1
|
Zhang Z, Yue R, Wang Y, Ma L, Wang M, Chen Y. To explore the mechanism of gypenosides in the treatment of liver injury in rats based on GC-MS metabolomics and bile acid metabolism pathway. J Pharm Biomed Anal 2025; 252:116506. [PMID: 39418697 DOI: 10.1016/j.jpba.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Gynostemma pentaphyllum is a herbaceous vine of Cucurbitaceae family, and its principal pharmacological components, gypenosides (GPs), have been proved to be effective in various liver diseases. However, the mechanisms of GPs on liver injury are still to be studied for further. This investigation utilized the CCl4-induced liver injury rat model (LI) to comprehensively explore the mechanism of action of GPs in the treatment of chemical liver injury by comparing the metabolomic changes in four groups rats. In this study, the therapeutic efficacy of GPs in a liver injury rat model induced by weekly gavage of CCl4 was evaluated by inflammatory factors, oxidative damage indexes, and histopathological sections. Then, GC-MS technology was used to identify the metabolic profile of GPs in treating liver injury. Finally, the content variation of metabolites (BAs and SCFAs) was measured to elucidate the mechanism of GPs in the treatment of CCl4-induced liver injury. After 8 weeks of administration, GPs effectively reduced the degree of LI and appeared a substantial tendency of reversing in the levels of MDA, GSH, CYP7E1, CYP7A1 and CYP27A1. Untargeted metabolomics suggested that GPs may play a role in BAs and SCFAs metabolism. Targeted metabolomics and ELISA confirmed the key role of GPs in increasing SCFAs levels and regulating BAs metabolism. Overall, this study indicated that GPs can alleviate CCl4-induced liver injury. And GPs may exert beneficial effects on LI by affecting their metabolites (SCFAs and BAs).
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yibo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lizhou Ma
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
2
|
Wu Y, He X, Chen H, Lin Y, Zheng C, Zheng B. Extraction and characterization of hepatoprotective polysaccharides from Anoectochilus roxburghii against CCl 4-induced liver injury via regulating lipid metabolism and the gut microbiota. Int J Biol Macromol 2024; 277:134305. [PMID: 39094884 DOI: 10.1016/j.ijbiomac.2024.134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anoectochilus roxburghii polysaccharides exhibit notable hepatoprotective effects, but the underlying substance basis and mechanisms remain unknown. In this study, four new polysaccharides named ARP-1a, ARP-1b, ARP-2a and ARP-2b, were isolated from A. roxburghii. Their structural characteristics were systematically analyzed using HPGPC, HPLC, GC-MS, IR and NMR analysis. ARP-1a, the leading polysaccharide isolated from A. roxburghii, was further evaluated for its hepatoprotective effects on acute liver injury mice induced by CCl4. ARP-1a significantly reduced the serum ALT, AST, TNF-α, IL-1β and IL-6 levels, liver MDA content, and increased the SOD and CAT activities and GSH level in liver. H&E staining revealed that ARP-1a pretreatment could markedly relieve liver injury. Further mechanism exploration indicated that ARP-1a could relieve CCl4-induced oxidative damage through activating the Nrf2 signaling. In addition, metabolomics, lipidomics and 16S rRNA amplicon sequencing were used to elucidate the underlying mechanisms of ARP-1a. Multi-omics analysis indicated that ARP-1a exerted hepatoprotective effect against CCl4-induced acute liver injury by regulating lipid metabolism and modulating the gut microbiota. In conclusion, the above results suggest that ARP-1a can be considered a promising and safe candidate for hepatoprotective drug, as well as a potential prebiotic for maintaining intestinal homeostasis and promoting human intestinal health.
