1
|
Gao L, Jing X, Hua Q, Li Z, Lei P, Song P, Zhou L, Tian Y, Liu J, Cai Q. Complement C1S is a potential prognostic biomarker and associated with M2 macrophage infiltration in gliomas: From bioinformatics to comprehensive experimental validation. Int Immunopharmacol 2024; 143:113573. [PMID: 39515040 DOI: 10.1016/j.intimp.2024.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Glioma is the most common malignant tumor of the central nervous system, and the ability of traditional clinical treatment to prolong the survival of glioma patients is limited. A substantial body of evidence underscores the pivotal role of the immune system in eradicating malignant cells and impeding tumor metastasis. Consequently, tumor immunotherapy has become a promising avenue to address the clinical conundrum faced by glioma patients. The complement system is a natural immune system that is an important line of defense in the immune response. C1S plays a key role in activating the classical complement system. Nevertheless, few studies have focused on the role of C1S in glioma tumorigenesis and progression. In this study, we demonstrated that C1S was upregulated in GBM (Grade IV) and low-grade gliomas (LGG, Grade II-III) by combining glioma cohorts from multiple public databases with our internal independent cohorts and that increased C1S expression levels predict a poor prognosis for gliomas. Cox regression analysis identified C1S as an important prognostic indicator for glioma patients. In addition, gene functional enrichment analysis demonstrated that C1S was involved in cellular immunity, T-cell activation, macrophage differentiation, and cell proliferation. Further experiments demonstrated that C1S facilitates tumor cell proliferation, cell migration and intracranial tumor growth in nude mice. More importantly, we evaluated the role of C1S in immune infiltration. These results suggested that C1S was closely related to a variety of immune cell types in glioma, especially M2 macrophages. Our findings were further validated via glioma tissue microarray immunohistochemical analysis and an M2 macrophage infiltration assay. Together, these findings revealed the underlying critical role of C1S in glioma tumorigenesis, progression, and the tumor immune microenvironment, contributing to further understanding of glioma pathogenesis and guiding immunotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Xiongfei Jing
- Department of Neurosurgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City 433000, PR China
| | - Qiuwei Hua
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Pan Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yihao Tian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
2
|
Ma Y, Wang Y, Tuo P, Meng Z, Jiang B, Yuan Y, Ding Y, Naeem A, Guo X, Wang X. Downregulation of C1R promotes hepatocellular carcinoma development by activating HIF-1α-regulated glycolysis. Mol Carcinog 2024; 63:2237-2253. [PMID: 39150096 DOI: 10.1002/mc.23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Glycolysis/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Animals
- Gene Expression Regulation, Neoplastic
- Mice
- Down-Regulation
- DNA Methylation
- Promoter Regions, Genetic
- Male
- Cell Line, Tumor
- Mice, Nude
- Female
- Prognosis
- Cell Proliferation
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Signal Transduction
- DNA Methyltransferase 3A/metabolism
- DNA Methyltransferase 3A/genetics
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yuying Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuehua Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Tuo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Shiyan, China
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Lee T, Oka T, Demehri S. High-Risk Non-Melanoma Skin Cancers: Biological and Therapeutic Advances. Hematol Oncol Clin North Am 2024; 38:1071-1085. [PMID: 38908957 DOI: 10.1016/j.hoc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common cancers, with high-risk NMSCs sharing features such as poor histologic differentiation, invasion into deeper layers, and anatomic location. NMSC includes basal cell carcinoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma. Herein, the authors describe advances in understanding the genetic mechanisms of malignant transformation and the composition of tumor microenvironment for these cancers. They summarize recent therapeutic advances, including targeted therapy and immunotherapy for NMSCs. Effective skin protection against ultraviolet radiation-induced carcinogenesis remains an urgent unmet need for NMSC prevention. The authors highlight immune-based interventions as novel strategies to address this need.
Collapse
Affiliation(s)
| | - Tomonori Oka
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Harvard Medical School, Boston, MA 02115, USA; Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
5
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
6
|
Ge R, Luan Z, Guo T, Xia S, Ye J, Xu J. The expression and biological role of complement C1s in esophageal squamous cell carcinoma. Open Life Sci 2024; 19:20220915. [PMID: 39071493 PMCID: PMC11282917 DOI: 10.1515/biol-2022-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The present work focused on investigating the role of the altered expression of complement C1s in proliferation and apoptosis of esophageal squamous cell carcinoma (ESCC) cells and explore its biological functions in ESCC, so as to lay a theoretical foundation and provide certain clinical reference for diagnosing and treating ESCC. Complement C1s expression within ESCC was assessed, and its clinical pathological characteristics in ESCC patients were analyzed. Subsequently, in vitro experiments were performed to further explore the mechanisms by which complement C1s affected ESCC. According to the results, complement C1s expression within ESCC markedly increased relative to adjacent non-cancerous samples. High C1s expression showed positive relation to race, residual lesion, and tumor location of ESCC patients. Complement C1s affected ESCC cell proliferation and apoptosis. Notably, C1s knockdown significantly inhibited ESCC cell proliferation and enhanced their apoptosis. C1s suppressed ESCC cell proliferation via Wnt1/β-catenin pathway and promoted their apoptosis through modulating the expression of Bcl2, Bax, and cleaved-caspase3.
