1
|
Shainker-Connelly SJ, Crowell RM, Stoeckel S, Vis ML, Krueger-Hadfield SA. Population genetics of the freshwater red alga Batrachospermum gelatinosum (Rhodophyta) I: Frequent intragametophytic selfing in a monoicous, haploid-diploid species. JOURNAL OF PHYCOLOGY 2024; 60:1420-1436. [PMID: 39466068 DOI: 10.1111/jpy.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 10/29/2024]
Abstract
Life cycles with a prolonged haploid phase are thought to be correlated with greater rates of selfing and asexual reproduction. In red algae, recent population genetic studies have aimed to test this prediction but have mostly focused on marine species with separate sexes. We characterized the reproductive system of the obligately monoicous (i.e., hermaphroditic) freshwater red alga Batrachospermum gelatinosum and predicted that we would find genetic signatures of uniparental reproduction because of its haploid-diploid life cycle. We sampled 18 sites and genotyped 311 gametophytes with 10 polymorphic microsatellite loci to describe the reproductive system. Genotypic richness was low (<0.5) and pareto β values (describing clonal membership) were <0.7 for most sites. In taxa with separate sexes, these patterns are typically indicative of asexual reproduction. However, the genetic consequences of selfing in monoicous gametophytes are indistinguishable from those caused by asexual processes. Since we sampled gametophytes and have not yet genotyped the chantransia (i.e., the diploid phase), we interpreted low diversity as a signature of intragametophytic selfing. Additionally, to understand the factors that drive selfing, we tested latitude and several other environmental variables, but none was significantly correlated with the genetic variation we observed. Nevertheless, future studies should genotype the chantransia to measure observed heterozygosity among other summary statistics to disentangle the effects of selfing versus asexual reproduction. Together, these data, coupled with further characterization of abiotic factors that influence population genetic patterns, will allow us to test potential drivers of reproductive system evolution.
Collapse
Affiliation(s)
| | - Roseanna M Crowell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Solenn Stoeckel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Morgan L Vis
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, Virginia, USA
| |
Collapse
|
2
|
Nieto-Lugilde M, Nieto-Lugilde D, Piatkowski B, Duffy AM, Robinson SC, Aguero B, Schuette S, Wilkens R, Yavitt J, Shaw AJ. Ecological differentiation and sympatry of cryptic species in the Sphagnum magellanicum complex (Bryophyta). AMERICAN JOURNAL OF BOTANY 2024; 111:e16401. [PMID: 39267427 DOI: 10.1002/ajb2.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/17/2024]
Abstract
PREMISE Sphagnum magellanicum (Sphagnaceae, Bryophyta) has been considered to be a single semi-cosmopolitan species, but recent molecular analyses have shown that it comprises a complex of at least seven reciprocally monophyletic groups, that are difficult or impossible to distinguish morphologically. METHODS Newly developed barcode markers and RADseq analyses were used to identify species among 808 samples from 119 sites. Molecular approaches were used to assess the geographic ranges of four North American species, the frequency at which they occur sympatrically, and ecological differentiation among them. Microhabitats were classified with regard to hydrology and shade. Hierarchical modelling of species communities was used to assess climate variation among the species. Climate niches were projected back to 22,000 years BP to assess the likelihood that the North American species had sympatric ranges during the late Pleistocene. RESULTS The species exhibited parallel morphological variation, making them extremely difficult to distinguish phenotypically. Two to three species frequently co-occurred within peatlands. They had broadly overlapping microhabitat and climate niches. Barcode- versus RADseq-based identifications were in conflict for 6% of the samples and always involved S. diabolicum vs. S. magniae. CONCLUSIONS These species co-occur within peatlands at scales that could permit interbreeding, yet they remain largely distinct genetically and phylogenetically. The four cryptic species exhibited distinct geographic and ecological patterns. Conflicting identifications from barcode vs. RADseq analyses for S. diabolicum versus S. magniae could reflect incomplete speciation or hybridization. They comprise a valuable study system for additional work on climate adaptation.
