1
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Wakonigg Alonso C, McElhatton F, O'Mahony B, Campbell M, Pollak TA, Stokes PRA. The blood-brain barrier in bipolar disorders: A systematic review. J Affect Disord 2024; 361:434-444. [PMID: 38897301 DOI: 10.1016/j.jad.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Bipolar disorders (BD) are chronic, debilitating disorders. The blood-brain barrier (BBB) has been increasingly investigated in BD. This systematic review aimed to assess the available evidence on the relationship between BD and markers of BBB dysfunction. METHODS A systematic search in PubMed, Embase, PsycINFO, CINAHL and Web of Science was run where the primary outcomes were BBB markers such as S100B, albumin ratio, matrix metalloproteinase (MMP), cell adhesion molecule (CAM), and tight junction proteins. Techniques included blood, cerebrospinal fluid (CSF), post-mortem, genetic and imaging methods in BD compared to healthy controls. RESULTS 55 studies were identified, 38 of which found an association between BD and markers of BBB dysfunction. 16/29 studies found increased blood/CSF albumin ratio, S100B, CAMs or MMP levels in BD participants compared to controls. 5/19 post-mortem studies found increased levels of chondroitin sulphate proteoglycans, intercellular CAM, neurexin or claudin-5 mRNA in distinct locations throughout the brain in BD compared to controls. One imaging study identified extensive BBB leakage in 30 % of BD participants, compared to 0 % in controls. LIMITATIONS The diversity in methodologies used in the included studies makes direct comparison of results challenging. Furthermore, imaging methods are the gold standard, but only one study used them. Other markers are only indicative of BBB permeability. CONCLUSIONS This review suggests an association between BD and BBB dysfunction. Further research is needed to provide definite answers considering the existing literature's limitations, and to clarify whether this association provides a pathogenic mechanism, or is an epiphenomenon of BD.
Collapse
Affiliation(s)
- Clara Wakonigg Alonso
- Institute of Psychiatry & Psychology and Neuroscience, King's College London,United Kingdom.
| | - Frances McElhatton
- Institute of Psychiatry & Psychology and Neuroscience, King's College London,United Kingdom
| | - Brian O'Mahony
- Institute of Psychiatry & Psychology and Neuroscience, King's College London,United Kingdom
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Thomas A Pollak
- Dept of Psychosis Studies, Institute of Psychiatry & Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust,Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Paul R A Stokes
- South London and Maudsley NHS Foundation Trust,Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom; Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College London,United Kingdom
| |
Collapse
|
3
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
4
|
Dell'Osso B, Cremaschi L, Macellaro M, Cafaro R, Girone N. Bipolar disorder staging and the impact it has on its management: an update. Expert Rev Neurother 2024; 24:565-574. [PMID: 38753491 DOI: 10.1080/14737175.2024.2355264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The longitudinal course of bipolar disorder (BD) is associated with an active process of neuroprogression, characterized by structural brain alterations and progressive functional impairment. In the last decades, a growing need of a standardized staging model for BD arose, with the aim of a more appropriate definition of stage-specific clinical manifestations and the identification of more customized therapeutic tools. AREAS COVERED The authors review the literature on clinical aspects, neurobiological correlates and treatment issues related to BD progression. Thereafter, they address the definition, constructs, and evolution of the staging concept, focusing on the clinical applications of BD staging models available in literature. EXPERT OPINION Although several staging models for BD have been proposed to date, their application in clinical practice is still relatively scant. This may have a detrimental impact on the clinical and therapeutic management of BD, in terms of early and proper diagnosis as well as tailored treatment interventions according to the different stages of illness. Future research efforts should tend to the integration of recent insights on neuroimaging and epigenetic markers, toward a standardized and multidimensional staging model.
Collapse
Affiliation(s)
- Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
- CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, USA
| | - Laura Cremaschi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Monica Macellaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
- CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Rita Cafaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Nicolaja Girone
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| |
Collapse
|
5
|
Lizano P, Pong S, Santarriaga S, Bannai D, Karmacharya R. Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders. Mol Psychiatry 2023; 28:3698-3708. [PMID: 37730841 DOI: 10.1038/s41380-023-02255-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Although there is convergent evidence for blood-brain barrier (BBB) dysfunction and peripheral inflammation in schizophrenia (SZ) and bipolar disorder (BD), it is unknown whether BBB deficits are intrinsic to brain microvascular endothelial cells (BMECs) or arise via effects of peripheral inflammatory cytokines. We examined BMEC function using stem cell-based models to identify cellular and molecular deficits associated with BBB dysfunction in SZ and BD. Induced pluripotent stem cells (iPSCs) from 4 SZ, 4 psychotic BD and 4 healthy control (HC) subjects were differentiated into BMEC-"like" cells. Gene expression and protein levels of tight junction proteins were assessed. Transendothelial electrical resistance (TEER) and permeability were assayed to evaluate BBB function. Cytokine levels were measured from conditioned media. BMECs derived from human iPSCs in SZ and BD did not show differences in BBB integrity or permeability compared to HC BMECs. Outlier analysis using TEER revealed a BBB-deficit (n = 3) and non-deficit (n = 5) group in SZ and BD lines. Stratification based on BBB function in SZ and BD patients identified a BBB-deficit subtype with reduced barrier function, tendency for increased permeability to smaller molecules, and decreased claudin-5 (CLDN5) levels. BMECs from the BBB-deficit group show increased matrix metallopeptidase 1 (MMP1) activity, which correlated with reduced CLDN5 and worse BBB function, and was improved by tumor necrosis factor α (TNFα) and MMP1 inhibition. These results show potential deficits in BMEC-like cells in psychotic disorders that result in BBB disruption and further identify TNFα and MMP1 as promising targets for ameliorating BBB deficits.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites 2023; 13:metabo13030376. [PMID: 36984816 PMCID: PMC10058418 DOI: 10.3390/metabo13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a common comorbidity of schizophrenia and significantly shortens life expectancy of the patients. Intercellular (ICAM), vascular (VCAM), and neural (NCAM) cell adhesion molecules (CAMs) mediate neuroinflammatory processes, and their soluble forms (e.g., sICAM) in plasma are present in parallel with their cell-bound forms. In this study, their serum levels were examined in 211 white Siberian patients with paranoid schizophrenia (82 patients with and 129 without MetS according to the 2005 International Diabetes Federation criteria). Serum levels of CAMs were determined with Magpix and Luminex 200 (Luminex, Austin, TX, USA) using xMAP Technology. The level of sICAM-1 was significantly higher and that of sVCAM-1 significantly lower in patients with MetS compared to patients without MetS. Levels of NCAM did not differ between the groups. More pronounced Spearman’s correlations between CAMs, age, duration of schizophrenia, and body–mass index were observed among patients without MetS than among patients with MetS. Our results are consistent with MetS’s being associated with endothelial dysfunction along with other components of inflammation. Through these endothelial components of peripheral inflammatory processes, MetS might induce intracerebral neuroinflammatory changes, but further investigation is needed to confirm this.