Collapse
Affiliation(s)
- Ruomu Ge
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengyun Luan
- Department of Clinical Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Ting Guo
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Sheng Xia
- School of Medicine, Jiangsu University School, Zhenjiang, Jiangsu, 212000, P.R. China
| | - Jun Ye
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Jie Xu
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| |
Collapse
|
7
|
Rahman S, Affleck AG, Ruhl RA, Patel RK, Gao L, Brinkerhoff BT, Tsikitis VL, Anand S. Combinatorial Inhibition of Complement Factor D and BCL2 for Early-Onset Colorectal Cancer. Dis Colon Rectum 2024; 67:940-950. [PMID: 38479005 DOI: 10.1097/dcr.0000000000003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND The tumor immune microenvironment is distinct between early-onset and late-onset colorectal cancer, which facilitates tumor progression. We previously identified several genes, including complement factor D, as having increased expression in patients with early-onset colorectal cancer. OBJECTIVE This study aimed to assess and validate the differential expression of immune genes in early-onset and late-onset colorectal cancer. We also aimed to test known drugs targeting genes increased in early-onset colorectal cancer in preclinical mouse models. DESIGN A retrospective cohort study with analysis was performed using tumor RNA from formalin-fixed paraffin-embedded cell culture and immunohistochemistry to validate gene expression and function and in vivo preclinical tumor study to assess drug efficacy. SETTINGS The Oregon Colorectal Cancer Registry was queried to identify patients with colorectal cancer. PATIENTS The study included 67 patients with early-onset colorectal cancer and 54 patients with late-onset colorectal cancer. INTERVENTIONS Preclinical animal models using the HCT-116 colon cancer cell line were treated with the complement factor D inhibitor danicopan and the BCL2 inhibitor venetoclax, or with vehicle controls. MAIN OUTCOME MEASURES Elevated RNA signatures using NanoString data were evaluated by the retrospective cohort. When inhibiting these markers in the mouse preclinical model, tumor volume and weight were the main outcome measures. RESULTS After updating our sample size from our previously published data, we found that complement factor D and BCL2, genes with known function and small molecule inhibitors, are elevated in patients with early-onset colorectal cancer. When inhibiting these markers with the drugs danicopan and venetoclax in a mouse model, we found that the combination of these drugs decreased tumor burden but also resulted in toxicity. LIMITATIONS This study is limited by a small sample size and a subcutaneous tumor model. CONCLUSIONS Combinatorial inhibition of early-onset associated genes complement factor D and BCL2 slows the growth of early-onset colorectal cancer in a mouse preclinical model. See Video Abstract . INHIBICIN COMBINADA DEL FACTOR DCOMPLEMENTARIO Y DEL BCL EN CASOS DE CNCER COLORRECTAL DE APARICIN TEMPRANA ANTECEDENTES:El microambiente inmunológico del tumor es distinto entre el cáncer colorrectal de aparición temprana y el de aparición tardía, lo que facilita la progresión de dicho tumor. Anteriormente identificamos varios genes, incluidos el factor D-Complementario, con una mayor expresión en pacientes con cáncer colorrectal de aparición temprana.OBJETIVO:El presente estudio tuvo como objetivo el evaluar y validar la expresión diferenciada de genes inmunes en casos de cáncer colorrectal de aparición temprana y tardía. También nos propusimos evaluar los fármacos conocidos dirigidos sobre los genes aumentados en el cáncer colorrectal de aparición temprana en modelos pre-clínicos en ratones.DISEÑO:Estudio de cohortes con análisis retrospectivo utilizando el ARN tumoral procedente de cultivos celulares fijados con formalina e incluidos en parafina, y el analisis por inmunohistoquímica para validar la expresión y la función genética. Se realizó el estudio pre-clínico de los tumores in vivo para evaluar la eficacia de los fármacos.AJUSTES:Se consultó el Registro de Oregon de casos de Cáncer Colorrectal para encontrar los pacientes afectados.SUJETOS:67 pacientes con cáncer colorrectal de aparición temprana y 54 pacientes con cáncer colorrectal de aparición tardía.INTERVENCIONES (SI LAS HUBIESE):Los modelos animales pre-clínicos que utilizaron la línea celular de cáncer de colon HCT-116 se trataron con el inhibidor del factor D-Complementario o Danicopan y con el inhibidor de BCL-2 o Venetoclax, ambos con control del transportador.PRINCIPALES MEDIDAS DE RESULTADO:Se evaluaron las firmas de ARN elevadas utilizando los datos del NanoString a partir de la cohorte retrospectiva. Al inhibir estos marcadores del modelo pre-clínico en los ratones, el volumen y el peso del tumor fueron las principales medidas de resultado.RESULTADOS:Después de actualizar el tamaño de nuestra muestra a partir de datos publicados con anterioridad, encontramos que el factor D-Complementario y BCL-2, genes con función conocida e inhibidores de moléculas pequeñas, se encuentran elevados en aquellos pacientes con cáncer colorrectal de aparición temprana. Al inhibir estos marcadores con los medicamentos Danicopan y Venetoclax en el modelo de ratones vivos, encontramos que la combinación de estos dos farmacos disminuyó la carga tumoral pero también produjo toxicidad.LIMITACIONES:Estudio limitado por un tamaño de muestra pequeño y el modelo de tumor subcutáneo.CONCLUSIONES:La inhibición combinada de genes asociados de aparición temprana, el factor D-Complementario y el BCL-2, enlentecen el crecimiento del cáncer colorrectal de aparición temprana del modelo preclínico en ratones. (Traducción-Dr. Xavier Delgadillo ).