Collapse
Affiliation(s)
- Marta Nieto-Lugilde
- Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA
| | - Diego Nieto-Lugilde
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37830, TN, USA
| | - Aaron M Duffy
- Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA
| | - Sean C Robinson
- Department of Biology, SUNY Oneonta, Oneonta, 13820, NY, USA
| | - Blanka Aguero
- Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA
| | - Scott Schuette
- Pennsylvania Natural Heritage Program, Western Pennsylvania Conservancy, Pittsburgh, 15222, PA, USA
| | - Richard Wilkens
- Biological Sciences Department, Salisbury University, Salisbury, 21801, MD, USA
| | - Joseph Yavitt
- Department of Natural Resources, Cornell University, Ithaca, 14853, NY, USA
| | - A Jonathan Shaw
- Department of Biology and L. E. Anderson Bryophyte Herbarium, Duke University, Durham, 27708, NC, USA
| |
Collapse
|
3
|
Shaw AJ, Duffy AM, Nieto-Lugilde M, Aguero B, Schuette S, Robinson S, Loveland J, Hicks KA, Weston D, Piatkowski B, Kolton M, Koska JE, Healey AL. Clonality, local population structure and gametophyte sex ratios in cryptic species of the Sphagnum magellanicum complex. ANNALS OF BOTANY 2023; 132:77-94. [PMID: 37417448 PMCID: PMC10550268 DOI: 10.1093/aob/mcad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300-500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. METHODS Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. KEY RESULTS All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. CONCLUSIONS These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Aaron M Duffy
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Marta Nieto-Lugilde
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Blanka Aguero
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Scott Schuette
- Pennsylvania Natural Heritage Program, Western Pennsylvania Conservancy, Pittsburgh, PA, 15222, USA
| | - Sean Robinson
- Department of Biology, SUNY Oneonta, Oneonta, NY, 13820, USA
| | - James Loveland
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Karen A Hicks
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - David Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Max Kolton
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Joel E Koska
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
4
|
Calleja JA, Domènech G, Sáez L, Lara F, Garilleti R, Albertos B. Extinction risk of threatened and non-threatened mosses: Reproductive and ecological patterns. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Ellwanger C, Steger L, Pollack C, Wells R, Benjamin Fant J. Anthropogenic fragmentation increases risk of genetic decline in the threatened orchid Platanthera leucophaea. Ecol Evol 2022; 12:e8578. [PMID: 35222956 PMCID: PMC8855017 DOI: 10.1002/ece3.8578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Protecting biodiversity requires an understanding of how anthropogenic changes impact the genetic processes associated with extinction risk. Studies of the genetic changes due to anthropogenic fragmentation have revealed conflicting results. This is likely due to the difficulty in isolating habitat loss and fragmentation, which can have opposing impacts on genetic parameters. The well-studied orchid, Platanthera leucophaea, provides a rich dataset to address this issue, allowing us to examine range-wide genetic changes. Midwestern and Northeastern United States. We sampled 35 populations of P. leucophaea that spanned the species' range and varied in patch composition, degree of patch isolation, and population size. From these populations we measured genetic parameters associated with increased extinction risk. Using this combined dataset, we modeled landscape variables and population metrics against genetic parameters to determine the best predictors of increased extinction risk. All genetic parameters were strongly associated with population size, while development and patch isolation showed an association with genetic diversity and genetic structure. Genetic diversity was lowest in populations with small census sizes, greater urbanization pressures (habitat loss), and small patch area. All populations showed moderate levels of inbreeding, regardless of size. Contrary to expectation, we found that critically small populations had negative inbreeding values, indicating non-random mating not typically observed in wild populations, which we attribute to selection for less inbred individuals. The once widespread orchid, Platanthera leucophaea, has suffered drastic declines and extant populations show changes in the genetic parameters associated with increased extinction risk, especially smaller populations. Due to the important correlation with risk and habitat loss, we advocate continued monitoring of population sizes by resource managers, while the critically small populations may need additional management to reverse genetic declines.