Collapse
|
7
|
Grewal S, McKinlay S, Kapczinski F, Pfaffenseller B, Wollenhaupt-Aguiar B. Biomarkers of neuroprogression and late staging in bipolar disorder: A systematic review. Aust N Z J Psychiatry 2023; 57:328-343. [PMID: 35403455 PMCID: PMC9950598 DOI: 10.1177/00048674221091731] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bipolar disorder may undertake a progressive course in a subset of patients, and research efforts have been made to understand the biological basis underlying this process. This systematic review examined the literature available on biological markers associated with illness progression in bipolar disorder. METHODS Peer-reviewed articles were assessed using Embase, PsycINFO and PubMed, as well as from external sources. After initial screening, a total of 871 citations from databases and other sources were identified. Participants with a diagnosis of bipolar disorder were included in our systematic review; however, studies with participants younger than 15 or older than 65 were excluded. All studies were assessed using the Newcastle-Ottawa Scale assessment tool, and data pertaining to the results were extracted into tabular form using Google Sheets and Google Documents. The systematic review was registered on PROSPERO international prospective register of systematic reviews (ID Number: CRD42020154305). RESULTS A total of 35 studies were included in the systematic review. Increased ventricular size and reduction of grey matter volume were the most common brain changes associated with illness progression in bipolar disorder. Among the several biomarkers evaluated in this systematic review, findings also indicate a role of peripheral inflammatory markers in this process. DISCUSSION The studies evaluating the biological basis of the illness progression in bipolar disorder are still scarce and heterogeneous. However, current evidence supports the notion of neuroprogression, the pathophysiological process related to progressive brain changes associated with clinical progression in patients with bipolar disorder. The increase in peripheral inflammatory biomarkers and the neuroanatomical changes in bipolar disorder suggest progressive systemic and structural brain alterations, respectively.
Collapse
Affiliation(s)
- Sonya Grewal
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stuart McKinlay
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Flávio Kapczinski
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
- Instituto Nacional de Ciência e
Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade
Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| | - Bianca Wollenhaupt-Aguiar
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
8
|
Sheikh MA, O'Connell KS, Lekva T, Szabo A, Akkouh IA, Osete JR, Agartz I, Engh JA, Andreou D, Boye B, Bøen E, Elvsåshagen T, Hope S, Frogner Werner MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Melle I, Drange OK, Morken G, Nærland T, Sørensen K, Vaaler AE, Weibell MA, Westlye LT, Aukrust P, Djurovic S, Steen NE, Andreassen OA, Ueland T. Systemic Cell Adhesion Molecules in Severe Mental Illness: Potential Role of Intercellular CAM-1 in Linking Peripheral and Neuroinflammation. Biol Psychiatry 2023; 93:187-196. [PMID: 36182530 DOI: 10.1016/j.biopsych.2022.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) orchestrate leukocyte trafficking and could link peripheral and neuroinflammation in patients with severe mental illness (SMI), by promoting inflammatory and immune-mediated responses and mediating signals across blood-brain barrier. We hypothesized that CAMs would be dysregulated in SMI and evaluated plasma levels of different vascular and neural CAMs. Dysregulated CAMs in plasma were further evaluated in vivo in leukocytes and brain tissue and in vitro in induced pluripotent stem cells. METHODS We compared plasma soluble levels of different vascular (VCAM-1, ICAM-1, P-SEL) and neural (JAM-A, NCAD) CAMs in circulating leukocytes in a large SMI sample of schizophrenia (SCZ) spectrum disorder (n = 895) and affective disorder (n = 737) and healthy control participants (n = 1070) controlling for age, sex, body mass index, C-reactive protein, and freezer storage time. We also evaluated messenger RNA expression of ICAM1 and related genes encoding ICAM-1 receptors in leukocytes using microarray (n = 842) and in available RNA sequencing data from the CommonMind Consortium (CMC) in postmortem samples from the dorsolateral prefrontal cortex (n = 474). The regulation of soluble ICAM-1 in induced pluripotent stem cell-derived neurons and astrocytes was assessed in patients with SCZ and healthy control participants (n = 8 of each). RESULTS Our major findings were 1) increased soluble ICAM-1 in patients with SMI compared with healthy control participants; 2) increased ITGB2 messenger RNA, encoding the beta chain of the ICAM-1 receptor, in circulating leukocytes from patients with SMI and increased prefrontal cortex messenger RNA expression of ICAM1 in SCZ; and 3) enhanced soluble ICAM-1 release in induced pluripotent stem cell-derived neurons from patients with SCZ. CONCLUSIONS Our results support a systemic and cerebral dysregulation of soluble ICAM-1 expression in SMI and especially in patients with SCZ.