Collapse
Affiliation(s)
- Yanbin Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Huiling Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Xiao Y, Liu R, Zhang X, Li Y, Peng F, Tang W. Analysis of cantharidin-induced kidney injury and the protective mechanism of resveratrol in mice determined by liquid chromatography/mass spectrometry-based metabonomics. J Appl Toxicol 2024; 44:990-1004. [PMID: 38448202 DOI: 10.1002/jat.4596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cantharidin (CTD) is the main active component in the traditional Chinese medicine Mylabris and an effective anti-tumor agent. However, it is relatively toxic and exhibits nephrotoxicity, which limits its clinical use. However, its toxic mechanism is not clear. The toxic effects of CTD exposure on the kidney and the protective effect of resveratrol (RES) were studied in a mouse model, by determination of serum biochemical and renal antioxidant indicators, histopathological and ultrastructural observation, and metabonomics. After CTD exposure, serum uric acid, creatinine, and tissue oxidative stress indicators increased, and the renal glomerular and tubular epithelial cells showed clear pathological damage. Ultrastructure observation revealed marked mitochondrial swelling, endoplasmic reticulum dilation, and the presence of autophagy lysosomes in glomerular epithelial cells. RES ameliorated the renal injury induced by CTD. Metabonomics analysis indicated that CTD can induce apoptosis and oxidative damage in kidney cells, mainly by disrupting sphingolipid and glutathione metabolism, increasing sphingosine and sphingomyelin levels, and decreasing glutathione levels. RES counteracts these effects by regulating renal cell proliferation, the inflammatory response, oxidative stress, and apoptosis, by improving the levels of phosphatidylcholine (PC), LysoPC, and lysophosphatidyl glycerol in the glycerophospholipid metabolism pathway, thereby reducing CTD-induced nephrotoxicity. The mechanisms of CTD-induced renal injury and the protective effect of RES were revealed by metabonomics, providing a basis for evaluating clinical treatment regimens to reduce CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ruxia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoyue Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaofeng Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Wei X, Luo D, Li H, Li Y, Cen S, Huang M, Jiang X, Zhong G, Zeng W. The roles and potential mechanisms of plant polysaccharides in liver diseases: a review. Front Pharmacol 2024; 15:1400958. [PMID: 38966560 PMCID: PMC11222613 DOI: 10.3389/fphar.2024.1400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Xianzhi Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Daimin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haonan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yagang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Shizhuo Cen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoping Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| |
Collapse
|
5
|
Liu R, Yang C, Yang X, Yu J, Tang W. Network toxicology, molecular docking technology, and experimental verification revealed the mechanism of cantharidin-induced testicular injury in mice. Toxicol Appl Pharmacol 2024; 486:116921. [PMID: 38582374 DOI: 10.1016/j.taap.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
As a protein kinase inhibitor, cantharidin (CTD) exhibits antitumor activities. However, CTD is highly toxic, thereby limiting clinical applications. Moreover, relatively few studies have investigated CTD-induced reproductive toxicity, thus the underlying mechanism remains unclear. In this study, the toxic effects of CTD on mouse testis were confirmed in vivo and the potential mechanism was predicted by network toxicology (NT) and molecular docking technology. Proteins involved in the signaling pathways and core targets were verified. The results showed that different concentrations of CTD induced weight loss increased the testicular coefficient, and caused obvious pathological damage to testicular cells. The NT results showed that the main targets of CTD-induced testicular injury (TI) included AKT1, Caspase 3, Bcl-2, and Bax. The results of pathway enrichment analysis showed that CTD-induced TI was closely related to apoptosis and the PI3K/AKT and HIF-1 signaling pathways. Molecular docking methods confirmed high affinity between CTD and key targets. Western blot analysis showed that CTD inhibited expression of PI3K, AKT, and the anti-apoptotic protein Bcl-2, while promoting expression of the pro-apoptotic proteins Bax and Caspase 3. These results suggest that CTD-induced TI involves multiple targets and pathways, and the underlying mechanism was associated with inhibition of the apoptosis-related PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ruxia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changfu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xin Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jia Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
6
|
Xiong L, Lin K, He T, Liu X, Yuan R, Li X, Zhang J. A novel approach combining network pharmacology and experimental validation to study the protective effect of ginsenoside Rb1 against cantharidin-induced hepatotoxicity in mice. Basic Clin Pharmacol Toxicol 2024; 134:737-749. [PMID: 38477401 DOI: 10.1111/bcpt.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.