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Arthur G Affleck
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Rebecca A Ruhl
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Ranish K Patel
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Brian T Brinkerhoff
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon
| | | | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
8
|
Nissinen L, Riihilä P, Viiklepp K, Rajagopal V, Storek MJ, Kähäri VM. C1s targeting antibodies inhibit the growth of cutaneous squamous carcinoma cells. Sci Rep 2024; 14:13465. [PMID: 38866870 PMCID: PMC11169539 DOI: 10.1038/s41598-024-64088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The incidence of cSCC is increasing globally and the prognosis of metastatic disease is poor. Currently there are no specific targeted therapies for advanced or metastatic cSCC. We have previously shown abundant expression of the complement classical pathway C1 complex components, serine proteases C1r and C1s in tumor cells in invasive cSCCs in vivo, whereas the expression of C1r and C1s was lower in cSCCs in situ, actinic keratoses and in normal skin. We have also shown that knockdown of C1s expression results in decreased viability and growth of cSCC cells by promoting apoptosis both in culture and in vivo. Here, we have studied the effect of specific IgG2a mouse monoclonal antibodies TNT003 and TNT005 targeting human C1s in five primary non-metastatic and three metastatic cSCC cell lines that show intracellular expression of C1s and secretion of C1s into the cell culture media. Treatment of cSCC cells with TNT003 and TNT005 significantly inhibited their growth and viability and promoted apoptosis of cSCC cells. These data indicate that TNT003 and TNT005 inhibit cSCC cell growth in culture and warrant further investigation of C1s targeted inhibition in additional in vitro and in vivo models of cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
| | | | | | - Veli-Matti Kähäri
- Department of Dermatology and FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
| |
Collapse
|
9
|
Hwang A, Kwon A, Miller CH, Reimer-Taschenbrecker A, Paller AS. Therapies for cutaneous squamous cell carcinoma in recessive dystrophic epidermolysis bullosa: a systematic review of 157 cases. Orphanet J Rare Dis 2024; 19:206. [PMID: 38769503 PMCID: PMC11106883 DOI: 10.1186/s13023-024-03190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Invasive cutaneous squamous cell carcinomas (cSCC) are a leading cause of death in recessive dystrophic epidermolysis bullosa (RDEB), a rare blistering genodermatosis. Outcomes of RDEB-cSCC therapies have primarily been described in case reports. Systematic studies are scarce. This systematic review aims to assess the pathophysiology, clinical characteristics, and outcomes of RDEB-cSCCs, with a focus on results and mechanisms of recent immunotherapies and anti-EGFR treatments. RESULTS A systematic literature search of epidermolysis bullosa and cSCC was performed in February 2024, using PubMed, Embase, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and EudraCT databases. Cases with administration of systematic therapies and unpublished outcomes regarding death were tracked with corresponding authors. Data extraction and risk of bias assessment was performed by two independent reviewers. Of 1132 references in the original search, 163 relevant articles were identified, representing 59 case reports, 7 cohort studies, 49 abstracts, 47 in-vitro/in-vivo experiments, and 1 bioinformatic study. From these, 157 cases of RDEB-cSCCs were included. The majority of RDEB-cSCCs were well-differentiated (64.1%), ulcerated (59.6%), and at least 2 cm in size (77.6%), with a median age at diagnosis of 30 years old (range 6-68.4). Surgery was the primary form of treatment (n = 128), followed by chemotherapy and radiotherapy. Anti-EGFR therapy and immunotherapy was also reported beginning in 2009 and 2019, respectively. Survival time from first cSCC diagnosis to death was available in 50 cases. When stratified by their treatment regimen, median survival time was 1.85 years (surgery + chemotherapy, n = 6), 2 years (surgery only, n = 19), 4.0 years (+ anti-EFGR therapy, n = 10), 4 years (surgery + radiotherapy, n = 9), 4.6 years (+ immunotherapy, n = 4), and 9.5 years (surgery + chemotherapy + radiotherapy; n = 2). Treatment-related adverse events were primarily limited to impaired wound healing for immunotherapies and nausea and fatigue for anti-EGFR therapies. CONCLUSIONS Despite the challenges of a limited sample size in a rare disease, this systematic review provides an overview of treatment options for cSCCs in RDEB. When surgical treatment options have been exhausted, the addition of immunotherapy and/or anti-EGFR therapies may extend patient survival. However, it is difficult to attribute extended survival to any single treatment, as multiple therapeutic modalities are often used to treat RDEB-cSCCs.