Collapse
Affiliation(s)
- Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - John A Engh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Vestfold Hospital Trust, Division of Mental Health and Addiction, Tønsberg, Norway
| | - Dimitrios Andreou
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | | | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Maren Caroline Frogner Werner
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway; Department of Psychiatry, Sørlandet Hospital HF, Kristiansand, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kjetil Sørensen
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Melissa Authen Weibell
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
9
|
FATOUROU E, TRUONG A, HOPPENSTEADT D, FAREED J, HAİN D, SİNACORE J, HALARİS A. Elevated Matrix Metalloproteinase 9 in Treatment Resistant Bipolar Depression. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: Matrix metalloproteinase is a family of proteases with different pathophysiological roles. Matrix metalloproteinase 9 (MMP9) plays an enzymatic role in the restructuring of the extracellular matrix and adhesion molecules. MMP9 is upregulated in pro-inflammatory states and leads to breakdown of tight junctions thereby increasing blood-brain barrier (BBB) permeability. MMP9 may contribute to the pathophysiology of bipolar disorder (BD) via proteolysis of the BBB thus allowing entry of cytokines and neurotoxic agents into CNS. Polymorphisms of the MMP9 gene may pose increased risk for BD and schizophrenia. In this study we sought to determine MMP9 levels in treatment resistant bipolar depressed patients before and after treatment. Methods: Treatment resistant bipolar depressed patients were treated with escitalopram, in combination with the COX-2 inhibitor, celecoxib. It was hypothesized that combination treatment would reverse resistance and augmented treatment responses. This was a 10-week, randomized, double-blind, two-arm, placebo-controlled study. Results: MMP9 levels were higher in bipolar depressed patients compared to healthy controls at baseline, however, the difference did not reach significance. Levels decreased after treatment reaching significance in the escitalopram plus placebo group. Female patients had significantly lower MMP9 levels at end of treatment. MMP9 was higher in carriers the MMP9 SNP, rs3918242, than in noncarriers, but the difference did not reach statistical significance. Conclusion: MMP9 decreased in bipolar depressed patients with treatment. Age, sex and the rs3918242 polymorphism play a role in MMP9 levels. Future studies should confirm the role of MMP9 in the pathogenesis and pathophysiology of bipolar disorder, as a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Evangelia FATOUROU
- Mount Sinai University, Icahn School of Medicine, Department of Psychiatry,
| | - Alexander TRUONG
- University of California, Public Health Sciences, Riverside School of Medicine
| | - Debra HOPPENSTEADT
- Loyola University, Chicago Stritch School of Medicine, Department of Pathology
| | - Jawed FAREED
- Loyola University, Chicago Stritch School of Medicine, Department of Pathology
| | | | - James SİNACORE
- University of California, Public Health Sciences, Riverside School of Medicine
| | - Angelos HALARİS
- Loyola University, Chicago Stritch School of Medicine, Department of Psychiatry, Chicago
| |
Collapse
|
10
|
Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun Health 2022; 24:100483. [PMID: 35856063 PMCID: PMC9287150 DOI: 10.1016/j.bbih.2022.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Low-grade inflammation has been implicated in the pathophysiology of severe mental disorders (SMDs) and a link between immune activation and clinical characteristics is suggested. However, few studies have investigated how patterns across immune markers are related to diagnosis and illness course. Methods A total of 948 participants with a diagnosis of schizophrenia (SCZ, N = 602) or bipolar (BD, N = 346) spectrum disorder, and 814 healthy controls (HC) were included. Twenty-five immune markers comprising cell adhesion molecules (CAMs), interleukin (IL)-18-system factors, defensins, chemokines and other markers, related to neuroinflammation, blood-brain barrier (BBB) function, inflammasome activation and immune cell orchestration were analyzed. Eight immune principal component (PC) scores were constructed by PC Analysis (PCA) and applied in general linear models with diagnosis and illness course characteristics. Results Three PC scores were significantly associated with a SCZ and/or BD diagnosis (HC reference), with largest, however small, effect sizes of scores based on CAMs, BBB markers and defensins (p < 0.001, partial η2 = 0.02-0.03). Number of psychotic episodes per year in SCZ was associated with a PC score based on IL-18 system markers and the potential neuroprotective cytokine A proliferation-inducing ligand (p = 0.006, partial η2 = 0.071). Conclusion Analyses of composite immune markers scores identified specific patterns suggesting CAMs-mediated BBB dysregulation pathways associated with SMDs and interrelated pro-inflammatory and neuronal integrity processes associated with severity of illness course. This suggests a complex pattern of immune pathways involved in SMDs and SCZ illness course.
