1
|
McCarthy ML, Martínez AR, Ferguson SH, Rosing-Asvid A, Dietz R, De Cahsan B, Schreiber L, Lorenzen ED, Hansen RG, Stimmelmayr R, Bryan A, Quakenbush L, Lydersen C, Kovacs KM, Olsen MT. Circumpolar Population Structure, Diversity and Recent Evolutionary History of the Bearded Seal in Relation to Past and Present Icescapes. Mol Ecol 2025; 34:e17643. [PMID: 39835612 DOI: 10.1111/mec.17643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E. barbatus nauticus-Pacific and E. barbatus barbatus-Atlantic), is an ice-obligate Arctic species using sea ice for many aspects of its life history, rendering it particularly vulnerable to sea ice loss. It is one of the least studied and hence enigmatic of the Arctic marine mammals, with little knowledge regarding genetic structure, diversity, adaptations, and demographic history, consequently hampering management and conservation efforts. Here, we sequenced 70 whole nuclear genomes from across most of the species' circumpolar range, finding significant genetic structure between the Pacific and the Atlantic subspecies, which diverged during the Penultimate Glacial Period (~200 KYA). Remarkably, we found fine-scale genetic structure within both subspecies, with at least two distinct populations in the Pacific and three in the Atlantic. We hypothesise sea-ice dynamics and bathymetry had a prominent role in shaping bearded seal genetic structure and diversity. Our analyses of highly differentiated genomic regions can be used to complement the health, physiological, and behavioural research needed to conserve this species. In addition, we provide recommendations for management units that can be used to more specifically assess climatic and anthropogenic impacts on bearded seal populations.
Collapse
Affiliation(s)
| | | | - Steven H Ferguson
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiaġvik, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Anna Bryan
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, Fairbanks, Alaska, USA
| | - Lori Quakenbush
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, Fairbanks, Alaska, USA
| | | | - Kit M Kovacs
- Norwegian Polar Institute, Framsenteret, Tromsø, Norway
| | - Morten Tange Olsen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
2
|
Lau SCY, Wilson NG, Watts PC, Silva CNS, Cooke IR, Allcock AL, Mark FC, Linse K, Jernfors T, Strugnell JM. Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus. Mol Ecol 2025; 34:e17601. [PMID: 39628448 DOI: 10.1111/mec.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025]
Abstract
Understanding how ecological, environmental and geographic features influence population genetic patterns provides crucial insights into a species' evolutionary history, as well as their vulnerability or resilience under climate change. In the Southern Ocean, population genetic variation is influenced across multiple spatial scales ranging from circum-Antarctic, which encompasses the entire continent, to regional, with varying levels of geographic separation. However, comprehensive analyses testing the relative importance of different environmental and geographic variables on genomic variation across these scales are generally lacking in the Southern Ocean. Here, we examine genome-wide single nucleotide polymorphisms of the Southern Ocean octopus Pareledone turqueti across the Scotia Sea and the Antarctic continental shelf, at depths between 102 and 1342 m, throughout most of this species' range. The circumpolar distribution of P. turqueti is biogeographically structured with a clear signature of isolation-by-geographical distance, but with long-distance genetic connectivity also detected between East and West Antarctica. Genomic variation of P. turqueti was also associated with bottom water temperature at a circumpolar scale, driven by a genotype-temperature association with the warmer sub-Antarctic Shag Rocks and South Georgia. Within the Scotia Sea, geographic distance, oxygen and fine-scale isolation-by-water depth were apparent drivers of genomic variation at regional scales. Putative positive selection of haemocyanin (oxygen transport protein), calcium ion transport and genes linked to RNA modification, detected within the Scotia Sea, suggest physiological adaptation to the regional sharp temperature gradient (~0-+2°C). Overall, we identified seascape drivers of genomic variation in the Southern Ocean at circumpolar and regional scales in P. turqueti and contextualised the role of environmental adaptations in the Southern Ocean.
Collapse
Affiliation(s)
- Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Securing Antarctica's Environmental Future, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Department of Life Sciences, Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Ira R Cooke
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Toni Jernfors
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Moran PA, Colgan TJ, Phillips KP, Coughlan J, McGinnity P, Reed TE. Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories. Mol Ecol 2024; 33:e17538. [PMID: 39497337 PMCID: PMC11589691 DOI: 10.1111/mec.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024]
Abstract
Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.
Collapse
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- A‐LIFE, Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Thomas J. Colgan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg, University MainzMainzGermany
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Canadian Rivers Institute, University of New BrunswickFrederictonNew BrunswickCanada
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine Institute, Furnace, NewportMayoIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
4
|
Lindtke D, Lerch S, Morel I, Neuditschko M. Assessment of genome complementarity in three beef-on-dairy crossbreds reveals sire-specific effects on production traits with comparable rates of genomic inbreeding reduction. BMC Genomics 2024; 25:1118. [PMID: 39567870 PMCID: PMC11577664 DOI: 10.1186/s12864-024-11029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Crossbreeding beef bulls with dairy cows can improve the economic value and fitness of calves not entering dairy production owing to increased meat yield and heterosis. However, outcrossing might reduce the dosage of alleles that confer local adaptation or result in a higher risk of dystocia due to increased calf size. Given the clear phenotypic differences between beef breeds, the varying phylogenetic distances between beef and dairy breeds, and the genomic variations within breeds, the attainable economic and fitness gains of calves will strongly depend on the selection of sires for crossing. Thus, the aim of this study was to assess genome complementarity between Angus (AAN), Limousin (LIM), or Simmental (SIM) beef bulls and Brown Swiss (BSW) dairy cows by quantifying genomic inbreeding reduction in F1 crosses and identifying genes potentially under BSW-specific selection that might be affected by outcrossing. RESULTS Low-pass sequencing data from 181 cows, 34 bulls, and 301 of their F1 progeny, and body weight and carcass composition measurements of 248 F1s were obtained. The high genomic inbreeding levels detected in the BSW cows were substantially reduced in the crossbreds, with only minor differences between the sire breeds. In the BSW cows, 585 candidate genes under selection were identified, overrepresenting genes associated with milk, meat and carcass, and production traits. Only a few genes were strongly differentiated at nonsynonymous variants between the BSW and beef breeds, including four tightly clustered genes (FAM184B, NCAPG, DCAF16, and LCORL) nearly fixed for alternate alleles in the BSW cows but mostly heterozygous or homozygous for the reference alleles in the AAN and LIM bulls. The alternate allele dosage at these genes significantly correlated with reduced carcass weight and protein mass in F1s. CONCLUSION Some of the few genes that were highly divergent between the BSW and beef breeds at nonsynonymous variants were likely under strong selection for reduced carcass weight in the BSW breed, potentially due to trade-offs between beef and dairy productions. As alleles with opposing effects still segregate in beef cattle, marker-assisted selection of mating pairs may be used to modulate the desired phenotypes and simultaneously decrease genomic inbreeding.
Collapse
Affiliation(s)
| | - Sylvain Lerch
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | - Isabelle Morel
- Ruminant Nutrition and Emissions, 1725 Posieux, Agroscope, Switzerland
| | | |
Collapse
|
5
|
Escuer P, Guirao-Rico S, Arnedo MA, Sánchez-Gracia A, Rozas J. Population Genomics of Adaptive Radiations: Exceptionally High Levels of Genetic Diversity and Recombination in an Endemic Spider From the Canary Islands. Mol Ecol 2024; 33:e17547. [PMID: 39400446 DOI: 10.1111/mec.17547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The spider genus Dysdera has undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, with ~60 endemic species having originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterised by phenotypic modifications encompassing morphological, metabolic and behavioural changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species, D. silvatica, providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low coverage-based resequencing study of a natural population of D. silvatica from La Gomera island. Taking advantage of the new high-quality genome, we characterised genome-wide levels of nucleotide polymorphism, divergence and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. We also identified several candidate genomic regions that are potentially under positive selection, highlighting relevant biological processes, such as vision and nitrogen extraction as potential adaptation targets. These processes may ultimately drive species diversification in this genus. This pioneering study of spiders that are endemic to an oceanic archipelago lays the groundwork for broader population genomics analyses aimed at understanding the genetic mechanisms driving adaptive radiation in island ecosystems.