Collapse
Affiliation(s)
- Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Tianmu He
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Xingyan Liu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rui Yuan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Liu B, Shi J, Su R, Zheng R, Xing F, Zhang Y, Wang N, Chen H, Feng S. Predicting effect of anti-PD-1/PD-L1 inhibitors therapy for hepatocellular carcinoma by detecting plasma metabolite based on UHPLC-MS. Front Immunol 2024; 15:1370771. [PMID: 38707906 PMCID: PMC11067499 DOI: 10.3389/fimmu.2024.1370771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Anti-PD-1/PD-L1 inhibitors therapy has become a promising treatment for hepatocellular carcinoma (HCC), while the therapeutic efficacy varies significantly among effects for individual patients are significant difference. Unfortunately, specific predictive biomarkers indicating the degree of benefit for patients and thus guiding the selection of suitable candidates for immune therapy remain elusive.no specific predictive biomarkers are available indicating the degree of benefit for patients and thus screening the preferred population suitable for the immune therapy. Methods Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) considered is an important method for analyzing biological samples, since it has the advantages of high rapid, high sensitivity, and high specificity. Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) has emerged as a pivotal method for analyzing biological samples due to its inherent advantages of rapidity, sensitivity, and specificity. In this study, potential metabolite biomarkers that can predict the therapeutic effect of HCC patients receiving immune therapy were identified by UHPLC-MS. Results A partial least-squares discriminant analysis (PLS-DA) model was established using 14 glycerophospholipid metabolites mentioned above, and good prediction parameters (R2 = 0.823, Q2 = 0.615, prediction accuracy = 0.880 and p < 0.001) were obtained. The relative abundance of glycerophospholipid metabolite ions is closely related to the survival benefit of HCC patients who received immune therapy. Discussion This study reveals that glycerophospholipid metabolites play a crucial role in predicting the efficacy of immune therapy for HCC.
Collapse
Affiliation(s)
- Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jinyu Shi
- The Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Nanya Wang
- The Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
8
|
Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives. Biomed Pharmacother 2024; 173:116330. [PMID: 38422656 DOI: 10.1016/j.biopha.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) have gained increasing attention in the field of nanomedicine due to their diverse biological activities and favorable characteristics as drug carriers, including biocompatibility, biodegradability, safety, and ease of modification. TCMPs-based nano-drug delivery systems (NDDSs) offer several advantages, such as evasion of reticuloendothelial system (RES) phagocytosis, protection against biomolecule degradation, enhanced drug bioavailability, and potent therapeutic effects. Therefore, a comprehensive review of the latest developments in TCMPs-based NDDSs and their applications in disease therapy is of great significance. This review provides an overview of the structural characteristics and biological activities of TCMPs relevant to carrier design, the strategies employed for constructing TCMPs-based NDDSs, and the versatile role of TCMPs in these systems. Additionally, current challenges and future prospects of TCMPs in NDDSs are discussed, aiming to provide valuable insights for future research and clinical translation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Wu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Chen
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumei Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Chemistry, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Clinical Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Shu X, Zhang Y, Zhang X, Zhang Y, Shu Y, Wang Y, Zhang Z, Song C. Therapeutic and immune-regulation effects of Scutellaria baicalensis Georgi polysaccharide on pseudorabies in piglets. Front Vet Sci 2024; 11:1356819. [PMID: 38500605 PMCID: PMC10944897 DOI: 10.3389/fvets.2024.1356819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Pseudorabies virus (PRV) can cause fatal encephalitis in newborn pigs and escape the immune system. While there is currently no effective treatment for PRV, Scutellaria baicalensis Georgi polysaccharides (SGP) and Rodgersia sambucifolia Hemsl flavonoids (RHF) are traditional Chinese herbal medicines with potential preventive and therapeutic effects against PRV infection. In order to explore which one is more effective in the prevention and treatment of PRV infection in piglets. We investigate the therapeutic effects of RHF and SGP in PRV-infected piglets using clinical symptom and pathological injury scoring systems. The immune regulatory effects of RHF and SGP on T lymphocyte transformation rate, cytokines, T cells, and Toll-like receptors were also measured to examine the molecular mechanisms of these effects. The results showed that SGP significantly reduced clinical symptoms and pathological damage in the lungs, liver, spleen, and kidneys in PRV-infected piglets and the T lymphocyte conversion rate in the SGP group was significantly higher than that in the other treatment groups, this potential dose-dependent effect of SGP on T lymphocyte conversation. Serum immunoglobulin and cytokine levels in the SGP group fluctuated during the treatment period, with SGP treatment showing better therapeutic and immunomodulatory effects in PRV-infected piglets than RHF or the combined SGP + RHF treatment. In conclusion, RHF and SGP treatments alleviate the clinical symptoms of PRV infection in piglets, and the immunomodulatory effect of SGP treatment was better than that of the RHF and a combination of both treatments. This study provides evidence for SGP in controlling PRV infection in piglets.