Collapse
Affiliation(s)
| | - Thor Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KG Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Graalum, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Potential Mechanisms of Shu Gan Jie Yu Capsule in the Treatment of Mild to Moderate Depression Based on Systemic Pharmacology and Current Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3321099. [PMID: 36045654 PMCID: PMC9423969 DOI: 10.1155/2022/3321099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Background Shu Gan Jie Yu (SGJY) capsule has a good effect on relieving depressive symptoms in China. However, the mechanism of action is still unclear. Therefore, systemic pharmacology and molecular docking approaches were used to clarify its corresponding antidepressant mechanisms. Methods Traditional Chinese Medicine Database and Analysis Platform (TCMSP), the Encyclopedia of Traditional Chinese Medicine (ETCM), and Swiss Target Prediction servers were used to screen and predict the bioactive components of the SGJY capsule and their antidepressive targets. Mild to moderate depression (MMD) related genes were obtained from GeneCards and DisGeNET databases. A network of bioactive components-therapeutic targets of the SGJY capsule was established by STRING 11.5 and Cytoscape 3.9.0 software. Gene function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by utilizing Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Active components were taken to dock with the hypothetical proteins by iGEMDOCK and SwissDock, and the docking details were visually displayed by UCSF Chimera software. Then, the related research literature of the SGJY capsule was reviewed, summarized, sorted, and analyzed, including experimental evidence and clinical experience. Results Seven active components and 45 intersection targets were included in the study. PPI network had genuinely uncovered the potential therapeutic targets, such as AKT1, HSP90AA1, ESR1, EGFR, and PTGS2. KEGG pathway analysis showed that the mechanism of the SGJY capsule on MMD was mainly involved in the PI3K-Akt signaling pathway. Conclusions In this study, we have successfully predicted the biochemically active constituents, potential therapeutic targets, and comprehensively predicted the related drug-gene interaction of the SGJY capsule for treating MMD and provided a basis for subsequent experiments.
Collapse
|
12
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
13
|
Ma HY, Mao Q, Zhu YB, Cong CL, Zheng SY, Zhang Q, Chen CC, Li LQ. Time-resolved Fluorescence Immunoassay (TRFIA) for the Simultaneous Detection of MMP-9 and Lp-PLA2 in Serum. J Fluoresc 2021; 31:1771-1777. [PMID: 34495467 DOI: 10.1007/s10895-021-02811-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
Currently, atherosclerosis accounts for the majority of cardiovascular morbidity and mortality worldwide, and predicting the stability of atherosclerotic plaque is the main method to prevent atherosclerotic death. This study aims to establish a dual-label time-resolved fluorescence immunoassay (TRFIA) of matrix metalloprotein-9 (MMP-9) and lipoprotein-associated phospholipaseA2 (Lp-PLA2) to predict atherosclerotic plaque stability. A dual-label TRFIA was introduced for the simultaneous quantification of MMP-9 and Lp-PLA2 using fluorescent lanthanide (Eu3+ and Sm3+) chelates. The performance (sensitivity, specificity, accuracy, precision and reference intervals in different subjects) of this TRFIA was evaluated and compared with commercial kit. The sensitivity of the TRFIA for MMP-9 was 0.85 ng/mL and for Lp-PLA2 was 0.68 ng/mL with high affinity and specificity. The average recoveries were 94.58% to 109.82%, and 104.32% to 109.26%, respectively. All intra- and inter-assay CVs ranged from 3.10% to 5.46%. For the normal subjects, the cutoff value was 160.70 ng/mL for MMP-9 and 183.73 ng/mL for LP-PLA2; for the subjects with stable plaque, the cutoff value was 181.98~309.22 ng/mL for MMP-9 and 194.73~337.89 ng/mL for LP-PLA2; for the subjects with unstable plaque, the cutoff value was 330.43 ng/mL for MMP-9 and 343.23 ng/mL for LP-PLA2. This TRFIA detection results agreed well with the results of commercial kit (R2=0.9567 and R2=0.9771, respectively) in clinical serum samples. The TRFIA developed has a wide detection range and good sensitivity for the high-throughput simultaneous detection of MMP-9 and Lp-PLA2 in serum, which provides a new method for predicting the stability of atherosclerotic plaque.
Collapse
Affiliation(s)
- Hong-Yan Ma
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Qian Mao
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Yan-Bin Zhu
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Chun-Li Cong
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Shi-Yu Zheng
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Qi Zhang
- Department of Cardiology, Beihua University Affiliated Hospital, Jilin, 132000, China
| | - Cui-Cui Chen
- Guangzhou Youdi Biotechnology Co., Ltd, Guangzhou, 510663, China
| | - Lai-Qing Li
- Guangzhou Youdi Biotechnology Co., Ltd, Guangzhou, 510663, China.
| |
Collapse
|
14
|
Lee SY, Wang TY, Lu RB, Wang LJ, Li SC, Tu CY, Chang CH, Chiang YC, Tsai KW. Identification of potential plasma protein biomarkers for bipolar II disorder: a preliminary/exploratory study. Sci Rep 2021; 11:9452. [PMID: 33947873 PMCID: PMC8097016 DOI: 10.1038/s41598-021-88450-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The diagnostic peripheral biomarkers are still lacking for the bipolar II disorder (BD-II). We used isobaric tags for relative and absolute quantification technology to identify five upregulated candidate proteins [matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)] for the diagnosis of BD-II. We analysed the differences in the plasma levels of these candidate proteins between BD-II patients and controls (BD-II, n = 185; Controls, n = 186) using ELISA. To establish a diagnostic model for the prediction of BD-II, the participants were divided randomly into a training group (BD-II, n = 149; Controls, n = 150) and a testing group (BD-II, n = 36; Controls, n = 36). Significant increases were found in all five protein levels between BD-II and controls in the training group. Logistic regression was analysed to form the composite probability score of the five proteins in the training group. Receiver-operating characteristic curve analysis revealed the diagnostic validity of the probability score [area under curve (AUC) = 0.89, P < 0.001]. The composite probability score of the testing group also showed good diagnostic validity (AUC = 0.86, P < 0.001). We propose that plasma levels of PRDX2, CA-1, FARSB, MMP9, and PCSK9 may be associated with BD-II as potential biomarkers.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ying Tu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, 23142, Taiwan.