Collapse
Affiliation(s)
- Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sara Guirao-Rico
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Sands AF, Andersson AAL, Reid K, Hains T, Joseph L, Drew A, Mason IJ, Rheindt FE, Dingle C, Merilä J. Genomic and Acoustic Biogeography of the Iconic Sulphur-crested Cockatoo Clarifies Species Limits and Patterns of Intraspecific Diversity. Mol Biol Evol 2024; 41:msae222. [PMID: 39447047 PMCID: PMC11586666 DOI: 10.1093/molbev/msae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Many highly recognizable species lack genetic data important for conservation due to neglect over their hyperabundance. This likely applies to the Sulfur-crested Cockatoo (Cacatua galerita), one of the world's most iconic parrots. The species is native to Australia, New Guinea, and some surrounding Melanesian islands of the latter. Four subspecies are currently recognised based on morphology. Australian subspecies and populations are abundant, but several factors threaten those in New Guinea and Melanesia. Genetic data from natural populations are scarce-information that is vital to identifying evolutionarily significant units (ESUs) important for modern conservation planning. We used whole-genome resequencing to investigate patterns of differentiation, evolutionary affinities, and demographic history across C. galerita's distribution range to assess whether currently recognised subspecies represent ESUs. We complement this with an assessment of bioacoustic variation across the species' distribution landscape. Our results point to C. galerita sensu lato (s.l.) comprising two species. We restrict C. galerita sensu stricto (s.s.) to populations in Australia and the Trans-Fly ecodomain of southern New Guinea. The second species, recognised here as Cacatua triton, likely occurs over much of the rest of New Guinea. Restricting further discussion of intraspecific diversity in C. triton, we show that within C. galerita s.s. two ESUs exist, which align to Cacatua galerita galerita in eastern Australia and southern New Guinea and Cacatua galerita fitzroyi in northern and north-western Australia. We suggest that the evolution of these species and ESUs are linked to Middle and Late Pleistocene glacial cycles and their effects on sea level and preferential habitats. We argue that conservation assessments need updating, protection of preferential forest and woodland habitats are important and reintroductions require careful management to avoid possible negative hybridization effects of non-complementary lineages.
Collapse
Affiliation(s)
- Arthur F Sands
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Astrid A L Andersson
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Alex Drew
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Ian J Mason
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Caroline Dingle
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Biology Department, Capilano University, North Vancouver, BC, Canada
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Fernandes AM, Cohn-Haft M, Fábio Silveira L, Aleixo A, Nascimento N, Olsson U. Speciation in savanna birds in South America: The case of the Least Nighthawk Chordeiles pusillus (Aves: Caprimulgidae) in and out of the Amazon. Mol Phylogenet Evol 2024; 198:108117. [PMID: 38852908 DOI: 10.1016/j.ympev.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The Least Nighthawk Chordeiles pusillus is widespread wherever there are savannas in the South American tropics, often in isolated patches, such as white-sands savannas in the Amazon rainforest realm. Here, we investigate genetic relationships between populations of the Least Nighthawk to understand historical processes leading to its diversification and to determine dispersal routes between northern and southern savannas by way of three hypothesized dispersal corridors by comparing samples from white-sand savannas to samples from other savannas outside of the Amazon rainforest region. We use 32 mtDNA samples from the range of C. pusillus to infer a dated phylogeny. In a subset of 17 samples, we use shotgun sequences to infer a distance-based phylogeny and to estimate individual admixture proportions. We calculate gene flow and shared alleles between white-sand and non-Amazonian populations using the ABBA-BABA test (D statistics), and Principal Component Analysis (PCA) to examine genetic structure within and between lineages. Finally, we use species distribution modelling (SDM) of conditions during the Last Glacial Maximum (LGM), currently, and in the future (2050-2080) to predict potential species occurrence under a climate change scenario. Two main clades (estimated to have diverged around 1.07 million years ago) were recovered with mtDNA sequences and Single Nucleotide Polymorphism (SNPs) and were supported by NGSadmix and PCA: one in the Amazon basin white-sand savannas, the other in the non-Amazonian savannas. Possible allele sharing between these clades was indicated by the D-statistics between northern non-Amazonian populations and the white-sand savanna population, but this was not corroborated by the admixture analyses. Dispersal among northern non-Amazonian populations may have occurred in a dry corridor between the Guianan and the Brazilian Shield, which has since moved eastward. Our data suggest that the lineages separated well before the Last Glacial Maximum, consequently dispersal could have happened at any earlier time during similar climatic conditions. Subsequently, non-Amazonian lineages became more divergent among themselves, possibly connecting and dispersing across the mouth of the Amazon River across Marajó island during favourable climatic conditions in the Pleistocene.
Collapse
Affiliation(s)
| | | | | | - Alexandre Aleixo
- Museu Paraense Emílio Goeldi, Belém, Brazil; Instituto Tecnológico Vale, Brazil
| | | | - Urban Olsson
- Department of Biology and Environmental Science, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
8
|
Black AN, Mularo AJ, Jeon JY, Haukos D, Bondo KJ, Fricke KA, Gregory A, Grisham B, Lowe ZE, DeWoody JA. Discordance between taxonomy and population genomic data: An avian example relevant to the United States Endangered Species Act. PNAS NEXUS 2024; 3:pgae298. [PMID: 39131912 PMCID: PMC11313583 DOI: 10.1093/pnasnexus/pgae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Population genomics can reveal cryptic biological diversity that may impact fitness while simultaneously serving to delineate relevant conservation units. Here, we leverage the power of whole-genome resequencing for conservation by studying 433 individual lesser prairie-chicken (Tympanuchus pallidicinctus; LEPC, a federally endangered species of conservation concern in the United States) and greater prairie-chicken (Tympanuchus cupido; GRPC, a legally huntable species throughout much of its range). The genomic diversity of two formally recognized distinct population segments (DPSs) of LEPCs is similar, but they are genetically distinct. Neither DPS is depleted of its genomic diversity, neither is especially inbred, and temporal diversity is relatively stable in both conservation units. Interspecific differentiation between the two species was only slightly higher than that observed between LEPC DPSs, due largely to bidirectional introgression. The high resolution provided by our dataset identified a genomic continuum between the two species such that individuals sampled from the hybrid zone were imperfectly assigned to their presumptive species when considering only their physical characteristics. The admixture between the two species is reflected in the spectrum of individual ancestry coefficients, which has legal implications for the "take" of individuals under the Endangered Species Act. Overall, our data highlight the recurring dissonance between static policies and dynamic species boundaries that are increasingly obvious in the population genomic era.
Collapse
Affiliation(s)
- Andrew N Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| | - Jong Yoon Jeon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - David Haukos
- U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin J Bondo
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Kent A Fricke
- Kansas Department of Wildlife and Parks, Emporia, KS 66801, USA
| | - Andy Gregory
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Blake Grisham
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Zachary E Lowe
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| |
Collapse
|
9
|
Zhang J, Schneller NM, Field MA, Chan CX, Miller DJ, Strugnell JM, Riginos C, Bay L, Cooke I. Chromosomal inversions harbour excess mutational load in the coral, Acropora kenti, on the Great Barrier Reef. Mol Ecol 2024; 33:e17468. [PMID: 39046252 DOI: 10.1111/mec.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.
Collapse
Affiliation(s)
- Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadja M Schneller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matt A Field
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
10
|
Salgado-Roa FC, Pardo-Diaz C, Rueda-M N, Cisneros-Heredia DF, Lasso E, Salazar C. The Andes as a semi-permeable geographical barrier: Genetic connectivity between structured populations in a widespread spider. Mol Ecol 2024; 33:e17361. [PMID: 38634856 DOI: 10.1111/mec.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Geographical barriers like mountain ranges impede genetic exchange among populations, promoting diversification. The effectiveness of these barriers in limiting gene flow varies between lineages due to each species' dispersal modes and capacities. Our understanding of how the Andes orogeny contributes to species diversification comes from well-studied vertebrates and a few arthropods and plants, neglecting organisms unable to fly or walk long distances. Some arachnids, such as Gasteracantha cancriformis, have been hypothesized to disperse long distances via ballooning (i.e. using their silk to interact with the wind). Yet, we do not know how the environment and geography shape its genetic diversity. Therefore, we tested whether the Andes contributed to the diversification of G. cancriformis acting as an absolute or semi-permeable barrier to genetic connectivity between populations of this spider at opposite sides of the mountain range. We sampled thousands of loci across the distribution of the species and implemented population genetics, phylogenetic, and landscape genetic analyses. We identified two genetically distinct groups structured by the Central Andes, and a third less structured group in the Northern Andes that shares ancestry with the previous two. This structure is largely explained by the altitude along the Andes, which decreases in some regions, possibly facilitating cross-Andean dispersal and gene flow. Our findings support that altitude in the Andes plays a major role in structuring populations in South America, but the strength of this barrier can be overcome by organisms with long-distance dispersal modes together with altitudinal depressions.