Collapse
Affiliation(s)
- Austin Hwang
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - Andie Kwon
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - Corinne H Miller
- Galter Health Sciences Library & Learning Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonia Reimer-Taschenbrecker
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1600, Chicago, IL, 60611, USA
- Department of Dermatology, University of Freiburg Medical Center, Freiburg, Germany
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, 676 North St Clair Street, Suite 1600, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Lei C, Li Y, Yang H, Zhang K, Lu W, Wang N, Xuan L. Unraveling breast cancer prognosis: a novel model based on coagulation-related genes. Front Mol Biosci 2024; 11:1394585. [PMID: 38751445 PMCID: PMC11094261 DOI: 10.3389/fmolb.2024.1394585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Breast cancer is highly heterogeneous, presenting challenges in prognostic assessment. Developing a universally applicable prognostic model could simplify clinical decision-making. This study aims to develop and validate a novel breast cancer prognosis model using coagulation-related genes with broad clinical applicability. Methods A total of 203 genes related to coagulation were obtained from the KEGG database, and the mRNA data of 1,099 tumor tissue samples and 572 samples of normal tissue were retrieved from the TCGA-BRCA cohort and GTEx databases. The R package "limma" was utilized to detect variations in gene expression related to coagulation between the malignancies and normal tissue. A model was constructed in the TCGA cohort through a multivariable Cox regression analysis, followed by validation using the GSE42568 dataset as the testing set. Constructing a nomogram incorporating clinical factors to enhance the predictive capacity of the model. Utilizing the ESTIMATE algorithm to investigate the immune infiltration levels in groups with deferent risk. Performing drug sensitivity analysis using the "oncoPredict" package. Results A risk model consisting of six coagulation-associated genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for validation. Identified were 6 genes that serve as protective factors in the model's development. Kaplan-Meier curves revealed a worse prognosis in the high-risk group compared to the low-risk group. The ROC analysis showed that the model accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and 5 years. Nomogram accompanied by calibration curves can also provide better guidance for clinical decision-making. The low-risk group is more likely to respond well to immunotherapy, whereas the high-risk group may show improved responses to Gemcitabine treatment. Furthermore, individuals in distinct risk categories displayed different responses to various medications within the identical therapeutic category. Conclusion We established a breast cancer prognostic model incorporating six coagulation-associated genes and explored its clinical utility. This model offers valuable insights for clinical decision-making and drug selection in breast cancer patients, contributing to personalized and precise treatment advancements.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Li C, Yang L, Zhang Y, Hou Q, Wang S, Lu S, Tao Y, Hu W, Zhao L. Integrating single-cell and bulk transcriptomic analyses to develop a cancer-associated fibroblast-derived biomarker for predicting prognosis and therapeutic response in breast cancer. Front Immunol 2024; 14:1307588. [PMID: 38235137 PMCID: PMC10791883 DOI: 10.3389/fimmu.2023.1307588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) contribute to the progression and treatment of breast cancer (BRCA); however, risk signatures and molecular targets based on CAFs are limited. This study aims to identify novel CAF-related biomarkers to develop a risk signature for predicting the prognosis and therapeutic response of patients with BRCA. Methods CAF-related genes (CAFRGs) and a risk signature based on these genes were comprehensively analyzed using publicly available bulk and single-cell transcriptomic datasets. Modular genes identified from bulk sequencing data were intersected with CAF marker genes identified from single-cell analysis to obtain reliable CAFRGs. Signature CAFRGs were screened via Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. Multiple patient cohorts were used to validate the prognosis and therapeutic responsiveness of high-risk patients stratified based on the CAFRG-based signature. In addition, the relationship between the CAFRG-based signature and clinicopathological factors, tumor immune landscape, functional pathways, chemotherapy sensitivity and immunotherapy sensitivity was examined. External datasets were used and sample experiments were performed to examine the expression pattern of MFAP4, a key CAFRG, in BRCA. Results Integrated analyses of single-cell and bulk transcriptomic data as well as prognostic screening revealed a total of 43 prognostic CAFRGs; of which, 14 genes (TLN2, SGCE, SDC1, SAV1, RUNX1, PDLIM4, OSMR, NT5E, MFAP4, IGFBP6, CTSO, COL12A1, CCDC8 and C1S) were identified as signature CAFRGs. The CAFRG-based risk signature exhibited favorable efficiency and accuracy in predicting survival outcomes and clinicopathological progression in multiple BRCA cohorts. Functional enrichment analysis suggested the involvement of the immune system, and the immune infiltration landscape significantly differed between the risk groups. Patients with high CAF-related risk scores (CAFRSs) exhibited tumor immunosuppression, enhanced cancer hallmarks and hyposensitivity to chemotherapy and immunotherapy. Five compounds were identified as promising therapeutic agents for high-CAFRS BRCA. External datasets and sample experiments validated the downregulation of MFAP4 and its strong correlation with CAFs in BRCA. Conclusions A novel CAF-derived gene signature with favorable predictive performance was developed in this study. This signature may be used to assess prognosis and guide individualized treatment for patients with BRCA.