| |
Collapse
|
15
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
16
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
17
|
El Mouhawass A, Hammoud A, Zoghbi M, Hallit S, Haddad C, El Haddad K, El Khoury S, Tannous J, Obeid S, Halabi MA, Mammari N. Relationship between Toxoplasma gondii seropositivity and schizophrenia in the Lebanese population: potential implication of genetic polymorphism of MMP-9. BMC Psychiatry 2020; 20:264. [PMID: 32460746 PMCID: PMC7254747 DOI: 10.1186/s12888-020-02683-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/18/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Toxoplasma multiplication and its persistence into the brain cause a local neuroinflammatory reaction, resulting synthesis of neurotransmitters involved in neurological disorders, especially schizophrenia. The Matrix metallopeptidase 9 (MMP-9) protein can play a major role in this neuroinflammation. It can promote extravasation and migration of infected immune cells into the brain. The objectives of this study are to determine the possible association between schizophrenia and toxoplasmosis and highlight the existence of gene polymorphism encoding MMP-9 protein's in patients presented both schizophrenia and toxoplasmosis. METHODS A case-control study was conducted on 150 patients with schizophrenia (case group), and 150 healthy persons (control group). Groups were matched with age, gender, and place of residence. The survey was conducted using a questionnaire and a serological profile assay for specific IgG and IgM antibodies against T. gondii. Reverse transcription-polymerase chain reaction (RT-PCR) of gene polymorphism encoding MMP-9 was performed on 83 cases selected randomly. RESULTS Data show a significant association between toxoplasmosis (IgM+/IgG+ serological profile) and schizophrenia. Significant effects of raw meat consumption and contact with cats have been associated with the occurrence of schizophrenia. RT-PCR shows the presence of muted allele of MMP-9 gene in selected cases whose present T. gondii serological profile IgM+/IgG+ and IgM-/IgG+ respectively. CONCLUSION Toxoplasmosis may be one of the etiological causes of schizophrenia, and MMP-9 gene polymorphism could be involved in the occurrence mechanism of this pathology following Toxoplasma infection.
Collapse
Affiliation(s)
- Amata El Mouhawass
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Amale Hammoud
- Public Health Faculty, Jinan University, Tripoli, Lebanon
| | - Marouan Zoghbi
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Souheil Hallit
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
- INSPECT-LB: Institut National de Santé Publique, Épidémiologie Clinique et Toxicologie, Beirut, Lebanon
| | - Chadia Haddad
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- INSERM, Univ. Limoges, CH Esquirol Limoges, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
| | - Kinda El Haddad
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Saydeh El Khoury
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Jennifer Tannous
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Sahar Obeid
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- INSPECT-LB: Institut National de Santé Publique, Épidémiologie Clinique et Toxicologie, Beirut, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | | | - Nour Mammari
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| |
Collapse
|
18
|
Ceylan D, Tufekci KU, Keskinoglu P, Genc S, Özerdem A. Circulating exosomal microRNAs in bipolar disorder. J Affect Disord 2020; 262:99-107. [PMID: 31726266 DOI: 10.1016/j.jad.2019.10.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Emerging evidence suggests central roles of miRNAs in the pathogenesis of bipolar disorder (BD). Exosomes are membrane-bound vesicles acting as "biological cargo carriers" of various types of molecules including microRNAs. In this study, we aimed to investigate circulating exosomal microRNAs as potential diagnostic biomarkers for BD. METHODS The exosomes were precipitated from plasma samples of patients with BD (n = 69; 15 depressed, 27 manic, 27 euthymic) and healthy controls (n = 41). Total RNA was extracted from the exosomes and the levels of miRNAs were assayed by qPCR. Dysregulated miRNAs were subjected to Kyoto Encyclopedia of Genes and Genomes" (KEGG) pathway analysis by DIANA-miRPath v3.0 to identify the predicted targets and the related pathways. RESULTS Thirteen miRNAs showed significant differences between patients with BD and healthy individuals; among these, MiR-484, -652-3p, -142-3p remained significantly downregulated and miR-185-5p remained significantly upregulated after accounting for multiple comparisons and adjustments for potential confounders. There were no significant alterations among different states of BD. The KEEG analysis of four dysregulated miRNAs highlighted several target pathways including PI3K/Akt signaling, fatty acid biosynthesis/metabolism, extracellular matrix and adhesion pathways. CONCLUSION Our findings suggest that dysregulation of miRNAs might be involved in the underlying pathophysiology of BD through several biological pathways; and highlight the importance of the exosomal miRNAs for biomarker research in BD. Further longitudinal studies may clarify the roles of exosomal miRNAs and their targets in the neurobiology of BD.