Collapse
Affiliation(s)
- Fabian C Salgado-Roa
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Carolina Pardo-Diaz
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicol Rueda-M
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diego F Cisneros-Heredia
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Laboratorio de Zoología Terrestre, Museo de Zoología & Extensión USFQ Galápagos GAIAS, Galapagos Science Center, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eloisa Lasso
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Estación Científica Coiba AIP, Panama, Republic of Panama
| | - Camilo Salazar
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
11
|
Vandewege MW, Gutierrez J, Davis DR, Forstner MRJ, Mali I. Patterns of genetic divergence in the Rio Grande cooter (Pseudemys gorzugi), a riverine turtle inhabiting an arid and anthropogenically modified system. J Hered 2024; 115:253-261. [PMID: 38373252 PMCID: PMC11081133 DOI: 10.1093/jhered/esae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
The lower Rio Grande and Pecos River of the southwest United States have been heavily modified by human activities, profoundly impacting the integrity of their aquatic wildlife. In this context, we focused our study on the population genomics of the Rio Grande Cooter (Pseudemys gorzugi), a freshwater turtle of increasing conservation concern, residing in these two rivers and their tributaries. The genetic data revealed two distinct populations: one in the Pecos and Black Rivers of New Mexico and another in the Rio Grande and Devils River of Texas, with admixed individuals identified at the confluence of the Rio Grande and Pecos River. In addition to having a smaller geographic range, we found lower observed heterozygosity, reduced nucleotide diversity, and a smaller effective population size (Ne) in New Mexico population. Our results depict a significant isolation-by-distance pattern across their distribution, with migration being notably infrequent at river confluences. These findings are pivotal for future conservation and restoration strategies, emphasizing the need to recognize the unique needs of each population.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Javier Gutierrez
- Biomedical Forensic Sciences, Anatomy and Neurobiology Department, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Drew R Davis
- Department of Biology, Eastern New Mexico University, Portales, NM, USA
- Biodiversity Collections, Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | | | - Ivana Mali
- Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Taylor RS, Manseau M, Keobouasone S, Liu P, Mastromonaco G, Solmundson K, Kelly A, Larter NC, Gamberg M, Schwantje H, Thacker C, Polfus J, Andrew L, Hervieux D, Simmons D, Wilson PJ. High genetic load without purging in caribou, a diverse species at risk. Curr Biol 2024; 34:1234-1246.e7. [PMID: 38417444 DOI: 10.1016/j.cub.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Micheline Manseau
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sonesinh Keobouasone
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peng Liu
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Kirsten Solmundson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 1Z8, Canada
| | - Allicia Kelly
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Mary Gamberg
- Gamberg Consulting, Jarvis Street, Whitehorse, YK Y1A 2J2, Canada
| | - Helen Schwantje
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Caeley Thacker
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Jean Polfus
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, 1238 Discovery Avenue, Kelowna, BC V1V 1V9, Canada
| | - Leon Andrew
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Dave Hervieux
- Alberta Ministry of Environment and Protected Areas, Government of Alberta, 10320-99 Street, Grande Prairie, AB T8V 6J4, Canada
| | - Deborah Simmons
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Paul J Wilson
- Biology Department, Trent University, East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
13
|
Caesar L, Rice DW, McAfee A, Underwood R, Ganote C, Tarpy DR, Foster LJ, Newton ILG. Metagenomic analysis of the honey bee queen microbiome reveals low bacterial diversity and Caudoviricetes phages. mSystems 2024; 9:e0118223. [PMID: 38259099 PMCID: PMC10878037 DOI: 10.1128/msystems.01182-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
In eusocial insects, the health of the queens-the colony founders and sole reproductive females-is a primary determinant for colony success. Queen failure in the honey bee Apis mellifera, for example, is a major concern of beekeepers who annually suffer colony losses, necessitating a greater knowledge of queen health. Several studies on the microbiome of honey bees have characterized its diversity and shown its importance for the health of worker bees, the female non-reproductive caste. However, the microbiome of workers differs from that of queens, which, in comparison, is still poorly studied. Thus, direct investigations of the queen microbiome are required to understand colony-level microbiome assembly, functional roles, and evolution. Here, we used metagenomics to comprehensively characterize the honey bee queen microbiome. Comparing samples from different geographic locations and breeder sources, we show that the microbiome of queens is mostly shaped by the environment experienced since early life and is predicted to play roles in the breakdown of the diet and protection from pathogens and xenobiotics. We also reveal that the microbiome of queens comprises only four candidate core bacterial species, Apilactobacillus kunkeei, Lactobacillus apis, Bombella apis, and Commensalibacter sp. Interestingly, in addition to bacteria, we show that bacteriophages infect the queen microbiome, for which Lactobacillaceae are predicted to be the main reservoirs. Together, our results provide the basis to understand the honey bee colony microbiome assemblage, can guide improvements in queen-rearing processes, and highlight the importance of considering bacteriophages for queen microbiome health and microbiome homeostasis in eusocial insects.IMPORTANCEThe queen caste plays a central role in colony success in eusocial insects, as queens lay eggs and regulate colony behavior and development. Queen failure can cause colonies to collapse, which is one of the major concerns of beekeepers. Thus, understanding the biology behind the queen's health is a pressing issue. Previous studies have shown that the bee microbiome plays an important role in worker bee health, but little is known about the queen microbiome and its function in vivo. Here, we characterized the queen microbiome, identifying for the first time the present species and their putative functions. We show that the queen microbiome has predicted nutritional and protective roles in queen association and comprises only four consistently present bacterial species. Additionally, we bring to attention the spread of phages in the queen microbiome, which increased in abundance in failing queens and may impact the fate of the colony.
Collapse
Affiliation(s)
- Lílian Caesar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Robyn Underwood
- Department of Entomology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Carrie Ganote
- Luddy School of Informatics, Indiana University, Bloomington, Indiana, USA
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
14
|
Lau SCY, Wilson NG, Golledge NR, Naish TR, Watts PC, Silva CNS, Cooke IR, Allcock AL, Mark FC, Linse K, Strugnell JM. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 2023; 382:1384-1389. [PMID: 38127761 DOI: 10.1126/science.ade0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.
Collapse
Affiliation(s)
- Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Qld, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Securing Antarctica's Environmental Future, Western Australian Museum, Welshpool, WA, Australia
| | - Nicholas R Golledge
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
| | - Tim R Naish
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal
| | - Ira R Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Qld, Australia
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
15
|
Brinker P, Chen F, Chehida YB, Beukeboom LW, Fontaine MC, Salles JF. Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia. Mol Ecol 2023; 32:6644-6658. [PMID: 36125236 DOI: 10.1111/mec.16699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fangying Chen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- Department of Biology, University of York, York, UK
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Cerca J, Cotoras DD, Santander CG, Bieker VC, Hutchins L, Morin-Lagos J, Prada CF, Kennedy S, Krehenwinkel H, Rominger AJ, Meier J, Dimitrov D, Struck TH, Gillespie RG. Multiple paths toward repeated phenotypic evolution in the spiny-leg adaptive radiation (Tetragnatha; Hawai'i). Mol Ecol 2023; 32:4971-4985. [PMID: 37515430 DOI: 10.1111/mec.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The repeated evolution of phenotypes provides clear evidence for the role of natural selection in driving evolutionary change. However, the evolutionary origin of repeated phenotypes can be difficult to disentangle as it can arise from a combination of factors such as gene flow, shared ancestral polymorphisms or mutation. Here, we investigate the presence of these evolutionary processes in the Hawaiian spiny-leg Tetragnatha adaptive radiation, which includes four microhabitat-specialists or ecomorphs, with different body pigmentation and size (Green, Large Brown, Maroon, and Small Brown). We investigated the evolutionary history of this radiation using 76 newly generated low-coverage, whole-genome resequenced samples, along with phylogenetic and population genomic tools. Considering the Green ecomorph as the ancestral state, our results suggest that the Green ecomorph likely re-evolved once, the Large Brown and Maroon ecomorphs evolved twice and the Small Brown evolved three times. We found that the evolution of the Maroon and Small Brown ecomorphs likely involved ancestral hybridization events, while the Green and Large Brown ecomorphs likely evolved through novel mutations, despite a high rate of incomplete lineage sorting in the dataset. Our findings demonstrate that the repeated evolution of ecomorphs in the Hawaiian spiny-leg Tetragnatha is influenced by multiple evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California, USA
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leke Hutchins
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
| | - Jaime Morin-Lagos
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Carlos F Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Susan Kennedy
- Department of Biogeography, Trier University, Trier, Germany
| | | | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Joana Meier
- Department of Zoology, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Sanger Institute, Hinxton, UK
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Torsten H Struck
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, Oslo, Norway
| | - Rosemary G Gillespie
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
18
|
Luqman H, Wegmann D, Fior S, Widmer A. Climate-induced range shifts drive adaptive response via spatio-temporal sieving of alleles. Nat Commun 2023; 14:1080. [PMID: 36841810 PMCID: PMC9968346 DOI: 10.1038/s41467-023-36631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Quaternary climate fluctuations drove many species to shift their geographic ranges, in turn shaping their genetic structures. Recently, it has been argued that adaptation may have accompanied species range shifts via the "sieving" of genotypes during colonisation and establishment. However, this has not been directly demonstrated, and knowledge remains limited on how different evolutionary forces, which are typically investigated separately, interacted to jointly mediate species responses to past climatic change. Here, through whole-genome re-sequencing of over 1200 individuals of the carnation Dianthus sylvestris coupled with integrated population genomic and gene-environment models, we reconstruct the past neutral and adaptive landscape of this species as it was shaped by the Quaternary glacial cycles. We show that adaptive responses emerged concomitantly with the post-glacial range shifts and expansions of this species in the last 20 thousand years. This was due to the heterogenous sieving of adaptive alleles across space and time, as populations expanded out of restrictive glacial refugia into the broader and more heterogeneous range of habitats available in the present-day inter-glacial. Our findings reveal a tightly-linked interplay of migration and adaptation under past climate-induced range shifts, which we show is key to understanding the spatial patterns of adaptive variation we see in species today.
Collapse
Affiliation(s)
- Hirzi Luqman
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK.
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Silliman K, Spencer LH, White SJ, Roberts SB. Epigenetic and Genetic Population Structure is Coupled in a Marine Invertebrate. Genome Biol Evol 2023; 15:evad013. [PMID: 36740242 PMCID: PMC10468963 DOI: 10.1093/gbe/evad013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations. Our results show a clear coupling between genetic and epigenetic patterns of variation, with 27% of variation in interindividual methylation differences explained by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) and genetic variation with indirect influence on methylation (mQTLs). When comparing measures of genetic and epigenetic population divergence at specific genomic regions this relationship surprisingly breaks down, which has implications for the methods commonly used to study epigenetic and genetic coupling in marine invertebrates.