Collapse
Affiliation(s)
- Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Ying Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| | - Yue Shu
- The Faculty of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Yulei Wang
- The Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhihui Zhang
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
He T, Duan C, Feng W, Ao J, Lu D, Li X, Zhang J. Bibliometric Analysis and Systemic Review of Cantharidin Research Worldwide. Curr Pharm Biotechnol 2024; 25:1585-1601. [PMID: 39034837 DOI: 10.2174/0113892010244101231024111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cantharidin (CTD), a natural toxic compound from blister beetle Mylabris, has been used for cancer treatment for millenary. CTD and its analogs have become mainstream adjuvant drugs with radiotherapy and chemotherapy in clinical applications. However, the detailed pharmacology mechanism of CTD was not fully elucidated. METHODS Publications of CTD were collected from the Web of Science Core Collection database from 1991 to 2023 using CiteSpace, VOSviewer, and Scimago Graphica software. RESULTS A total of 1,611 publications of CTD were mainly published in China and the United States. The University of Newcastle has published the most researches. Mcclusey, Adam, Sakoff, Jennette, and Zhang, Yalin had the most CTD publications with higher H. Notably, CTD researches were mainly published in Bioorganic & Medicinal Chemistry Letters and the Journal of Biological Chemistry. Cluster profile results revealed that protein phosphatase 2A (PP2A), human gallbladder carcinoma, Aidi injection, and cell apoptosis were the hotspots. Concentration on the pharmacology function of PP2A subunit regulation, hepatotoxicity, nephrotoxicity, and cardiotoxicity mechanism should be strengthened in the future. CONCLUSION Bibliometric analysis combined with a systemic review of CTD research first revealed that PP2A and CTD analogs were the knowledge base of CTD, and PP2A subunit regulation and toxic mechanism could be the frontiers of CTD.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenzhong Feng
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jingwen Ao
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Dingyang Lu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
11
|
Li J, Guo H, Dong Y, Yuan S, Wei X, Zhang Y, Dong L, Wang F, Bai T, Yang Y. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin J Nat Med 2024; 22:4-14. [PMID: 38278558 DOI: 10.1016/s1875-5364(24)60558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 01/28/2024]
Abstract
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Collapse
Affiliation(s)
- Jifeng Li
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Haolin Guo
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ying Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xiaotong Wei
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Yuxin Zhang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Lu Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Fei Wang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ting Bai
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| | - Yong Yang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| |
Collapse
|
12
|
Xiao Y, Liu R, Tang W, Yang C. Cantharidin-induced toxic injury, oxidative stress, and autophagy attenuated by Astragalus polysaccharides in mouse testis. Reprod Toxicol 2024; 123:108520. [PMID: 38056682 DOI: 10.1016/j.reprotox.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Traditional Chinese medicine health preservation, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ruxia Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changfu Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
13
|
Fan S, Zhou Y, Zhao Y, Daglia M, Zhang J, Zhu Y, Bai J, Zhu L, Xiao X. Metabolomics reveals the effects of Lactiplantibacillus plantarum dy-1 fermentation on the lipid-lowering capacity of barley β-glucans in an in vitro model of gut-liver axis. Int J Biol Macromol 2023; 253:126861. [PMID: 37714241 DOI: 10.1016/j.ijbiomac.2023.126861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Bioactive polysaccharides known as the biological response modifiers, can directly interact with intestinal epithelium cells (IEC) and regulate key metabolic processes such as lipid metabolism. Here, the coculture of Caco-2/HT29 monolayer (>400 Ω × cm2) and HepG2 cells was developed to mimic the gut-liver interactions. This system