Collapse
Affiliation(s)
- Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Lanjie Yang
- Department of Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianshan Hou
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Siyi Wang
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Shaoteng Lu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Yijie Tao
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
- Department of Anesthesia Physiology, Naval Medical University, Shanghai, China
| | - Wei Hu
- Department of Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Kallionpää RA, Peltonen S, Le KM, Martikkala E, Jääskeläinen M, Fazeli E, Riihilä P, Haapaniemi P, Rokka A, Salmi M, Leivo I, Peltonen J. Characterization of Immune Cell Populations of Cutaneous Neurofibromas in Neurofibromatosis 1. J Transl Med 2024; 104:100285. [PMID: 37949359 DOI: 10.1016/j.labinv.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Cutaneous neurofibromas (cNFs) are characteristic of neurofibromatosis 1 (NF1), yet their immune microenvironment is incompletely known. A total of 61 cNFs from 10 patients with NF1 were immunolabeled for different types of T cells and macrophages, and the cell densities were correlated with clinical characteristics. Eight cNFs and their overlying skin were analyzed for T cell receptor CDR domain sequences, and mass spectrometry of 15 cNFs and the overlying skin was performed to study immune-related processes. Intratumoral T cells were detected in all cNFs. Tumors from individuals younger than the median age of the study participants (33 years), growing tumors, and tumors smaller than the data set median showed increased T cell density. Most samples displayed intratumoral or peritumoral aggregations of CD3-positive cells. T cell receptor sequencing demonstrated that the skin and cNFs host distinct T cell populations, whereas no dominant cNF-specific T cell clones were detected. Unique T cell clones were fewer in cNFs than in skin, and mass spectrometry suggested lower expression of proteins related to T cell-mediated immunity in cNFs than in skin. CD163-positive cells, suggestive of M2 macrophages, were abundant in cNFs. Human cNFs have substantial T cell and macrophage populations that may be tumor-specific.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland; Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Kim My Le
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eija Martikkala
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Elnaz Fazeli
- Institute of Biomedicine, University of Turku, Turku, Finland; Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pilvi Riihilä
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland; MediCity Research Laboratory, and InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
13
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
14
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
15
|
Lindenkamp C, Plümers R, Osterhage MR, Vanakker OM, Van Wynsberghe J, Knabbe C, Hendig D. The Activation of JAK/STAT3 Signaling and the Complement System Modulate Inflammation in the Primary Human Dermal Fibroblasts of PXE Patients. Biomedicines 2023; 11:2673. [PMID: 37893046 PMCID: PMC10603841 DOI: 10.3390/biomedicines11102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 (ABCC6). On a molecular level, PXE shares similarities with Hutchinson-Gilford progeria syndrome, such as increased activity of senescence-associated- beta-galactosidase or high expression of inflammatory factors. Thus, this study's aim was the evaluation of activated STAT3 and the influence of JAK1/2-inhibitor baricitinib (BA) on inflammatory processes such as the complement system in PXE. Analysis of activation of STAT3 was performed by immunofluorescence and Western blot, while inflammatory processes and complement system factors were determined based on mRNA expression and protein level. Our results assume overactivation of JAK/STAT3 signaling, increased expression levels of several complement factors and high C3 protein concentration in the sera of PXE patients. Supplementation with BA reduces JAK/STAT3 activation and partly reduces inflammation as well as the gene expression of complement factors belonging to the C1 complex and C3 convertase in PXE fibroblasts. Our results indicate a link between JAK/STAT3 signaling and complement activation contributing to the proinflammatory phenotype in PXE fibroblasts.
Collapse
Affiliation(s)
- Christopher Lindenkamp
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Ricarda Plümers
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Michel R. Osterhage
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (J.V.W.)
| | - Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (J.V.W.)
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| |
Collapse
|
16
|
Zauner R, Wimmer M, Atzmueller S, Proell J, Niklas N, Ablinger M, Reisenberger M, Lettner T, Illmer J, Dorfer S, Koller U, Guttmann-Gruber C, Hofbauer JP, Bauer JW, Wally V. Biomarker Discovery in Rare Malignancies: Development of a miRNA Signature for RDEB-cSCC. Cancers (Basel) 2023; 15:3286. [PMID: 37444397 DOI: 10.3390/cancers15133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.