Collapse
Affiliation(s)
- Katherine Silliman
- South Carolina Department of Natural Resources, Marine Resources Research
Institute, Charleston, South Carolina
| | - Laura H Spencer
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| |
Collapse
|
20
|
Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland. DIVERSITY 2023. [DOI: 10.3390/d15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The analysis of phylogeographic patterns has often been based on mitochondrial DNA variation, but recent analyses dealing with nuclear DNA have in some instances revealed mito-nuclear discordances and complex evolutionary histories. These enigmatic scenarios, which may involve stochastic lineage sorting, ancestral hybridization, past dispersal and secondary contacts, are increasingly scrutinized with a new generation of genomic tools such as RADseq, which also poses additional analytical challenges. Here, we revisited the previously inconclusive phylogeographic history, showing the mito-nuclear discordance of an endemic groundwater amphipod from Iceland, Crangonyx islandicus, which is the only metazoan known to have survived the Pleistocene beneath the glaciers. Previous studies based on three DNA markers documented a mitochondrial scenario with the main divergence occurring between populations in northern Iceland and an ITS scenario with the main divergence between the south and north. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to clarify this mito-nuclear discordance by applying several statistical methods while estimating the sensitivity to different analytical approaches (data-type, differentiation indices and base call uncertainty). A majority of nuclear markers and methods support the ITS divergence. Nevertheless, a more complex scenario emerges, possibly involving introgression led by male-biased dispersal among northern locations or mitochondrial capture, which may have been further strengthened by natural selection.
Collapse
|
21
|
Árnason E, Koskela J, Halldórsdóttir K, Eldon B. Sweepstakes reproductive success via pervasive and recurrent selective sweeps. eLife 2023; 12:80781. [PMID: 36806325 PMCID: PMC9940914 DOI: 10.7554/elife.80781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
Highly fecund natural populations characterized by high early mortality abound, yet our knowledge about their recruitment dynamics is somewhat rudimentary. This knowledge gap has implications for our understanding of genetic variation, population connectivity, local adaptation, and the resilience of highly fecund populations. The concept of sweepstakes reproductive success, which posits a considerable variance and skew in individual reproductive output, is key to understanding the distribution of individual reproductive success. However, it still needs to be determined whether highly fecund organisms reproduce through sweepstakes and, if they do, the relative roles of neutral and selective sweepstakes. Here, we use coalescent-based statistical analysis of population genomic data to show that selective sweepstakes likely explain recruitment dynamics in the highly fecund Atlantic cod. We show that the Kingman coalescent (modelling no sweepstakes) and the Xi-Beta coalescent (modelling random sweepstakes), including complex demography and background selection, do not provide an adequate fit for the data. The Durrett-Schweinsberg coalescent, in which selective sweepstakes result from recurrent and pervasive selective sweeps of new mutations, offers greater explanatory power. Our results show that models of sweepstakes reproduction and multiple-merger coalescents are relevant and necessary for understanding genetic diversity in highly fecund natural populations. These findings have fundamental implications for understanding the recruitment variation of fish stocks and general evolutionary genomics of high-fecundity organisms.
Collapse
Affiliation(s)
- Einar Árnason
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland,Department of Organismal and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jere Koskela
- Department of Statistics, University of WarwickCoventryUnited Kingdom
| | - Katrín Halldórsdóttir
- Institute of Life- and environmental Sciences, University of IcelandReykjavikIceland
| | - Bjarki Eldon
- Leibniz Institute for Evolution and Biodiversity Science, Museum für NaturkundeBerlinGermany
| |
Collapse
|
22
|
Laine VN, Sävilammi T, Wahlberg N, Meramo K, Ossa G, Johnson JS, Blomberg AS, Yeszhanov AB, Yung V, Paterson S, Lilley TM. Whole-genome Analysis Reveals Contrasting Relationships Among Nuclear and Mitochondrial Genomes Between Three Sympatric Bat Species. Genome Biol Evol 2022; 15:6955983. [PMID: 36546695 PMCID: PMC9825270 DOI: 10.1093/gbe/evac175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding mechanisms involved in speciation can be challenging, especially when hybridization or introgression blurs species boundaries. In bats, resolving relationships of some closely related groups has proved difficult due subtle interspecific variation both in morphometrics and molecular data sets. The endemic South American Histiotus bats, currently considered a subgenus of Eptesicus, harbor unresolved phylogenetic relationships and of those is a trio consisting of two closely related species: Eptesicus (Histiotus) macrotus and Eptesicus (Histiotus) montanus, and their relationship with a third, Eptesicus (Histiotus) magellanicus. The three sympatric species bear marked resemblance to each other, but can be differentiated morphologically. Furthermore, previous studies have been unable to differentiate the species from each other at a molecular level. In order to disentangle the phylogenetic relationships of these species, we examined the differentiation patterns and evolutionary history of the three Eptesicus (H.) species at the whole-genome level. The nuclear DNA statistics between the species suggest strong gene flow and recent hybridization between E. (H.) montanus and E. (H.) macrotus, whereas E. (H.) magellanicus shows a higher degree of isolation. In contrast, mitochondrial DNA shows a closer relationship between E. (H.) magellanicus and E. (H.) montanus. Opposing patterns in mtDNA and nuclear markers are often due to differences in dispersal, and here it could be both as a result of isolation in refugia during the last glacial maximum and female philopatry and male-biased dispersal. In conclusion, this study shows the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories.
Collapse
Affiliation(s)
- Veronika N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Tiina Sävilammi
- Department of Biology, University of Turku, Turku, Finland,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Katarina Meramo
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Gonzalo Ossa
- ConserBat EIRL, San Fabian, Chile,Asociación Murciélagos de Chile Pinüike, Santiago, Chile
| | - Joseph S Johnson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Aidyn B Yeszhanov
- Institute of Zoology of the Ministry of Science and Education of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Veronica Yung
- Departamento Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
23
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Johnson SB, Winnikoff JR, Schultz DT, Christianson LM, Patry WL, Mills CE, Haddock SHD. Speciation of pelagic zooplankton: Invisible boundaries can drive isolation of oceanic ctenophores. Front Genet 2022; 13:970314. [PMID: 36276958 PMCID: PMC9585324 DOI: 10.3389/fgene.2022.970314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The study of evolution and speciation in non-model systems provides us with an opportunity to expand our understanding of biodiversity in nature. Connectivity studies generally focus on species with obvious boundaries to gene flow, but in open-ocean environments, such boundaries are difficult to identify. Due to the lack of obvious boundaries, speciation and population subdivision in the pelagic environment remain largely unexplained. Comb jellies (Phylum Ctenophora) are mostly planktonic gelatinous invertebrates, many of which are considered to have freely interbreeding distributions worldwide. It is thought that the lobate ctenophore Bolinopsis infundibulum is distributed throughout cooler northern latitudes and B. vitrea warmer. Here, we examined the global population structure for species of Bolinopsis with genetic and morphological data. We found distinct evolutionary patterns within the genus, where B. infundibulum had a broad distribution from northern Pacific to Atlantic waters despite many physical barriers, while other species were geographically segregated despite few barriers. Divergent patterns of speciation within the genus suggest that oceanic currents, sea-level, and geological changes over time can act as either barriers or aids to dispersal in the pelagic environment. Further, we used population genomic data to examine evolution in the open ocean of a distinct lineage of Bolinopsis ctenophores from the North Eastern Pacific. Genetic information and morphological observations validated this as a separate species, Bolinopsis microptera, which was previously described but has recently been called B. infundibulum. We found that populations of B. microptera from California were in cytonuclear discordance, which indicates a secondary contact zone for previously isolated populations. Discordance at this scale is rare, especially in a continuous setting.
Collapse
Affiliation(s)
- Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- *Correspondence: Shannon B. Johnson, ; Steven H. D. Haddock,
| | - Jacob R. Winnikoff
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Darrin T. Schultz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | | - Wyatt L. Patry
- Animal Care Division, Monterey Bay Aquarium, Monterey, CA, United States
| | - Claudia E. Mills
- Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, WA, United States
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
- *Correspondence: Shannon B. Johnson, ; Steven H. D. Haddock,
| |
Collapse
|
25
|
Provost K, Shue SY, Forcellati M, Smith BT. The Genomic Landscapes of Desert Birds Form over Multiple Time Scales. Mol Biol Evol 2022; 39:6711078. [PMID: 36134537 PMCID: PMC9577548 DOI: 10.1093/molbev/msac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spatial models show that genetic differentiation between populations can be explained by factors ranging from geographic distance to environmental resistance across the landscape. However, genomes exhibit a landscape of differentiation, indicating that multiple processes may mediate divergence in different portions of the genome. We tested this idea by comparing alternative geographic predctors of differentiation in ten bird species that co-occur in Sonoran and Chihuahuan Deserts of North America. Using population-level genomic data, we described the genomic landscapes across species and modeled conditions that represented historical and contemporary mechanisms. The characteristics of genomic landscapes differed across species, influenced by varying levels of population structuring and admixture between deserts, and the best-fit models contrasted between the whole genome and partitions along the genome. Both historical and contemporary mechanisms were important in explaining genetic distance, but particularly past and current environments, suggesting that genomic evolution was modulated by climate and habitat There were also different best-ftit models across genomic partitions of the data, indicating that these regions capture different evolutionary histories. These results show that the genomic landscape of differentiation can be associated with alternative geographic factors operating on different portions of the genome, which reflect how heterogeneous patterns of genetic differentiation can evolve across species and genomes.