Collapse
Affiliation(s)
- Claire Ellwanger
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern University, O.T. Hogan HallEvanstonIllinoisUSA
- U.S. Forest ServiceOkanogan‐Wenatchee National ForestWenatcheeWashingtonUSA
| | - Laura Steger
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Cathy Pollack
- U.S. Fish and Wildlife ServiceChicago Field OfficeChicagoIllinoisUSA
| | - Rachel Wells
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Jeremie Benjamin Fant
- Plant Biology and ConservationChicago Botanic GardenGlencoeIllinoisUSA
- Plant Biology and ConservationNorthwestern University, O.T. Hogan HallEvanstonIllinoisUSA
| |
Collapse
|
6
|
Dalapicolla J, Alves R, Jaffé R, Vasconcelos S, Pires ES, Nunes GL, Pereira JBDS, Guimarães JTF, Dias MC, Fernandes TN, Scherer D, dos Santos FMG, Castilho A, Santos MP, Calderón EN, Martins RL, da Fonseca RN, Esteves FDA, Caldeira CF, Oliveira G. Conservation implications of genetic structure in the narrowest endemic quillwort from the Eastern Amazon. Ecol Evol 2021; 11:10119-10132. [PMID: 34367563 PMCID: PMC8328431 DOI: 10.1002/ece3.7812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
The quillwort Isoëtes cangae is a critically endangered species occurring in a single lake in Serra dos Carajás, Eastern Amazon. Low genetic diversity and small effective population sizes (N e) are expected for narrow endemic species (NES). Conservation biology studies centered in a single species show some limitations, but they are still useful considering the limited time and resources available for protection of species at risk of extinction. Here, we evaluated the genetic diversity, population structure, N e, and minimum viable population (MVP) of I. cangae to provide information for effective conservation programs. Our analyses were based on 55 individuals collected from the Amendoim Lake and 35,638 neutral SNPs. Our results indicated a single panmictic population, moderate levels of genetic diversity, and N e in the order of thousands, contrasting the expected for NES. Negative FIS values were also found, suggesting that I. cangae is not under risk of inbreeding depression. Our findings imply that I. cangae contains enough genetic diversity to ensure evolutionary potential and that all individuals should be treated as one demographic unit. These results provide essential information to optimize ex situ conservation efforts and genetic diversity monitoring, which are currently applied to guide I. cangae conservation plans.
Collapse
Affiliation(s)
| | | | - Rodolfo Jaffé
- Instituto Tecnológico ValeBelémBrazil
- ExponentBellevueWAUSA
| | | | | | | | | | | | - Mariana C. Dias
- Instituto Tecnológico ValeBelémBrazil
- Programa Interunidades de Pós‐Graduação em BioinformáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Daniela Scherer
- VALE S/AGerência de Estudos AmbientaisLicenciamento e EspeleologiaNova LimaBrazil
| | | | - Alexandre Castilho
- VALE S/AGerência de Estudos AmbientaisLicenciamento e EspeleologiaNova LimaBrazil
| | - Mirella Pupo Santos
- Instituto de Biodiversidade e Sustentabilidade NUPEMUniversidade Federal do Rio de JaneiroMacaéBrazil
| | - Emiliano Nicolas Calderón
- Instituto de Biodiversidade e Sustentabilidade NUPEMUniversidade Federal do Rio de JaneiroMacaéBrazil
| | - Rodrigo Lemes Martins
- Instituto de Biodiversidade e Sustentabilidade NUPEMUniversidade Federal do Rio de JaneiroMacaéBrazil
| | - Rodrigo Nunes da Fonseca
- Instituto de Biodiversidade e Sustentabilidade NUPEMUniversidade Federal do Rio de JaneiroMacaéBrazil
| | | | | | | |
Collapse
|
7
|
Astorkia M, Hernandez M, Bocs S, Lopez de Armentia E, Herran A, Ponce K, León O, Morales S, Quezada N, Orellana F, Wendra F, Sembiring Z, Asmono D, Ritter E. Association Mapping Between Candidate Gene SNP and Production and Oil Quality Traits in Interspecific Oil Palm Hybrids. PLANTS 2019; 8:plants8100377. [PMID: 31561627 PMCID: PMC6843369 DOI: 10.3390/plants8100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/07/2023]
Abstract
Oil palm production is gaining importance in Central and South America. However, the main species Elaeis guineensis (Eg) is suffering severely from bud rod disease, restricting the potential cultivation areas. Therefore, breeding companies have started to work with interspecific Elaeis oleifera × Eg (Eo × Eg) hybrids which are tolerant to this disease. We performed association studies between candidate gene (CG) single nucleotide polymorphisms (SNP) and six production and 19 oil quality traits in 198 accessions of interspecific oil palm hybrids from five different origins. For this purpose, barcoded amplicons of initially 167 CG were produced from each genotype and sequenced with Ion Torrent. After sequence cleaning 115 SNP remained targeting 62 CG. The influence of the origins on the different traits was analyzed and a genetic diversity study was performed. Two generalized linear models (GLM) with principle component analysis (PCA) or structure (Q) matrixes as covariates and two mixed linear models (MLM) which included in addition a Kinship (K) matrix were applied for association mapping using GAPIT. False discovery rate (FDR) multiple testing corrections were applied in order to avoid Type I errors. However, with FDR adjusted p values no significant associations between SNP and traits were detected. If using unadjusted p values below 0.05, seven of the studied CG showed potential associations with production traits, while 23 CG may influence different quality traits. Under these conditions the current approach and the detected candidate genes could be exploited for selecting genotypes with superior CG alleles in Marker Assisted Selection systems.