Collapse
Affiliation(s)
- Deniz Ceylan
- Izmir University of Economics, Faculty of Medicine, Department of Psychiatry, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Pembe Keskinoglu
- Department of Biostatistics and Medical Informatics, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ayşegül Özerdem
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| |
Collapse
|
19
|
A clinical staging model for bipolar disorder: longitudinal approach. Transl Psychiatry 2020; 10:45. [PMID: 32066710 PMCID: PMC7026435 DOI: 10.1038/s41398-020-0718-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Bipolar disorder (BD) has been identified as a life-course illness with different clinical manifestations from an at-risk to a late stage, supporting the assumption that it would benefit from a staging model. In a previous study, we used a clustering approach to stratify 224 patients with a diagnosis of BD into five clusters based on clinical characteristics, functioning, cognition, general health, and health-related quality of life. This study was design to test the construct validity of our previously developed k-means clustering model and to confirm its longitudinal validity over a span of 3 years. Of the 224 patients included at baseline who were used to develop our model, 129 (57.6%) reached the 3-year follow-up. All life domains except mental health-related quality of life (QoL) showed significant worsening in stages (p < 0.001), suggesting construct validity. Furthermore, as patients progressed through stages, functional decline (p < 0.001) and more complex treatment patterns (p = 0.002) were observed. As expected, at 3 years, the majority of patients remained at the same stage (49.6%), or progressed (20.9%) or regressed (23.3%) one stage. Furthermore, 85% of patients who stayed euthymic during that period remained at the same stage or regressed to previous stages, supporting its longitudinal validity. For that reason, this study provides evidence of the construct and longitudinal validity of an empirically developed, comprehensive staging model for patients with BD. Thus, it may help clinicians and researchers to better understand the disorder and, at the same time, to design more accurate and personalized treatment plans.
Collapse
|
20
|
Müller N. The Role of Intercellular Adhesion Molecule-1 in the Pathogenesis of Psychiatric Disorders. Front Pharmacol 2019; 10:1251. [PMID: 31824303 PMCID: PMC6883971 DOI: 10.3389/fphar.2019.01251] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein that is overexpressed in many pathological states. Although, like many other immune molecules, ICAM-1 plays only a limited role in the abundant concert of the immune response, it may be more important than we realize. In the central nervous system (CNS), ICAM-1 is expressed in microglial cells and astrocytes and in endothelial cells in the white and gray matter of the human forebrain. It is of particular interest in psychiatric disorders for two reasons: It has a key function for the blood-brain barrier, which plays an important role in the biology of psychiatric disorders, and it is a marker for inflammation. Although the blood level of soluble ICAM-1 (sICAM-1) might be lower in acute unmedicated schizophrenia, it has been reported to be increased in many other psychiatric conditions, such as major depression, bipolar disorder, and dementia. In bipolar disorder, high sICAM levels were found during both the depressed and the manic states and also during the euthymic phase (the free interval), possibly indicating that sICAM is a trait marker. High sICAM-1 blood levels have also been found in depression comorbid to a somatic disease state. Interestingly, sICAM-1 levels also increase during aging. Some studies investigated sICAM-1 levels in the cerebrospinal fluid of psychiatric disorders and ICAM-1 expression in postmortem CNS tissue of psychiatric patients and found that the overall duration and duration of the chronic phase of the psychiatric disorder seem to play a role in both. Moreover, confounders, such as antipsychotic and antidepressive medication, have to be considered. sICAM-1 levels seem to be associated with hypopermeability or hyperpermeability of the blood-brain barrier and thus to influence the communication between the CNS immune system, represented by glia cells, and the peripheral immune system. The balance between the influx and efflux of immune molecules into and out of the CNS may be one of the pinpoints in psychiatric disorders, in particular in the chronic phase, e.g., in schizophrenia. This aspect, however, needs further intense research, in particular to enable researchers to develop therapeutic principles based on an immune/inflammatory approach.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
21
|
Rivera AD, Butt AM. Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry 2019; 9:211. [PMID: 31477687 PMCID: PMC6718419 DOI: 10.1038/s41398-019-0542-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are multifunctional glial cells that play essential roles in supporting synaptic signalling and white matter-associated connectivity. There is increasing evidence that astrocyte dysfunction is involved in several brain disorders, including bipolar disorder (BD), depression and schizophrenia. The mood stabiliser lithium is a frontline treatment for BD, but the mechanisms of action remain unclear. Here, we demonstrate that astrocytes are direct targets of lithium and identify unique astroglial transcriptional networks that regulate specific molecular changes in astrocytes associated with BD and schizophrenia, together with Alzheimer's disease (AD). Using pharmacogenomic analyses, we identified novel roles for the extracellular matrix (ECM) regulatory enzyme lysyl oxidase (LOX) and peroxisome proliferator-activated receptor gamma (PPAR-γ) as profound regulators of astrocyte morphogenesis. This study unravels new pathophysiological mechanisms in astrocytes that have potential as novel biomarkers and potential therapeutic targets for regulating astroglial responses in diverse neurological disorders.