Collapse
Affiliation(s)
| | - Stephanie Yun Shue
- Bergen County Academies, Hackensack, NJ, USA,Biological Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Meghan Forcellati
- Bergen County Academies, Hackensack, NJ, USA,Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
26
|
Berbel-Filho WM, Pacheco G, Tatarenkov A, Lira MG, Garcia de Leaniz C, Rodríguez López CM, Lima SMQ, Consuegra S. Phylogenomics reveals extensive introgression and a case of mito-nuclear discordance in the killifish genus Kryptolebias. Mol Phylogenet Evol 2022; 177:107617. [PMID: 36038055 DOI: 10.1016/j.ympev.2022.107617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Introgression is a widespread evolutionary process leading to phylogenetic inconsistencies among distinct parts of the genomes, particularly between mitochondrial and nuclear-based phylogenetic reconstructions (e.g., mito-nuclear discordances). Here, we used mtDNA and genome-wide nuclear sites to provide the first phylogenomic-based hypothesis on the evolutionary relationships within the killifish genus Kryptolebias. In addition, we tested for evidence of past introgression in the genus given the multiple reports of undergoing hybridization between its members. Our mtDNA phylogeny generally agreed with the relationships previously proposed for the genus. However, our reconstruction based on nuclear DNA revealed an unknown lineage - Kryptolebias sp. 'ESP' - as the sister group of the self-fertilizing mangrove killifishes, K. marmoratus and K. hermaphroditus. All individuals sequenced of Kryptolebias sp. 'ESP' had the same mtDNA haplotype commonly observed in K. hermaphroditus, demonstrating a clear case of mito-nuclear discordance. Our analysis further confirmed extensive history of introgression between Kryptolebias sp. 'ESP' and K. hermaphroditus. Population genomics analyses indicate no current gene flow between the two lineages, despite their current sympatry and history of introgression. We also confirmed introgression between other species pairs in the genus that have been recently reported to form hybrid zones. Overall, our study provides a phylogenomic reconstruction covering most of the Kryptolebias species, reveals a new lineage hidden in a case of mito-nuclear discordance, and provides evidence of multiple events of ancestral introgression in the genus. These findings underscore the importance of investigating different genomic information in a phylogenetic framework, particularly in taxa where introgression is common as in the sexually diverse mangrove killifishes.
Collapse
Affiliation(s)
- Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, USA(1); Department of Biosciences, College of Science, Swansea University, Swansea, UK.
| | - George Pacheco
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Mateus G Lira
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | | | - Carlos M Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Sergio M Q Lima
- Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande, Natal, Brazil
| | - Sofia Consuegra
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
27
|
Jin Y, Aguilar-Gómez D, Y C Brandt D, Square TA, Li J, Liu Z, Wang T, Sudmant PH, Miller CT, Nielsen R. Population Genomics of Variegated Toad-Headed Lizard Phrynocephalus versicolor and Its Adaptation to the Colorful Sand of the Gobi Desert. Genome Biol Evol 2022; 14:6604964. [PMID: 35679302 PMCID: PMC9260186 DOI: 10.1093/gbe/evac076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The variegated toad-headed agama, Phrynocephalus versicolor, lives in the arid landscape of the Chinese Gobi Desert. We analyzed populations from three different locations which vary in substrate color and altitude: Heishankou (HSK), Guazhou County (GZ), and Ejin Banner (EJN). The substrate color is either light-yellow (GZ-y), yellow (EJN-y), or black (HSK-b); the corresponding lizard population colors largely match their substrate in the degree of melanism. We assembled the P. versicolor genome and sequenced over 90 individuals from the three different populations. Genetic divergence between populations corresponds to their geographic distribution. We inferred the genetic relationships among these populations and used selection scans and differential expression to identify genes that show signatures of selection. Slc2a11 and akap12, among other genes, are highly differentiated and may be responsible for pigment adaptation to substrate color in P. versicolor.
Collapse
Affiliation(s)
| | | | - Débora Y C Brandt
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jiasheng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Zhengxia Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Tao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peter H Sudmant
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA,Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Rasmus Nielsen
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA,Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Zhao L, Nielsen R, Korneliussen TS. distAngsd: Fast and accurate inference of genetic distances for Next Generation Sequencing data. Mol Biol Evol 2022; 39:6596627. [PMID: 35647675 PMCID: PMC9234764 DOI: 10.1093/molbev/msac119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Commonly used methods for inferring phylogenies were designed before the emergence of high throughput sequencing and can generally not accommodate the challenges associated with noisy, diploid sequencing data. In many applications, diploid genomes are still treated as haploid through the use of ambiguity characters; while the uncertainty in genotype calling - arising as a consequence of the sequencing technology - is ignored. In order to address this problem we describe two new probabilistic approaches for estimating genetic distances: distAngsd-geno and distAngsd-nuc, both implemented in a software suite named distAngsd. These methods are specifically designed for next generation sequencing data, utilize the full information from the data, and take uncertainty in genotype calling into account. Through extensive simulations, we show that these new methods are markedly more accurate and have more stable statistical behaviors than other currently available methods for estimating genetic distances - even for very low depth data with high error rates.
Collapse
Affiliation(s)
- Lei Zhao
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K
| | - Rasmus Nielsen
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K.,Departments of Integrative Biology and Statistics 3040 Valley Life Sciences Building 3140 Berkeley, CA 94720-3140
| | - Thorfinn Sand Korneliussen
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K
| |
Collapse
|
29
|
Population dynamics and genetic connectivity in recent chimpanzee history. CELL GENOMICS 2022; 2:None. [PMID: 35711737 PMCID: PMC9188271 DOI: 10.1016/j.xgen.2022.100133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.
Collapse
|
30
|
Mas-Sandoval A, Pope NS, Nielsen KN, Altinkaya I, Fumagalli M, Korneliussen TS. Fast and accurate estimation of multidimensional site frequency spectra from low-coverage high-throughput sequencing data. Gigascience 2022; 11:giac032. [PMID: 35579549 PMCID: PMC9112775 DOI: 10.1093/gigascience/giac032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The site frequency spectrum summarizes the distribution of allele frequencies throughout the genome, and it is widely used as a summary statistic to infer demographic parameters and to detect signals of natural selection. The use of high-throughput low-coverage DNA sequencing data can lead to biased estimates of the site frequency spectrum due to high levels of uncertainty in genotyping. RESULTS Here we design and implement a method to efficiently and accurately estimate the multidimensional joint site frequency spectrum for large numbers of haploid or diploid individuals across an arbitrary number of populations, using low-coverage sequencing data. The method maximizes a likelihood function that represents the probability of the sequencing data observed given a multidimensional site frequency spectrum using genotype likelihoods. Notably, it uses an advanced binning heuristic paired with an accelerated expectation-maximization algorithm for a fast and memory-efficient computation, and can generate both unfolded and folded spectra and bootstrapped replicates for haploid and diploid genomes. On the basis of extensive simulations, we show that the new method requires remarkably less storage and is faster than previous implementations whilst retaining the same accuracy. When applied to low-coverage sequencing data from the fungal pathogen Neonectria neomacrospora, results recapitulate the patterns of population differentiation generated using the original high-coverage data. CONCLUSION The new implementation allows for accurate estimation of population genetic parameters from arbitrarily large, low-coverage datasets, thus facilitating cost-effective sequencing experiments in model and non-model organisms.
Collapse
Affiliation(s)
- Alex Mas-Sandoval
- Department of Life Sciences, Silwood Park campus, Imperial College London, SL5 7PY, Ascot, UK
| | - Nathaniel S Pope
- Department of Entomology, The Pennsylvania State University, 201 Old Main, University Park, PA 16802, USA
| | - Knud Nor Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Isin Altinkaya
- GLOBE, Section for Geogenetics, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park campus, Imperial College London, SL5 7PY, Ascot, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
31
|
Dellinger AS, Paun O, Baar J, Temsch EM, Fernández‐Fernández D, Schönenberger J. Population structure in Neotropical plants: Integrating pollination biology, topography and climatic niches. Mol Ecol 2022; 31:2264-2280. [PMID: 35175652 PMCID: PMC9310734 DOI: 10.1111/mec.16403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Animal pollinators mediate gene flow among plant populations, but in contrast to well-studied topographic and (Pleistocene) environmental isolating barriers, their impact on population genetic differentiation remains largely unexplored. Comparing how these multifarious factors drive microevolutionary histories is, however, crucial for better resolving macroevolutionary patterns of plant diversification. Here we combined genomic analyses with landscape genetics and niche modelling across six related Neotropical plant species (424 individuals across 33 localities) differing in pollination strategy to test the hypothesis that highly mobile (vertebrate) pollinators more effectively link isolated localities than less mobile (bee) pollinators. We found consistently higher genetic differentiation (FST ) among localities of bee- than vertebrate-pollinated species with increasing geographical distance, topographic barriers and historical climatic instability. High admixture among montane populations further suggested relative climatic stability of Neotropical montane forests during the Pleistocene. Overall, our results indicate that pollinators may differentially impact the potential for allopatric speciation, thereby critically influencing diversification histories at macroevolutionary scales.