Collapse
Affiliation(s)
- Maider Astorkia
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
- Correspondence:
| | - Mónica Hernandez
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, CIRAD, Univ Montpellier, INRA, Montpellier SupAgro, F-34398 Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRA, IRD, F-34398 Montpellier, France
| | - Emma Lopez de Armentia
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Ana Herran
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| | - Kevin Ponce
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Olga León
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, Quito 170507, Ecuador; (O.L.); (F.O.)
| | - Shone Morales
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Nathalie Quezada
- La Fabril SA, km 5.5 via Manta–Montecristi, Avenida 113, 130902 Manta, Ecuador; (K.P.); (S.M.); (N.Q.)
| | - Francisco Orellana
- Energy & Palma SA, Av. Atahualpa E3-49 y Juan Gonzales, Ed. Fundación Pérez Pallarez, Officina 4ª, Quito 170507, Ecuador; (O.L.); (F.O.)
| | - Fahmi Wendra
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Zulhermana Sembiring
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Dwi Asmono
- Department of Research & Development, PT Sampoerna Agro Tbk., Jl. Basuki Rahmat No. 788 Palembang 30127, Indonesia; (F.W.); (Z.S.); (D.A.)
| | - Enrique Ritter
- NEIKER Tecnalia, Campus Agroalimentario de Arkaute, Apdo 46. 01080 Vitoria-Gasteiz, Spain; (M.H.); (E.L.d.A.); (A.H.); (E.R.)
| |
Collapse
|
8
|
Meleshko O, Stenøien HK, Speed JDM, Flatberg KI, Kyrkjeeide MO, Hassel K. Is interspecific gene flow and speciation in peatmosses ( Sphagnum) constrained by phylogenetic relationship and life-history traits? LINDBERGIA 2018. [DOI: 10.25227/linbg.01107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Olena Meleshko
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Hans K. Stenøien
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - James D. M. Speed
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Kjell I. Flatberg
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Kristian Hassel
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Haig D. Living together and living apart: the sexual lives of bryophytes. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0535. [PMID: 27619699 DOI: 10.1098/rstb.2015.0535] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Haploid gametophytes of bryophytes spread by clonal growth but mate locally, within an area defined by the range of sperm movement. Rarity of establishment from spores or vegetative competition can result in unisexual populations unable to reproduce sexually. Females typically outcompete males, probably because females expend fewer resources than males on the production of gametes. Extreme sexual dimorphism-tiny males growing as epiphytes on much larger females-has evolved many times. Haploid selfing is common in bryophytes with bisexual gametophytes, and results in completely homozygous sporophytes. Spores from these sporophytes recapitulate the genotype of their single haploid parent. This process can be considered analogous to 'asexual' reproduction with 'sexual' reproduction occurring after rare outcrossing between haploid parents. Ferns also produce bisexual haploid gametophytes but, unlike bryophytes, haploid outcrossing predominates over haploid selfing. This difference is probably related to clonal growth and vegetative competition occurring in the haploid but not the diploid phase in bryophytes, but the reverse in ferns. Ferns are thereby subject to stronger inbreeding depression than bryophytes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). ANNALS OF BOTANY 2016; 118:185-96. [PMID: 27268484 PMCID: PMC4970357 DOI: 10.1093/aob/mcw086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Edif. 7, 8005-139 Faro, Portugal
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Kjell Ivar Flatberg
- NTNU University Museum, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Devos N, Szövényi P, Weston DJ, Rothfels CJ, Johnson MG, Shaw AJ. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta). THE NEW PHYTOLOGIST 2016; 211:300-18. [PMID: 26900928 DOI: 10.1111/nph.13887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/04/2016] [Indexed: 05/07/2023]
Abstract
The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed.