was used to investigate the effects of raw and fermented barley β-glucans (RBG and FBG) on lipid metabolism by directly interacting with IEC. Both RBG and FBG significantly and consistently reduced the lipid droplets and triacylglycerol levels in monoculture and coculture of HepG2 overloaded with oleic acid. Notably, FBG significantly and distinctly elevated PPARα (p < 0.05) and PPARα-responsive ACOX-1 (p < 0.01) gene expressions, promoting lipid degradation in cocultured HepG2. Moreover, the metabolomics analyses revealed that FBG had a unique impact on extracellular metabolites, among them, the differential metabolite thiomorpholine 3-carboxylate was significantly and strongly correlated with PPARα (r = -0.68, p < 0.01) and ACOX-1 (r = -0.76, p < 0.01) expression levels. Taken together, our findings suggest that FBG-mediated gut-liver interactions play a key role in its lipid-lowering effects that are superior to those of RBG. These results support the application of Lactiplantibacillus fermentation for improving hypolipidemic outcomes.
Collapse
Affiliation(s)
- Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Chen B, Yang X, Zhan M, Chen Y, Xu J, Xiao J, Xiao H, Song M. Dietary tangeretin improved antibiotic-associated diarrhea in mice by enhancing the intestinal barrier function, regulating the gut microbiota, and metabolic homeostasis. Food Funct 2023; 14:10731-10746. [PMID: 37933488 DOI: 10.1039/d3fo02998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Antibiotic-associated diarrhea is mediated by antibiotic treatment and is usually caused by the disruption of the intestinal barrier, gut microbiota, and metabolic balance. To identify a dietary strategy that can mitigate the side effects of antibiotics, this study investigated the effect of tangeretin on antibiotic-associated diarrhea in C57BL/6 mice. The results revealed that dietary tangeretin significantly ameliorated symptoms of antibiotic-associated diarrhea, as evidenced by the decreased diarrhea status scores, the reduced fecal water content, the decreased caecum/body weight ratio, and the alleviated colonic tissue damage. Dietary tangeretin also exhibited a protective effect on the intestinal barrier function by upregulating the mRNA and protein expression of claudin-1 and ZO-1. Furthermore, analysis of the gut microbiota using 16S rRNA gene sequencing indicated that dietary tangeretin modulated the gut microbiota of mice with antibiotic-associated diarrhea via increasing the gut microbiota diversity and the abundance of beneficial bacteria, e.g., Lactobacillaceae and Ruminococcaceae, and decreasing the abundance of harmful bacteria, e.g., Enterococcus and Terrisporobacter. Additionally, dietary tangeretin restored the levels of short-chain fatty acids and modulated metabolic pathways by enriching purine metabolism, bile acid metabolism, ABC transporters, and choline metabolism in cancer. Collectively, these findings provide a solid scientific basis for the rational use of tangeretin as a preventive and therapeutic agent for antibiotic-associated diarrhea.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Xun Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jingyi Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
15
|
Li Y, Deng X, Xiong H, Hu Q, Chen Y, Zhang W, Ma X, Zhao Y. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: a comprehensive review. Front Pharmacol 2023; 14:1278014. [PMID: 37915415 PMCID: PMC10617680 DOI: 10.3389/fphar.2023.1278014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In Chinese medicine, the primary considerations revolve around toxicity and effect. The clinical goal is to achieve maximize effect while minimizing toxicity. Nevertheless, both clinical and experimental research has revealed a distinct relationship between these two patterns of action in toxic Traditional Chinese Medicines (TCM). These TCM often exhibit characteristic "double-sided" or "multi-faceted" features under varying pathological conditions, transitioning between effective and toxic roles. This complexity adds a layer of challenge to unraveling the ultimate objectives of Traditional Chinese medicine. To address this complexity, various hypotheses have been proposed to explain the toxicity and effect of Traditional Chinese Medicines. These hypotheses encompass the magic shrapnel theory for effect, the adverse outcome pathway framework, and the indirect toxic theory for toxicity. This review primarily focuses on