Collapse
Affiliation(s)
- Agnes S. Dellinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
- Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | - Eva M. Temsch
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| | | | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaWienAustria
| |
Collapse
|
32
|
Chen C, Parejo M, Momeni J, Langa J, Nielsen RO, Shi W, Vingborg R, Kryger P, Bouga M, Estonba A, Meixner M. Population Structure and Diversity in European Honey Bees ( Apismellifera L.)-An Empirical Comparison of Pool and Individual Whole-Genome Sequencing. Genes (Basel) 2022; 13:182. [PMID: 35205227 PMCID: PMC8872436 DOI: 10.3390/genes13020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Whole-genome sequencing has become routine for population genetic studies. Sequencing of individuals provides maximal data but is rather expensive and fewer samples can be studied. In contrast, sequencing a pool of samples (pool-seq) can provide sufficient data, while presenting less of an economic challenge. Few studies have compared the two approaches to infer population genetic structure and diversity in real datasets. Here, we apply individual sequencing (ind-seq) and pool-seq to the study of Western honey bees (Apis mellifera). METHODS We collected honey bee workers that belonged to 14 populations, including 13 subspecies, totaling 1347 colonies, who were individually (139 individuals) and pool-sequenced (14 pools). We compared allele frequencies, genetic diversity estimates, and population structure as inferred by the two approaches. RESULTS Pool-seq and ind-seq revealed near identical population structure and genetic diversities, albeit at different costs. While pool-seq provides genome-wide polymorphism data at considerably lower costs, ind-seq can provide additional information, including the identification of population substructures, hybridization, or individual outliers. CONCLUSIONS If costs are not the limiting factor, we recommend using ind-seq, as population genetic structure can be inferred similarly well, with the advantage gained from individual genetic information. Not least, it also significantly reduces the effort required for the collection of numerous samples and their further processing in the laboratory.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Melanie Parejo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
- Swiss Bee Research Center, Agroscope, 3003 Bern, Switzerland
| | - Jamal Momeni
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Jorge Langa
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | | | - Rikke Vingborg
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Per Kryger
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark;
| | - Maria Bouga
- Lab of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | |
Collapse
|
33
|
Giska I, Pimenta J, Farelo L, Boursot P, Hackländer K, Jenny H, Reid N, Montgomery WI, Prodöhl PA, Alves PC, Melo-Ferreira J. The evolutionary pathways for local adaptation in mountain hares. Mol Ecol 2022; 31:1487-1503. [PMID: 34995383 PMCID: PMC9303332 DOI: 10.1111/mec.16338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole‐genome sequencing, we identify genetic signatures of local adaptation in mountain hares (Lepus timidus) from isolated and distinctive habitats of its wide distribution: Ireland, the Alps and Fennoscandia. Demographic modelling suggested that the split of these mountain hares occurred around 20 thousand years ago, providing the opportunity to study adaptive evolution over a short timescale. Using genome‐wide scans, we identified signatures of extreme differentiation among hares from distinct geographic areas that overlap with area‐specific selective sweeps, suggesting targets for local adaptation. Several identified candidate genes are associated with traits related to the uniqueness of the different environments inhabited by the three groups of mountain hares, including coat colour, ability to live at high altitudes and variation in body size. In Irish mountain hares, a variant of ASIP, a gene previously implicated in introgression‐driven winter coat colour variation in mountain and snowshoe hares (L. americanus), may underlie brown winter coats, reinforcing the repeated nature of evolution at ASIP moulding adaptive seasonal colouration. Comparative genomic analyses across several hare species suggested that mountain hares’ adaptive variants appear predominantly species‐specific. However, using coalescent simulations, we also show instances where the candidate adaptive variants have been introduced via introgressive hybridization. Our study shows that standing adaptive variation, including that introgressed from other species, was a crucial component of the post‐glacial dynamics of species.
Collapse
Affiliation(s)
- Iwona Giska
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pierre Boursot
- Institut des Sciences de l'Évolution Montpellier (ISEM), Université Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Austria.,Deutsche Wildtier Stiftung (German Wildlife Foundation), Hamburg, Germany
| | - Hannes Jenny
- Department of Wildlife and Fishery Service Grison, Chur, Switzerland
| | - Neil Reid
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - W Ian Montgomery
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Paulo A Prodöhl
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
34
|
Armstrong EE, Perez-Lamarque B, Bi K, Chen C, Becking LE, Lim JY, Linderoth T, Krehenwinkel H, Gillespie RG. A holobiont view of island biogeography: Unravelling patterns driving the nascent diversification of a Hawaiian spider and its microbial associates. Mol Ecol 2021; 31:1299-1316. [PMID: 34861071 DOI: 10.1111/mec.16301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
The diversification of a host lineage can be influenced by both the external environment and its assemblage of microbes. Here, we use a young lineage of spiders, distributed along a chronologically arranged series of volcanic mountains, to investigate how their associated microbial communities have changed as the spiders colonized new locations. Using the stick spider Ariamnes waikula (Araneae, Theridiidae) on the island of Hawai'i, and outgroup taxa on older islands, we tested whether each component of the "holobiont" (spider hosts, intracellular endosymbionts and gut microbial communities) showed correlated signatures of diversity due to sequential colonization from older to younger volcanoes. To investigate this, we generated ddRAD data for the host spiders and 16S rRNA gene amplicon data from their microbiota. We expected sequential colonizations to result in a (phylo)genetic structuring of the host spiders and in a diversity gradient in microbial communities. The results showed that the host A. waikula is indeed structured by geographical isolation, suggesting sequential colonization from older to younger volcanoes. Similarly, the endosymbiont communities were markedly different between Ariamnes species on different islands, but more homogeneous among A. waikula populations on the island of Hawai'i. Conversely, the gut microbiota, which we suspect is generally environmentally derived, was largely conserved across all populations and species. Our results show that different components of the holobiont respond in distinct ways to the dynamic environment of the volcanic archipelago. This highlights the necessity of understanding the interplay between different components of the holobiont, to properly characterize its evolution.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Ke Bi
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Ancestry, San Francisco, California, USA
| | - Cerise Chen
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA.,Long Marine Laboratory, University of California, Santa Cruz, California, USA
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, Wageningen, The Netherlands.,Wageningen Marine Research, Den Helder, The Netherlands
| | - Jun Ying Lim
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tyler Linderoth
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Henrik Krehenwinkel
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA.,Department of Biogeography, Trier University, Trier, Germany
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
35
|
Freitas S, Gazda MA, Rebelo MÂ, Muñoz-Pajares AJ, Vila-Viçosa C, Muñoz-Mérida A, Gonçalves LM, Azevedo-Silva D, Afonso S, Castro I, Castro PH, Sottomayor M, Beja-Pereira A, Tereso J, Ferrand N, Gonçalves E, Martins A, Carneiro M, Azevedo H. Pervasive hybridization with local wild relatives in Western European grapevine varieties. SCIENCE ADVANCES 2021; 7:eabi8584. [PMID: 34797710 PMCID: PMC8604406 DOI: 10.1126/sciadv.abi8584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Grapevine (Vitis vinifera L.) diversity richness results from a complex domestication history over multiple historical periods. Here, we used whole-genome resequencing to elucidate different aspects of its recent evolutionary history. Our results support a model in which a central domestication event in grapevine was followed by postdomestication hybridization with local wild genotypes, leading to the presence of an introgression signature in modern wine varieties across Western Europe. The strongest signal was associated with a subset of Iberian grapevine varieties showing large introgression tracts. We targeted this study group for further analysis, demonstrating how regions under selection in wild populations from the Iberian Peninsula were preferentially passed on to the cultivated varieties by gene flow. Examination of underlying genes suggests that environmental adaptation played a fundamental role in both the evolution of wild genotypes and the outcome of hybridization with cultivated varieties, supporting a case of adaptive introgression in grapevine.