Collapse
Affiliation(s)
- Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sabine Atzmueller
- Center for Medical Research, Medical Faculty, Johannes-Kepler-University, 4020 Linz, Austria
| | - Johannes Proell
- Center for Medical Research, Medical Faculty, Johannes-Kepler-University, 4020 Linz, Austria
| | - Norbert Niklas
- Red Cross Transfusion Service of Upper Austria, 4020 Linz, Austria
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Manuela Reisenberger
- Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Angwin C, Zschocke J, Kammin T, Björck E, Bowen J, Brady AF, Burns H, Cummings C, Gardner R, Ghali N, Gröbner R, Harris J, Higgins M, Johnson D, Lepperdinger U, Milnes D, Pope FM, Sehra R, Kapferer-Seebacher I, Sobey G, Van Dijk FS. Non-oral manifestations in adults with a clinical and molecularly confirmed diagnosis of periodontal Ehlers-Danlos syndrome. Front Genet 2023; 14:1136339. [PMID: 37323685 PMCID: PMC10264792 DOI: 10.3389/fgene.2023.1136339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Periodontal Ehlers-Danlos Syndrome (pEDS) is a rare autosomal dominant type of EDS characterised by severe early-onset periodontitis, lack of attached gingiva, pretibial plaques, joint hypermobility and skin hyperextensibility as per the 2017 International EDS Classification. In 2016, deleterious pathogenic heterozygous variants were identified in C1R and C1S, which encode components of the complement system. Materials and Methods: Individuals with a clinical suspicion of pEDS were clinically and molecularly assessed through the National EDS Service in London and Sheffield and in genetic services in Austria, Sweden and Australia. Transmission electron microscopy and fibroblast studies were performed in a small subset of patients. Results: A total of 21 adults from 12 families were clinically and molecularly diagnosed with pEDS, with C1R variants in all families. The age at molecular diagnosis ranged from 21-73 years (mean 45 years), male: female ratio 5:16. Features of easy bruising (90%), pretibial plaques (81%), skin fragility (71%), joint hypermobility (24%) and vocal changes (38%) were identified as well as leukodystrophy in 89% of those imaged. Discussion: This cohort highlights the clinical features of pEDS in adults and contributes several important additional clinical features as well as novel deleterious variants to current knowledge. Hypothetical pathogenic mechanisms which may help to progress understanding and management of pEDS are also discussed.
Collapse
Affiliation(s)
- C. Angwin
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - J. Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - T. Kammin
- National EDS Diagnostic Service, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - E. Björck
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - J. Bowen
- National EDS Diagnostic Service, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - A. F. Brady
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - H. Burns
- Department Otolaryngology Head and Neck Surgery, Children’s Health QLD, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - C. Cummings
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
| | - R. Gardner
- Clinical Genetics, Genetic Health Queensland, Brisbane, QLD, Australia
| | - N. Ghali
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - R. Gröbner
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - J. Harris
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
| | - M. Higgins
- Clinical Genetics, Genetic Health Queensland, Brisbane, QLD, Australia
| | - D. Johnson
- National EDS Diagnostic Service, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - U. Lepperdinger
- Department of Operative and Restorative Dentistry, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Milnes
- Clinical Genetics, Genetic Health Queensland, Brisbane, QLD, Australia
| | - F. M. Pope
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
- Department of Dermatology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - R. Sehra
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
| | - I. Kapferer-Seebacher
- Department of Operative and Restorative Dentistry, Medical University of Innsbruck, Innsbruck, Austria
| | - G. Sobey
- National EDS Diagnostic Service, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - F. S. Van Dijk
- National EDS Service, London North West University Healthcare NHS Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Garcia-Becerra N, Aguila-Estrada MU, Palafox-Mariscal LA, Hernandez-Flores G, Aguilar-Lemarroy A, Jave-Suarez LF. FOXP3 Isoforms Expression in Cervical Cancer: Evidence about the Cancer-Related Properties of FOXP3Δ2Δ7 in Keratinocytes. Cancers (Basel) 2023; 15:cancers15020347. [PMID: 36672296 PMCID: PMC9856939 DOI: 10.3390/cancers15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common type of cancer among women; the main predisposing factor is persistent infection by high-risk human papillomavirus (hr-HPV), mainly the 16 or 18 genotypes. Both hr-HPVs are known to manipulate the cellular machinery and the immune system to favor cell transformation. FOXP3, a critical transcription factor involved in the biology of regulatory T cells, has been detected as highly expressed in the tumor cells of CC patients. However, its biological role in CC, particularly in the keratinocytes, remained unclarified. Therefore, this work aimed to uncover the effect of FOXP3 on the biology of the tumoral cells. First, public databases were analyzed to identify the FOXP3 expression levels and the transcribed isoforms in CC and normal tissue samples. The study's findings demonstrated an increased expression of FOXP3 in HPV16+ CC samples. Additionally, the FOXP3Δ2 variant was detected as the most frequent splicing isoform in tumoral cells, with a high differential expression level in metastatic samples. However, the analysis of FOXP3 expression in different CC cell lines, HPV+ and HPV-, suggests no relationship between the presence of HPV and FOXP3 expression. Since the variant FOXP3Δ2Δ7 was found highly expressed in the HPV16+ SiHa cell line, a model with constitutive expression of FOXP3Δ2Δ7 was established to evaluate its role in proliferation, migration, and cell division. Finally, RNAseq was performed to identify differentially expressed genes and enriched pathways modulated by FOXP3Δ2Δ7. The exogenous expression of FOXP3Δ2Δ7 promotes cell division, proliferation, and migration. The transcriptomic analyses highlight the upregulation of multiple genes with protumor activities. Moreover, immunological and oncogenic pathways were detected as highly enriched. These data support the hypothesis that FOXP3Δ2Δ7 in epithelial cells induces cancer-related hallmarks and provides information about the molecular events triggered by this isoform, which could be important for developing CC.