Collapse
Affiliation(s)
- Andrea D. Rivera
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| | - Arthur M. Butt
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| |
Collapse
|
22
|
de la Fuente-Tomas L, Arranz B, Safont G, Sierra P, Sanchez-Autet M, Garcia-Blanco A, Garcia-Portilla MP. Classification of patients with bipolar disorder using k-means clustering. PLoS One 2019; 14:e0210314. [PMID: 30673717 PMCID: PMC6343877 DOI: 10.1371/journal.pone.0210314] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Bipolar disorder (BD) is a heterogeneous disorder needing personalized and shared decisions. We aimed to empirically develop a cluster-based classification that allocates patients according to their severity for helping clinicians in these processes. Methods Naturalistic, cross-sectional, multicenter study. We included 224 subjects with BD (DSM-IV-TR) under outpatient treatment from 4 sites in Spain. We obtained information on socio-demography, clinical course, psychopathology, cognition, functioning, vital signs, anthropometry and lab analysis. Statistical analysis: k-means clustering, comparisons of between-group variables, and expert criteria. Results and discussion We obtained 12 profilers from 5 life domains that classified patients in five clusters. The profilers were: Number of hospitalizations and of suicide attempts, comorbid personality disorder, body mass index, metabolic syndrome, the number of comorbid physical illnesses, cognitive functioning, being permanently disabled due to BD, global and leisure time functioning, and patients’ perception of their functioning and mental health. We obtained preliminary evidence on the construct validity of the classification: (1) all the profilers behaved correctly, significantly increasing in severity as the severity of the clusters increased, and (2) more severe clusters needed more complex pharmacological treatment. Conclusions We propose a new, easy-to-use, cluster-based severity classification for BD that may help clinicians in the processes of personalized medicine and shared decision-making.
Collapse
Affiliation(s)
- Lorena de la Fuente-Tomas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
| | - Belen Arranz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain
- Parc Sanitari Sant Joan de Deu and University of Barcelona, Barcelona, Spain
| | - Gemma Safont
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain
- University Hospital Mutua Terrassa and University of Barcelona, Barcelona, Spain
| | - Pilar Sierra
- La Fe University and Polytechnic Hospital and University of Valencia, Valencia, Spain
| | | | - Ana Garcia-Blanco
- La Fe University and Polytechnic Hospital and University of Valencia, Valencia, Spain
| | - Maria P. Garcia-Portilla
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- * E-mail:
| |
Collapse
|
23
|
de la Fuente-Tomas L, Sánchez-Autet M, García-Álvarez L, González-Blanco L, Velasco Á, Sáiz Martínez PA, Garcia-Portilla MP, Bobes J. Clinical staging in severe mental disorders; bipolar disorder, depression and schizophrenia. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2018; 12:106-115. [PMID: 30314812 DOI: 10.1016/j.rpsm.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Clinical staging is a diagnostic tool used in other medical specialties, which has resulted from the combination of a categorical and dimensional approach. In the last 2decades, the usefulness of its application in the field of psychiatry has been suggested, mainly as a tool for diagnostic help, and therapeutic and prognostic orientation. In this paper we review the clinical staging models that have been proposed to date for bipolar disorder, depression and schizophrenia. A literature search was performed in PubMed and Medline databases. A total of 15 studies were selected according to inclusion and exclusion criteria. Models were grouped according to the type of disorder for which staging was proposed (bipolar disorder: 4, depression: 5, schizophrenia: 6), and their characteristics were described. As a conclusion, we identify the need to empirically validate these models to demonstrate that staging is a useful tool for clinical practice.
Collapse
Affiliation(s)
- Lorena de la Fuente-Tomas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM G-05); Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España
| | - Mónica Sánchez-Autet
- Hospital Universitario Mutua Terrassa, Universidad de Barcelona, Terrasa, España
| | - Leticia García-Álvarez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM G-05); Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España
| | - Leticia González-Blanco
- Servicio de Salud del Principado de Asturias (SESPA), Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España
| | - Ángela Velasco
- Departamento de Psiquiatría, Universidad de Oviedo, Oviedo, España
| | - Pilar A Sáiz Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM G-05); Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España
| | - María P Garcia-Portilla
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM G-05); Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España.
| | - Julio Bobes
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM G-05); Departamento de Psiquiatría, Universidad de Oviedo; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, España
| |
Collapse
|
24
|
Berk M, Post R, Ratheesh A, Gliddon E, Singh A, Vieta E, Carvalho AF, Ashton MM, Berk L, Cotton SM, McGorry PD, Fernandes BS, Yatham LN, Dodd S. Staging in bipolar disorder: from theoretical framework to clinical utility. World Psychiatry 2017; 16:236-244. [PMID: 28941093 PMCID: PMC5608827 DOI: 10.1002/wps.20441] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Illness staging is widely utilized in several medical disciplines to help predict course or prognosis, and optimize treatment. Staging models in psychiatry in general, and bipolar disorder in particular, depend on the premise that psychopathology moves along a predictable path: an at-risk or latency stage, a prodrome progressing to a first clinical threshold episode, and one or more recurrences with the potential to revert or progress to late or end-stage manifestations. The utility and validity of a staging model for bipolar disorder depend on its linking to clinical outcome, treatment response and neurobiological measures. These include progressive biochemical, neuroimaging and cognitive changes, and potentially stage-specific differences in response to pharmacological and psychosocial treatments. Mechanistically, staging models imply the presence of an active disease process that, if not remediated, can lead to neuroprogression, a more malignant disease course and functional deterioration. Biological elements thought to be operative in bipolar disorder include a genetic diathesis, physical and psychic trauma, epigenetic changes, altered neurogenesis and apoptosis, mitochondrial dysfunction, inflammation, and oxidative stress. Many available agents, such as lithium, have effects on these targets. Staging models also suggest the utility of stage-specific treatment approaches that may not only target symptom reduction, but also impede illness neuroprogression. These treatment approaches range from prevention for at-risk individuals, to early intervention strategies for prodromal and newly diagnosed individuals, complex combination therapy for rapidly recurrent illness, and palliative-type approaches for those at chronic, late stages of illness. There is hope that prompt initiation of potentially disease modifying therapies may preclude or attenuate the cognitive and structural changes seen in the later stages of bipolar disorder. The aims of this paper are to: a) explore the current level of evidence supporting the descriptive staging of the syndromal pattern of bipolar disorder; b) describe preliminary attempts at validation; c) make recommendations for the direction of further studies; and d) provide a distillation of the potential clinical implications of staging in bipolar disorder within a broader transdiagnostic framework.