high-, medium-, and low-toxicity Traditional Chinese Medicines as listed in Chinese Pharmacopoeia. It aims to elucidate the essential intrinsic mechanisms and elements contributing to their toxicity and effectiveness. The critical factors influencing the mechanisms of toxicity and effect are the optimal dosage and duration of TCM administration. However, unraveling the toxic-effect relationships in TCM presents a formidable challenge due to its multi-target and multi-pathway mechanisms of action. We propose the integration of multi-omics technology to comprehensively analyze the fundamental metabolites, mechanisms of action, and toxic effects of TCM. This comprehensive approach can provide valuable insights into the intricate relationship between the effect and toxicity of these TCM.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
17
|
Jin D, Huang NN, Wei JX. Hepatotoxic mechanism of cantharidin: insights and strategies for therapeutic intervention. Front Pharmacol 2023; 14:1201404. [PMID: 37383714 PMCID: PMC10293652 DOI: 10.3389/fphar.2023.1201404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in traditional Oriental medicine for its potent anticancer properties. However, its clinical application is restricted due to its high toxicity, particularly towards the liver. This review provides a concise understanding of the hepatotoxic mechanisms of CTD and highlights novel therapeutic strategies to mitigate its toxicity while enhancing its anticancer efficacy. We systematically explore the molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the involvement of apoptotic and autophagic processes in hepatocyte injury. We further discuss the endogenous and exogenous pathways implicated in CTD-induced liver damage and potential therapeutic targets. This review also summarizes the structural modifications of CTD derivatives and their impact on anticancer activity. Additionally, we delve into the advancements in nanoparticle-based drug delivery systems that hold promise in overcoming the limitations of CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of CTD and outlining potential avenues for future research, this review contributes to the ongoing efforts to develop safer and more effective CTD-based therapies.
Collapse
Affiliation(s)
- Dian Jin
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Na-Na Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Xia Wei
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
18
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
19
|
He T, Xiong L, Zhang Y, Yan R, Yu M, Liu M, Liu L, Duan C, Li X, Zhang J. Mice kidney biometabolic process analysis after cantharidin exposure using widely-targeted metabolomics combined with network pharmacology. Food Chem Toxicol 2022; 171:113541. [PMID: 36464109 DOI: 10.1016/j.fct.2022.113541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Cantharidin (CTD) is a principal bioactive component of traditional Chinese medicine Mylabris used in cancer treatment. However, CTD clinical application is limited due to nephrotoxicity, and the mechanism is unknown. The present study used widely-targeted metabolomics, network pharmacology, and cell experiments to investigate the nephrotoxicity mechanism after CTD exposure. In mice exposed to CTD, serum creatinine and urea nitrogen levels increased with renal injury. Then, 74 differential metabolites were detected, including 51 up-regulated and 23 down-regulated metabolites classified as amino acids, small peptides, fatty acyl, arachidonic acid metabolite, organic acid, and nucleotides. Sixteen metabolic pathways including tyrosine, sulfur, and pyrimidine metabolism were all disrupted in the kidney. Furthermore, network pharmacology revealed that 258 metabolic targets, and pathway enrichment indicated that CTD could activate oxidative phosphorylation and oxidative stress (OS). Subsequently, HK-2 cell experiments demonstrated that CTD could reduce superoxide dismutase while increasing malondialdehyde levels. In conclusion, after CTD exposure, biometabolic processes may be disrupted with renal injury in mice, resulting in oxidative phosphorylation and OS.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China; School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yixin Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Yan