Collapse
Affiliation(s)
- Sara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Małgorzata A. Gazda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Miguel Â. Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Antonio J. Muñoz-Pajares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Carlos Vila-Viçosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP, Museum of Natural History and Science of the University of Porto–PO Herbarium, University of Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Luís M. Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - David Azevedo-Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Isaura Castro
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro H. Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Albano Beja-Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
- Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - João Tereso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP, Museum of Natural History and Science of the University of Porto–PO Herbarium, University of Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal
- Centre for Archaeology, UNIARQ, School of Arts and Humanities, University of Lisbon, 1600-214 Lisbon, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, 2006 Johannesburg, South Africa
| | - Elsa Gonçalves
- LEAF, Linking Landscape, Environment, Agriculture, and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Portuguese Association for Grapevine Diversity-PORVID, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Antero Martins
- LEAF, Linking Landscape, Environment, Agriculture, and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Portuguese Association for Grapevine Diversity-PORVID, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Corresponding author.
| |
Collapse
|
36
|
Fontsere C, Frandsen P, Hernandez-Rodriguez J, Niemann J, Scharff-Olsen CH, Vallet D, Le Gouar P, Ménard N, Navarro A, Siegismund HR, Hvilsom C, Gilbert MTP, Kuhlwilm M, Hughes D, Marques-Bonet T. The genetic impact of an Ebola outbreak on a wild gorilla population. BMC Genomics 2021; 22:735. [PMID: 34635054 PMCID: PMC8504571 DOI: 10.1186/s12864-021-08025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla) population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the Ebola outbreak in the western lowland gorilla population. Results Associations with survivorship were evaluated by utilizing DNA obtained from fecal samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15 individuals observed before and after the epidemic (survivors). We used a target enrichment approach to capture the sequences of 123 genes previously associated with immunology and Ebola virus resistance and additionally analyzed the gut microbiome which could influence the survival after an infection. Our results indicate no changes in the population genetic diversity before and after the Ebola outbreak, and no significant differences in microbial community composition between survivors and non-survivors. However, and despite the low power for an association analysis, we do detect six nominally significant missense mutations in four genes that might be candidate variants associated with an increased chance of survival. Conclusion This study offers the first insight to the genetics of a wild great ape population before and after an Ebola outbreak using target capture experiments from fecal samples, and presents a list of candidate loci that may have facilitated their survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08025-y.
Collapse
Affiliation(s)
- Claudia Fontsere
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.
| | - Peter Frandsen
- Research and Conservation, Copenhagen Zoo, 2000, Frederiksberg, Denmark.,Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jonas Niemann
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | | | - Dominique Vallet
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Pascaline Le Gouar
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Nelly Ménard
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Station Biologique de Paimpont, 35380, Paimpont, France
| | - Arcadi Navarro
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA, 08010, Barcelona, Catalonia, Spain.,CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036, Barcelona, Spain.,BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - Hans R Siegismund
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Christina Hvilsom
- Research and Conservation, Copenhagen Zoo, 2000, Frederiksberg, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - David Hughes
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA, 08010, Barcelona, Catalonia, Spain. .,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain. .,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
37
|
Against the Odds: Hybrid Zones between Mangrove Killifish Species with Different Mating Systems. Genes (Basel) 2021; 12:genes12101486. [PMID: 34680881 PMCID: PMC8535463 DOI: 10.3390/genes12101486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.
Collapse
|
38
|
Miranda I, Giska I, Farelo L, Pimenta J, Zimova M, Bryk J, Dalén L, Mills LS, Zub K, Melo-Ferreira J. Museomics dissects the genetic basis for adaptive seasonal colouration in the least weasel. Mol Biol Evol 2021; 38:4388-4402. [PMID: 34157721 PMCID: PMC8476133 DOI: 10.1093/molbev/msab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat colouration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage colour moults across regions with varying winter snow. Whole-genome sequence data was obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris colouration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200 kb genomic region to colouration morph, which was validated by genotyping museum specimens from inter-morph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change co-segregating with colouration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favoured winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter colour variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.
Collapse
Affiliation(s)
- Inês Miranda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| | - Iwona Giska
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - L Scott Mills
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.,Office of Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, Białowieża 17-230, Poland
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| |
Collapse
|
39
|
Coimbra RTF, Winter S, Kumar V, Koepfli KP, Gooley RM, Dobrynin P, Fennessy J, Janke A. Whole-genome analysis of giraffe supports four distinct species. Curr Biol 2021; 31:2929-2938.e5. [PMID: 33957077 DOI: 10.1016/j.cub.2021.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/06/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230-370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.
Collapse
Affiliation(s)
- Raphael T F Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, VA, 22630, USA; Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Rebecca M Gooley
- Smithsonian-Mason School of Conservation, Front Royal, VA, 22630, USA; Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr., Saint Petersburg 197101, Russia
| | - Julian Fennessy
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Lim MCW, Bi K, Witt CC, Graham CH, Dávalos LM. Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations. J Hered 2021; 112:229-240. [PMID: 33631009 DOI: 10.1093/jhered/esab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 01/28/2023] Open
Abstract
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA (Bi)
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY
| |
Collapse
|
41
|
Pacheco G, van Grouw H, Shapiro MD, Gilbert MTP, Vieira FG. Darwin's Fancy Revised: An Updated Understanding of the Genomic Constitution of Pigeon Breeds. Genome Biol Evol 2021; 12:136-150. [PMID: 32053199 PMCID: PMC7144551 DOI: 10.1093/gbe/evaa027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Through its long history of artificial selection, the rock pigeon (Columba livia Gmelin 1789) was forged into a large number of domestic breeds. The incredible amount of phenotypic diversity exhibited in these breeds has long held the fascination of scholars, particularly those interested in biological inheritance and evolution. However, exploiting them as a model system is challenging, as unlike with many other domestic species, few reliable records exist about the origins of, and relationships between, each of the breeds. Therefore, in order to broaden our understanding of the complex evolutionary relationships among pigeon breeds, we generated genome-wide data by performing the genotyping-by-sequencing (GBS) method on close to 200 domestic individuals representing over 60 breeds. We analyzed these GBS data alongside previously published whole-genome sequencing data, and this combined analysis allowed us to conduct the most extensive phylogenetic analysis of the group, including two feral pigeons and one outgroup. We improve previous phylogenies, find considerable population structure across the different breeds, and identify unreported interbreed admixture events. Despite the reduced number of loci relative to whole-genome sequencing, we demonstrate that GBS data provide sufficient analytical power to investigate intertwined evolutionary relationships, such as those that are characteristic of animal domestic breeds. Thus, we argue that future studies should consider sequencing methods akin to the GBS approach as an optimal cost-effective approach for addressing complex phylogenies.
Collapse
Affiliation(s)
- George Pacheco
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark.,The GLOBE Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Denmark
| | - Hein van Grouw
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Hertfordshire, United Kingdom
| | | | - Marcus Thomas P Gilbert
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark.,The GLOBE Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Denmark.,NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Filipe Garrett Vieira
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
42
|
Heller R, Nursyifa C, Garcia-Erill G, Salmona J, Chikhi L, Meisner J, Korneliussen TS, Albrechtsen A. A reference-free approach to analyse RADseq data using standard next generation sequencing toolkits. Mol Ecol Resour 2021; 21:1085-1097. [PMID: 33434329 DOI: 10.1111/1755-0998.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Genotyping-by-sequencing methods such as RADseq are popular for generating genomic and population-scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference-free RADseq data processing that blends de novo elements from STACKS with the full suite of state-of-the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth-of-coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2-4x). We compared the RADseq SFS with medium-depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.
Collapse
Affiliation(s)
- Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Casia Nursyifa
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Lounes Chikhi
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
43
|
Byrne AQ, Richards-Zawacki CL, Voyles J, Bi K, Ibáñez R, Rosenblum EB. Whole exome sequencing identifies the potential for genetic rescue in iconic and critically endangered Panamanian harlequin frogs. GLOBAL CHANGE BIOLOGY 2021; 27:50-70. [PMID: 33150627 DOI: 10.1111/gcb.15405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Avoiding extinction in a rapidly changing environment often relies on a species' ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus varius and Atelopus zeteki) are threatened with extinction due to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Once thought to be nearly extirpated from Panamá, A. varius have recently been rediscovered in multiple localities across their historical range; however, A. zeteki are possibly extinct in the wild. By leveraging a unique collection of 186 Atelopus tissue samples collected before and after the Bd outbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome-capture assay to sequence the coding regions of the Atelopus genome. Using these genetic data, we evaluate the population genetic structure of historical A. varius and A. zeteki populations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that some A. varius populations have rapidly evolved to resist or tolerate Bd infection. We found a significant decrease in genetic diversity in contemporary (compared to historical) A. varius populations. We did not find strong evidence of directional allele frequency change or selection for Bd resistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persisting A. varius populations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jamie Voyles
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Sistema Nacional de Investigación, SENACYT, Clayton, Panamá, República de Panamá
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
44
|
de Medeiros BAS, Farrell BD. Evaluating insect-host interactions as a driver of species divergence in palm flower weevils. Commun Biol 2020; 3:749. [PMID: 33299067 PMCID: PMC7726107 DOI: 10.1038/s42003-020-01482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Plants and their specialized flower visitors provide valuable insights into the evolutionary consequences of species interactions. In particular, antagonistic interactions between insects and plants have often been invoked as a major driver of diversification. Here we use a tropical community of palms and their specialized insect flower visitors to test whether antagonisms lead to higher population divergence. Interactions between palms and the insects visiting their flowers range from brood pollination to florivory and commensalism, with the latter being species that feed on decaying-and presumably undefended-plant tissues. We test the role of insect-host interactions in the early stages of diversification of nine species of beetles sharing host plants and geographical ranges by first delimiting cryptic species and then using models of genetic isolation by environment. The degree to which insect populations are structured by the genetic divergence of plant populations varies. A hierarchical model reveals that this variation is largely uncorrelated with the kind of interaction, showing that antagonistic interactions are not associated with higher genetic differentiation. Other aspects of host use that affect plant-associated insects regardless of the outcomes of their interactions, such as sensory biases, are likely more general drivers of insect population divergence.