Collapse
Affiliation(s)
- Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia,Department of PsychiatryUniversity of MelbourneMelbourneAustralia,Orygen, the National Centre of Excellence in Youth Mental HealthParkvilleAustralia,Centre for Youth Mental Health, University of MelbourneMelbourneAustralia,Florey Institute for Neuroscience and Mental HealthMelbourneAustralia
| | - Robert Post
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Aswin Ratheesh
- Orygen, the National Centre of Excellence in Youth Mental HealthParkvilleAustralia,Centre for Youth Mental Health, University of MelbourneMelbourneAustralia
| | - Emma Gliddon
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia
| | - Ajeet Singh
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia
| | - Eduard Vieta
- Bipolar Disorders Program, Department of Psychiatry and PsychologyInstitute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAMBarcelonaCataloniaSpain
| | - Andre F. Carvalho
- Translational Psychiatry Research Group and Department of Clinical MedicineFaculty of Medicine, Federal University of CearáFortalezaBrazil,Institute for Clinical Research and Education in MedicinePaduaItaly
| | - Melanie M. Ashton
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia
| | - Lesley Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia,Department of PsychiatryUniversity of MelbourneMelbourneAustralia
| | - Susan M. Cotton
- Orygen, the National Centre of Excellence in Youth Mental HealthParkvilleAustralia,Centre for Youth Mental Health, University of MelbourneMelbourneAustralia
| | - Patrick D. McGorry
- Orygen, the National Centre of Excellence in Youth Mental HealthParkvilleAustralia,Centre for Youth Mental Health, University of MelbourneMelbourneAustralia
| | - Brisa S. Fernandes
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin UniversityGeelongAustralia,Department of PsychiatryUniversity of MelbourneMelbourneAustralia,Orygen, the National Centre of Excellence in Youth Mental HealthParkvilleAustralia
| |
Collapse
|
25
|
Zamanian M, Hajizadeh MR, Esmaeili Nadimi A, Shamsizadeh A, Allahtavakoli M. Antifatigue effects of troxerutin on exercise endurance capacity, oxidative stress and matrix metalloproteinase-9 levels in trained male rats. Fundam Clin Pharmacol 2017; 31:447-455. [DOI: 10.1111/fcp.12280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/02/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad Zamanian
- Physiology-Pharmacology Research Center; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Mohammad R. Hajizadeh
- Department of Clinical Biochemistry; School of Medicine; Rafsanjani University of Medical Sciences; 7719617996 Rafsanjan Iran
- Molecular Medicine Research Center; Rafsanjan University of Medical Sciences; 7719617996 Rafsanjan Iran
| | - Ali Esmaeili Nadimi
- Department of Cardiology; School of Medicine; Rafsanjani University of Medical Sciences; 7719617996 Rafsanjan Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| |
Collapse
|
26
|
Prescott SL, Logan AC. Transforming Life: A Broad View of the Developmental Origins of Health and Disease Concept from an Ecological Justice Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111075. [PMID: 27827896 PMCID: PMC5129285 DOI: 10.3390/ijerph13111075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
The influential scientist Rene J. Dubos (1901–1982) conducted groundbreaking studies concerning early-life environmental exposures (e.g., diet, social interactions, commensal microbiota, housing conditions) and adult disease. However, Dubos looked beyond the scientific focus on disease, arguing that “mere survival is not enough”. He defined mental health as fulfilling human potential, and expressed concerns about urbanization occurring in tandem with disappearing access to natural environments (and elements found within them); thus modernity could interfere with health via “missing exposures”. With the advantage of emerging research involving green space, the microbiome, biodiversity and positive psychology, we discuss ecological justice in the dysbiosphere and the forces—financial inequity, voids in public policy, marketing and otherwise—that interfere with the fundamental rights of children to thrive in a healthy urban ecosystem and learn respect for the natural environment. We emphasize health within the developmental origins of health and disease (DOHaD) rubric and suggest that greater focus on positive exposures might uncover mechanisms of resiliency that contribute to maximizing human potential. We will entrain our perspective to socioeconomic disadvantage in developed nations and what we have described as “grey space”; this is a mental as much as a physical environment, a space that serves to insidiously reinforce unhealthy behavior, compromise positive psychological outlook and, ultimately, trans-generational health. It is a dwelling place that cannot be fixed with encephalobiotics or the drug-class known as psychobiotics.
Collapse
Affiliation(s)
- Susan L Prescott
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), 35 Stirling Hwy, Crawley 6009, Australia.
- School of Paediatrics and Child Health Research, University of Western Australia, P.O. Box D184, Princess Margaret Hospital, Perth 6001, Australia.
| | - Alan C Logan
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), 35 Stirling Hwy, Crawley 6009, Australia.
- PathLight Synergy, 23679 Calabassas Road, Suite 542, Calabassas, CA 91302, USA.
| |
Collapse
|