang-Ming University, Beitou, Taipei 112, Taiwan, R.O.C
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang-Ming University, Beitou, Taipei 112, Taiwan, R.O.C
| | - Chien-Chih Chen
- Department of Family Medicine, Taipei City Hospital, Renai Branch, Da'an, Taipei 112, Taiwan, R.O.C
| | - Fu-Du Chen
- Department of Electronic Engineering, Hwa-Hsia University of Technology, Zhonghe, Taipei 235, Taiwan, R.O.C
| | - Shiirevnyamba Avirmed
- Department of Surgery, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang-Ming University, Beitou, Taipei 112, Taiwan, R.O.C.; Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Beitou, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
35
|
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016; 31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/19/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Current ageing research is aimed not only at the promotion of longevity, but also at improving health span through the discovery and development of new therapeutic strategies by investigating molecular and cellular pathways involved in cellular senescence. Understanding the mechanism of action of polyphenolic compounds targeting mTOR (mechanistic target of rapamycin) and related pathways opens up new directions to revolutionize ways to slow down the onset and development of age-dependent degeneration. Herein, we will discuss the mechanisms by which polyphenols can delay the molecular pathogenesis of ageing via manipulation or more specifically inhibition of mTOR-signaling pathways. We will also discuss the implications of polyphenols in targeting mTOR and its related pathways on health life span extension and longevity..
Collapse
|
36
|
The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 2016; 789:8-16. [DOI: 10.1016/j.ejphar.2016.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022]
|
37
|
Lall RK, Adhami VM, Mukhtar H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol Nutr Food Res 2016; 60:1396-405. [PMID: 27059089 DOI: 10.1002/mnfr.201600025] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Cancer remains a major public health concern and a significant cause of death worldwide. Identification of bioactive molecules that have the potential to inhibit carcinogenesis continues to garner interest among the scientific community. In particular, flavonoids from dietary sources are the most sought after because of their safety, cost-effectiveness, and feasibility of oral administration. Emerging data have provided newer insights into understanding the molecular mechanisms that are essential to identify novel mechanism-based strategies for cancer prevention and treatment. Dietary flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) found in many fruits and vegetables has been shown in preclinical studies to inhibit cancer growth through alteration of cell cycle, inducing apoptosis, angiogenesis, invasion, and metastasis without causing any toxicity to normal cells. Although data from in-vitro and in-vivo studies look convincing, well-designed clinical trials in humans are needed to conclusively determine the efficacy across various cancers. This review highlights the chemopreventive and therapeutic effects, molecular targets, and mechanisms that contribute to the observed anticancer activity of fisetin against various cancers.
Collapse
Affiliation(s)
- Rahul K Lall
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.,Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol 2016; 40-41:130-140. [PMID: 27163728 DOI: 10.1016/j.semcancer.2016.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 01/08/2023]
Abstract
The last few decades have seen a resurgence of interest among the scientific community in exploring the efficacy of natural compounds against various human cancers. Compounds of plant origin belonging to different groups such as alkaloids, flavonoids and polyphenols evaluated for their cancer preventive effects have yielded promising data, thereby offering a potential therapeutic alternative against this deadly disease. The flavonol fisetin (3,3',4',7-tetrahydroxyflavone), present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant and more significantly anti-carcinogenic activity when assessed in diverse cell culture and animal model systems. The purpose of this review is to update and discuss key findings obtained till date from in vitro and in vivo studies on fisetin, with special focus on its anti-cancer role. The molecular mechanism(s) described in the observed growth inhibitory effects of fisetin in different cancer cell types is also summarized. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of fisetin as a potent chemopreventive/chemotherapeutic agent against cancer.
Collapse
|
39
|
Gajos-Michniewicz A, Czyz M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. Fitoterapia 2016; 109:283-92. [DOI: 10.1016/j.fitote.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
|
40
|
Lea MA. Flavonol Regulation in Tumor Cells. J Cell Biochem 2015; 116:1190-4. [DOI: 10.1002/jcb.25098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Michael A. Lea
- Department of Microbiology; Biochemistry and Molecular Genetics; Rutgers New Jersey Medical School; Newark New Jersey 07103
| |
Collapse
|
41
|
Michailidi C, Hayashi M, Datta S, Sen T, Zenner K, Oladeru O, Brait M, Izumchenko E, Baras A, VandenBussche C, Argos M, Bivalacqua TJ, Ahsan H, Hahn NM, Netto GJ, Sidransky D, Hoque MO. Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev Res (Phila) 2015; 8:208-21. [PMID: 25586904 PMCID: PMC4355280 DOI: 10.1158/1940-6207.capr-14-0251] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject's risk of developing urothelial carcinoma. To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic-exposed subjects, urothelial carcinoma patients, and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time-dependent manner after arsenic treatment and cellular morphology was changed. In a soft agar assay, colonies were observed only in arsenic-treated cells, and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in an invasion assay were observed only in arsenic-treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic-treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic-treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were downregulated in arsenic-exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P = 0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC = 0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early urothelial carcinoma detection.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Arsenic/adverse effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Cohort Studies
- DNA Methylation
- Epigenesis, Genetic/genetics
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunoenzyme Techniques
- Male
- MicroRNAs/analysis
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Young Adult
Collapse
Affiliation(s)
- Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sayantan Datta
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Tanusree Sen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kaitlyn Zenner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Oluwadamilola Oladeru
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Alexander Baras
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Maria Argos
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | | | - Habibul Ahsan
- Department of Health Studies, The University of Chicago, Chicago, Illinois. Departments of Medicine and Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland. Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland. Department of Urology, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
42
|
Pal HC, Athar M, Elmets CA, Afaq F. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice. Photochem Photobiol 2014; 91:225-34. [PMID: 25169110 DOI: 10.1111/php.12337] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022]
Abstract
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage.
Collapse
Affiliation(s)
- Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | |
Collapse
|