Collapse
Affiliation(s)
- Natalia Garcia-Becerra
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Marco Ulises Aguila-Estrada
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luis Arturo Palafox-Mariscal
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Georgina Hernandez-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| | - Luis Felipe Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Correspondence: (A.A.-L.); (L.F.J.-S.)
| |
Collapse
|
19
|
Ye J, Xu J, Zhang C, Zhu L, Xia S. Quantitative fluorescence resonance energy transfer-based immunoassay for activated complement C1s. Front Immunol 2023; 14:1081793. [PMID: 36761732 PMCID: PMC9904206 DOI: 10.3389/fimmu.2023.1081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Objectives C1s activation is associated with the pathogenesis of various diseases, indicating the potential value of C1s activation detection in clinic. Here we aimed to establish fluorescence resonance energy transfer (FRET)-based immunoassay for the quantitative detection of activated C1s in serum. Methods FRET-based fluorogenic peptides, sensitive to the enzymatic activity of activated C1s, were prepared and labeled with the fluorophore ortho-aminobenzoic acid (Abz) and quencher 2,4-dinitrophenyl (Dnp), and then were further selected depending on its Kcat/Km value. C1s in the samples was captured and separated using anti-C1s-conjugated magnetic microbeads. Next, enzymatic activity of activated C1s in samples and standards was examined using fluorescent quenched substrate assays. Limit of detection (LOD), accuracy, precision, and specificity of FRET-based immunoassay were also investigated. Results This method presented a linear quantification range for the enzymatic activity of activated C1s up to 10 μmol min-1 mL-1 and LOD of 0.096 μmol·min-1·mL-1 for serum samples. The recovery of the method was in the range of 90% ~ 110%. All CV values of the intra-analysis and inter-analysis of three levels in samples were less than 10%. The cross-reaction rates with C1r enzyme, MASP1, and MASP2 were less than 0.5%. No significant interferences were found with bilirubin (0.2 mg mL-1), Chyle (2000 FTU), and haemoglobin (5 mg mL-1), but anticoagulants (EDTA, citrate and heparin) inhibited the enzymatic ability of activated C1s. Thus, this established method can be used for the determination of active C1s in human serum samples in the concentration interval of 0.096-10.000 μmol min-1 mL-1. Conclusions One anti-C1s-based FRET immunoassay for activated C1s detection in serum samples were established, and it will be useful to explore the role of C1s activation in the pathogenesis, diagnosis and treatment in complement-related diseases.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Zhu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Nataren N, Yamada M, Prow T. Molecular Skin Cancer Diagnosis: Promise and Limitations. J Mol Diagn 2023; 25:17-35. [PMID: 36243291 DOI: 10.1016/j.jmoldx.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Skin cancer is a significant and increasing global health burden. Although the current diagnostic workflow is robust and able to provide clinically actionable results, it is subject to notable limitations. The training and expertise required for accurate diagnoses using conventional skin cancer diagnostics are significant, and patient access to this workflow can be limited by geographic location or unforeseen events, such as coronavirus disease 2019 (COVID-19). Molecular biomarkers have transformed diagnostics and treatment delivery in oncology. With rapid advancements in molecular biology techniques, understanding of the underlying molecular mechanism of cancer pathologies has deepened, yielding biomarkers that can be used to monitor the course of malignant diseases. Herein, commercially available, clinically validated, and emerging skin cancer molecular biomarkers are reviewed. The qualities of an ideal molecular biomarker are defined. The potential benefits and limitations of applying molecular biomarker testing over the course of skin cancer from susceptibility to treatment are explored, with a view to outlining a future model of molecular biomarker skin cancer diagnostics.