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Ming Yu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Meichen Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Liu Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China; School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
20
|
Liu H, Qi L, Tang X, Tan S, Gou Z, Qi J, Lu X, Li D, Chen C. Astragalus Polysaccharides Affect Glioblastoma Cells Through Targeting miR-34a-5p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study discussed Astragalus Polysaccharides (APS)’s effect on the cytobiology of glioma. U87 glioma cells were assigned into control group (U87 cells), miR-34a-5p mimic group (transfected with miR-34a-5p mimic), and APS group (treated with 10 μM APS) followed by
analysis of miR-34a-5p level, cell proliferation and invasion, Caspase3 and SOD activity as well as E-cadherin, Vimentin and survivn expression. APS treatment significantly upregulated miR-34a-5p expression, inhibits cell proliferation and invasion, and promoted cell apoptosis. In addition,
APS also significantly upregulated E-cadherin, downregulated Vimentin and survivn level in glioma cells as well as inhibited ROS generation and increased SOD activity. In conclusion, the level of miR-34a-5a in glioma cells is up-regulated by APS so as to restrain the biological behaviors of
glioma cells, indicating that it might be used as novel agent for the treatment of glioma.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lingjun Qi
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shasha Tan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhangyang Gou
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jian Qi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xingyu Lu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Dong Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Chunbao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
21
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
22
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
23
|
Ma Y, Li D, Liu W, Liu X, Xu Y, Zhong X, Zhi F, Jia X, Jiang Y, Fan Y. Resveratrol on the Metabolic Reprogramming in Liver: Implications for Advanced Atherosclerosis. Front Pharmacol 2021; 12:747625. [PMID: 34658884 PMCID: PMC8517429 DOI: 10.3389/fphar.2021.747625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
Background/Aims: Atherosclerosis (AS) is one of the major leading causes of death globally, which is highly correlated with metabolic abnormalities. Resveratrol (REV) exerts beneficial effects on atherosclerosis. Our aim is to clarify the involvement of liver metabolic reprogramming and the atheroprotective effects of REV. Methods: ApoE-deficient mice were administered with normal diet (N), high-fat diet (H), or HFD with REV (HR). Twenty-four weeks after treatment, Oil Red O staining was used to assess the severity of AS. Non-targeted metabolomics was employed to obtain metabolic signatures of the liver from different groups. Results: High-fat diet–induced AS was alleviated by REV, with less lipid accumulation in the lesions. The metabolic profiles of liver tissues from N, H, and HR groups were analyzed. A total of 1,146 and 765 differentially expressed features were identified between N and H groups, and H and HR groups, respectively. KEGG enrichment analysis uncovered several metabolism-related pathways, which are potential pathogenesis mechanisms and therapeutic targets including “primary bile acid biosynthesis,” “phenylalanine metabolism,” and “glycerophospholipid metabolism.” We further conducted trend analysis using 555 metabolites with one-way ANOVA, where p < 0.05 and PLS-DA VIP >1. We found that REV could reverse the detrimental effect of high-fat diet–induced atherosclerosis. These metabolites were enriched in pathways including “biosynthesis of unsaturated fatty acids” and “intestinal immune network for IgA production.” The metabolites involved in these pathways could be the potential biomarkers for AS-related liver metabolic reprogramming and the mechanism of REV treatment. Conclusions: REV exerted atheroprotective effects partially by modulating the liver metabolism.
Collapse
Affiliation(s)
- Ying Ma
- Harbin Medical University-Daqing, Daqing, China
| | | | - Wenfeng Liu
- Harbin Medical University-Daqing, Daqing, China
| | | | - Yingqi Xu
- Harbin Medical University-Daqing, Daqing, China
| | | | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xueling Jia
- Harbin Medical University-Daqing, Daqing, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuhua Fan
- Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|