Collapse
Affiliation(s)
- Nicolas Devos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8008, Zurich, Switzerland
- Institute of Systematic Botany, University of Zurich, 8057, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015, Lausanne, Switzerland
- MTA ELTE-MTM Ecology Research Group, ELTE, Biological Institute, H1117, Budapest, Hungary
| | - David J Weston
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37831, USA
| | - Carl J Rothfels
- University Herbarium & Department of Integrative Biology, University of California, Berkeley, CA, 24720, USA
| | - Matthew G Johnson
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
12
|
Laenen B, Machac A, Gradstein SR, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Shaw AJ, Vanderpoorten A. Increased diversification rates follow shifts to bisexuality in liverworts. THE NEW PHYTOLOGIST 2016; 210:1121-1129. [PMID: 27074401 DOI: 10.1111/nph.13835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism.
Collapse
Affiliation(s)
- Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, 10691, Sweden
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| | - Antonin Machac
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, Universitetsparken 15, DK 2100, Copenhagen, Denmark
- Department of Ecology, Charles University, Vinicna 7, Prague 2, 12844, Czech Republic
- Center for Theoretical Study, Charles University and Academy of Sciences of the Czech Republic, Jilska 1, Prague 1, 11000, Czech Republic
| | - S Robbert Gradstein
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Jairo Patiño
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| | - Aurélie Désamoré
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
- Department of Zoology, Naturhistoriska Riksmuseet, Stockholm, 10405, Sweden
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Alain Vanderpoorten
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
13
|
Johnson MG, Shaw AJ. The effects of quantitative fecundity in the haploid stage on reproductive success and diploid fitness in the aquatic peat moss Sphagnum macrophyllum. Heredity (Edinb) 2016; 116:523-30. [PMID: 26905464 DOI: 10.1038/hdy.2016.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/23/2015] [Accepted: 12/29/2015] [Indexed: 11/09/2022] Open
Abstract
A major question in evolutionary biology is how mating patterns affect the fitness of offspring. However, in animals and seed plants it is virtually impossible to investigate the effects of specific gamete genotypes. In bryophytes, haploid gametophytes grow via clonal propagation and produce millions of genetically identical gametes throughout a population. The main goal of this research was to test whether gamete identity has an effect on the fitness of their diploid offspring in a population of the aquatic peat moss Sphagnum macrophyllum. We observed a heavily male-biased sex ratio in gametophyte plants (ramets) and in multilocus microsatellite genotypes (genets). There was a steeper relationship between mating success (number of different haploid mates) and fecundity (number of diploid offspring) for male genets compared with female genets. At the sporophyte level, we observed a weak effect of inbreeding on offspring fitness, but no effect of brood size (number of sporophytes per maternal ramet). Instead, the identities of the haploid male and haploid female parents were significant contributors to variance in fitness of sporophyte offspring in the population. Our results suggest that intrasexual gametophyte/gamete competition may play a role in determining mating success in this population.
Collapse
Affiliation(s)
- M G Johnson
- Department of Biology, Duke University, Durham, NC, USA
| | - A J Shaw
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Balance between inbreeding and outcrossing in a nannandrous species, the moss Homalothecium lutescens. Heredity (Edinb) 2015; 116:107-13. [PMID: 26328759 DOI: 10.1038/hdy.2015.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 11/09/2022] Open
Abstract
Epiphytic dwarf males on the females present a possible solution to the problem of short fertilization distances in mosses. However, leptokurtic spore dispersal makes dwarf males likely to be closely related to their host shoot, with an accompanying risk of inbreeding. The capacity of a female to harbour a high number of different dwarf males suggests that there may be mechanisms in place that counteract inbreeding, such as polyandry and post-fertilization selection. We have genotyped sporophytes, female host shoots and dwarf males in four populations of the moss Homalothecium lutescens. We found no evidence of selective sporophyte abortion based on level of heterozygosity. The occurrence of entirely homozygous sporophytes together with significantly positive inbreeding coefficients in three of the populations (mean FIS between 0.48 and 0.64) suggest frequent mother-son mating events. However, 23% of all sampled sporophytes had a higher level of heterozygosity compared with the mean expected heterozygosity at the population level. Polyandry was frequent, on average 59% of the sporophytes on a female shoot were sired by distinct fathers. In conclusion, sporadic fertilizations by dwarf males originating from nonhost female shoots appear to counteract strong inbreeding.
Collapse
|