Collapse
Affiliation(s)
- Bruno A S de Medeiros
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Choi JY, Purugganan M, Stacy EA. Divergent Selection and Primary Gene Flow Shape Incipient Speciation of a Riparian Tree on Hawaii Island. Mol Biol Evol 2020; 37:695-710. [PMID: 31693149 PMCID: PMC7038655 DOI: 10.1093/molbev/msz259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of evolutionary biology is to understand the mechanisms underlying the formation of species. Of particular interest is whether or not speciation can occur in the presence of gene flow and without a period of physical isolation. Here, we investigated this process within Hawaiian Metrosideros, a hypervariable and highly dispersible woody species complex that dominates the Hawaiian Islands in continuous stands. Specifically, we investigated the origin of Metrosideros polymorpha var. newellii (newellii), a riparian ecotype endemic to Hawaii Island that is purportedly derived from the archipelago-wide M. polymorpha var. glaberrima (glaberrima). Disruptive selection across a sharp forest-riparian ecotone contributes to the isolation of these varieties and is a likely driver of newellii's origin. We examined genome-wide variation of 42 trees from Hawaii Island and older islands. Results revealed a split between glaberrima and newellii within the past 0.3-1.2 My. Admixture was extensive between lineages within Hawaii Island and between islands, but introgression from populations on older islands (i.e., secondary gene flow) did not appear to contribute to the emergence of newellii. In contrast, recurrent gene flow (i.e., primary gene flow) between glaberrima and newellii contributed to the formation of genomic islands of elevated absolute and relative divergence. These regions were enriched for genes with regulatory functions as well as for signals of positive selection, especially in newellii, consistent with divergent selection underlying their formation. In sum, our results support riparian newellii as a rare case of incipient ecological speciation with primary gene flow in trees.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Michael Purugganan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.,Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Elizabeth A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| |
Collapse
|
46
|
Márquez R, Linderoth TP, Mejía-Vargas D, Nielsen R, Amézquita A, Kronforst MR. Divergence, gene flow, and the origin of leapfrog geographic distributions: The history of colour pattern variation in Phyllobates poison-dart frogs. Mol Ecol 2020; 29:3702-3719. [PMID: 32814358 PMCID: PMC8164878 DOI: 10.1111/mec.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The geographic distribution of phenotypic variation among closely related populations is a valuable source of information about the evolutionary processes that generate and maintain biodiversity. Leapfrog distributions, in which phenotypically similar populations are disjunctly distributed and separated by one or more phenotypically distinct populations, represent geographic replicates for the existence of a phenotype, and are therefore especially informative. These geographic patterns have mostly been studied from phylogenetic perspectives to understand how common ancestry and divergent evolution drive their formation. Other processes, such as gene flow between populations, have not received as much attention. Here, we investigate the roles of divergence and gene flow between populations in the origin and maintenance of a leapfrog distribution in Phyllobates poison frogs. We found evidence for high levels of gene flow between neighbouring populations but not over long distances, indicating that gene flow between populations exhibiting the central phenotype may have a homogenizing effect that maintains their similarity, and that introgression between 'leapfroging' taxa has not played a prominent role as a driver of phenotypic diversity in Phyllobates. Although phylogenetic analyses suggest that the leapfrog distribution was formed through independent evolution of the peripheral (i.e. leapfrogging) populations, the elevated levels of gene flow between geographically close populations poise alternative scenarios, such as the history of phenotypic change becoming decoupled from genome-averaged patterns of divergence, which we cannot rule out. These results highlight the importance of incorporating gene flow between populations into the study of geographic variation in phenotypes, both as a driver of phenotypic diversity and as a confounding factor of phylogeographic inferences.
Collapse
Affiliation(s)
- Roberto Márquez
- Department of Ecology and Evolution, University of Chicago. Chicago, IL. 60637, USA
- Department of Biological Sciences, Universidad de los Andes. A.A. 4976, Bogotá, D.C., Colombia
| | - Tyler P. Linderoth
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley. Berkeley, CA. 94720, USA
| | - Daniel Mejía-Vargas
- Department of Biological Sciences, Universidad de los Andes. A.A. 4976, Bogotá, D.C., Colombia
| | - Rasmus Nielsen
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley. Berkeley, CA. 94720, USA
- Department of Statistics, University of California, Berkeley. Berkeley, CA. 94720, USA
- Center for GeoGenetics, University of Copenhagen, Copenhagen 1350, Denmark
| | - Adolfo Amézquita
- Department of Biological Sciences, Universidad de los Andes. A.A. 4976, Bogotá, D.C., Colombia
| | - Marcus R. Kronforst
- Department of Ecology and Evolution, University of Chicago. Chicago, IL. 60637, USA
| |
Collapse
|
47
|
Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, Shirsekar G, Weigel D. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe-microbe interaction networks in plant leaves. THE ISME JOURNAL 2020; 14:2116-2130. [PMID: 32405027 PMCID: PMC7368051 DOI: 10.1038/s41396-020-0665-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022]
Abstract
Microorganisms from all domains of life establish associations with plants. Although some harm the plant, others antagonize pathogens or prime the plant immune system, support the acquisition of nutrients, tune plant hormone levels, or perform additional services. Most culture-independent plant microbiome research has focused on amplicon sequencing of the 16S rRNA gene and/or the internal transcribed spacer (ITS) of rRNA genomic loci, which show the relative abundance of the microbes to each other. Here, we describe shotgun sequencing of 275 wild Arabidopsis thaliana leaf microbiomes from southwest Germany, with additional bacterial 16S and eukaryotic ITS1 rRNA amplicon data from 176 of these samples. Shotgun data, which unlike the amplicon data capture the ratio of microbe to plant DNA, enable scaling of microbial read abundances to reflect the microbial load on the host. In a more cost-effective hybrid strategy, we show they also allow a similar scaling of amplicon data to overcome compositionality problems. Our wild plants were dominated by bacterial sequences, with eukaryotes contributing only a minority of reads. Microbial membership showed weak associations with both site of origin and plant genotype, both of which were highly confounded in this dataset. There was large variation among microbiomes, with one extreme comprising samples of low complexity and a high load of microorganisms typical of infected plants, and the other extreme being samples of high complexity and a low microbial load. Critically, considering absolute microbial load led to fundamentally different conclusions about microbiome assembly and the interaction networks among major taxa.
Collapse
Affiliation(s)
- Julian Regalado
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Oliver Deusch
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Sonja Kersten
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Talia Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Karin Poersch
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
48
|
Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nat Commun 2020; 11:2819. [PMID: 32499482 PMCID: PMC7272468 DOI: 10.1038/s41467-020-16573-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg++-dechelatase were found to trigger higher and earlier induction of OsSGR in indica, which accelerated senescence of indica rice cultivars. The indica-type promoter is present in a progenitor subspecies O. nivara and thus was acquired early during the evolution of rapid cycling trait in rice subspecies. Japonica OsSGR alleles introgressed into indica-type cultivars in Korean rice fields lead to delayed senescence, with increased grain yield and enhanced photosynthetic competence. Taken together, these data establish that naturally occurring OsSGR promoter and related lifespan variations can be exploited in breeding programs to augment rice yield.
Collapse
|
49
|
Zheng Z, Wang X, Li M, Li Y, Yang Z, Wang X, Pan X, Gong M, Zhang Y, Guo Y, Wang Y, Liu J, Cai Y, Chen Q, Okpeku M, Colli L, Cai D, Wang K, Huang S, Sonstegard TS, Esmailizadeh A, Zhang W, Zhang T, Xu Y, Xu N, Yang Y, Han J, Chen L, Lesur J, Daly KG, Bradley DG, Heller R, Zhang G, Wang W, Chen Y, Jiang Y. The origin of domestication genes in goats. SCIENCE ADVANCES 2020; 6:eaaz5216. [PMID: 32671210 PMCID: PMC7314551 DOI: 10.1126/sciadv.aaz5216] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 05/22/2023]
Abstract
Goat domestication was critical for agriculture and civilization, but its underlying genetic changes and selection regimes remain unclear. Here, we analyze the genomes of worldwide domestic goats, wild caprid species, and historical remains, providing evidence of an ancient introgression event from a West Caucasian tur-like species to the ancestor of domestic goats. One introgressed locus with a strong signature of selection harbors the MUC6 gene, which encodes a gastrointestinally secreted mucin. Experiments revealed that the nearly fixed introgressed haplotype confers enhanced immune resistance to gastrointestinal pathogens. Another locus with a strong signal of selection may be related to behavior. The selected alleles at these two loci emerged in domestic goats at least 7200 and 8100 years ago, respectively, and increased to high frequencies concurrent with the expansion of the ubiquitous modern mitochondrial haplogroup A. Tracking these archaeologically cryptic evolutionary transformations provides new insights into the mechanisms of animal domestication.
Collapse
Affiliation(s)
- Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yunjia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Moses Okpeku
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Discipline of Genetics, School of Life Science, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
- BioDNA–Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shisheng Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tingting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | | | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
50
|
Gómez-Bahamón V, Márquez R, Jahn AE, Miyaki CY, Tuero DT, Laverde-R O, Restrepo S, Cadena CD. Speciation Associated with Shifts in Migratory Behavior in an Avian Radiation. Curr Biol 2020; 30:1312-1321.e6. [DOI: 10.1016/j.cub.2020.01.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 01/18/2023]
|