Collapse
Affiliation(s)
- Nathalie Nataren
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom.
| |
Collapse
|
21
|
Standing S, Tran S, Murguia-Favela L, Kovalchuk O, Bose P, Narendran A. Identification of Altered Primary Immunodeficiency-Associated Genes and Their Implications in Pediatric Cancers. Cancers (Basel) 2022; 14:5942. [PMID: 36497424 PMCID: PMC9741011 DOI: 10.3390/cancers14235942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of disease-related mortality in children and malignancies are more frequently observed in individuals with primary immunodeficiencies (PIDs). This study aimed to identify and highlight the molecular mechanisms, such as oncogenesis and immune evasion, by which PID-related genes may lead to the development of pediatric cancers. METHOD We implemented a novel bioinformatics framework using patient data from the TARGET database and performed a comparative transcriptome analysis of PID-related genes in pediatric cancers between normal and cancer tissues, gene ontology enrichment, and protein-protein interaction analyses, and determined the prognostic impacts of commonly mutated and differentially expressed PID-related genes. RESULTS From the Fulgent Genetics Comprehensive Primary Immunodeficiency panel of 472 PID-related genes, 89 genes were significantly differentially expressed between normal and cancer tissues, and 20 genes were mutated in two or more patients. Enrichment analysis highlighted many immune system processes as well as additional pathways in the mutated PID-related genes related to oncogenesis. Survival outcomes for patients with altered PID-related genes were significantly different for 75 of the 89 DEGs, often resulting in a poorer prognosis. CONCLUSIONS Overall, multiple PID-related genes demonstrated the connection between PIDs and cancer development and should be studied further, with hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shaelene Standing
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Son Tran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology and Immunology, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Pinaki Bose
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Aru Narendran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
22
|
Luan C, Jin S, Hu Y, Zhou X, Liu L, Li R, Ju M, Huang D, Chen K. Whole-genome identification and construction of the lncRNA-mRNA co-expression network in patients with actinic keratosis. Transl Cancer Res 2022; 11:4070-4078. [PMID: 36523309 PMCID: PMC9745357 DOI: 10.21037/tcr-22-842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/17/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Actinic keratosis (AK) is a common premalignant lesion induced by chronic exposure to ultraviolet radiation and may develop into invasive cutaneous squamous carcinoma (cSCC). The identification of specific biomarkers in AK are still unclear. Long non-coding RNAs (lncRNAs), as transcripts of more than 200 nucleotides, significantly involving in multiple biologic processes, especially in the development of tumors. METHODS In our study, we obtained data from RNA-sequencing analysis using two AK lesion tissues and three normal cutaneous tissues to comparatively analyze the differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs). Firstly, we used microarray analyses to identify DE lncRNAs and DE mRNAs. Secondly, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to analyze the primary function and find out significant pathways of these DE mRNA and lncRNAs. Finally, we used the top ten DE lncRNAs to construct a lncRNA-mRNA co-expression network. RESULTS Our results showed that there were a total of 2,097 DE lncRNAs and 2,043 DE mRNAs identified. GO and KEGG analysis and the lncRNA-mRNA co-expression network (using the top 10 DE lncRNAs comprises 130 specific co-expressed mRNAs to construct) indicated that lncRNA uc011fnr.2 may negatively regulate SCIMP and Toll-like receptor 4 (TLR4) and play an important role in Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway of AK. CONCLUSIONS lncRNA uc011fnr.2 may play an important role in JAK-STAT3 signaling pathway of AK by modulating SCIMP, TLR4 and IL-6. Further research is required to validate the value of lncRNA uc011fnr.2 in the progression of AK.
Collapse
Affiliation(s)
- Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Shuang Jin
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Xuyue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Lingxi Liu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Rong Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| |
Collapse
|
23
|
Cocuz IG, Cocuz ME, Repanovici A, Sabău AH, Niculescu R, Tinca AC, Vunvulea V, Budin CE, Szoke AR, Popelea MC, Moraru R, Cotoi TC, Cotoi OS. Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study. Medicina (B Aires) 2022; 58:medicina58101449. [PMID: 36295609 PMCID: PMC9611311 DOI: 10.3390/medicina58101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction: Cutaneous squamous cell carcinoma (cSCC) is one of the most frequently occurring types of cancer in humans. Scientometric research is an innovative method for analyzing the research trends in various domains, with great implications in the field of medicine. Materials and Methods: We searched the Web of Science database with the following established query terms: “Squamous cell carcinoma”, “skin”, and “immunohistochemistry”. After applying the inclusion and exclusion criteria, a total of 76 articles were selected. The present study aims to analyze, based on the frequency of use of keywords with scientometric algorithms and map-based distributions, the trends of the research concerning cSCCs in 2017–2022. Results: A graphical representation based on 11 scientometric maps presented the division of the keywords into seven clusters, from which seven categories of research interest were defined. The clusters represent a multidisciplinary approach to the diagnosis and treatment of cSCCs, cancer diagnostics, patient outcomes, histopathological importance, management of cSCCs, role of progression, and adequate treatment of and importance of immunohistochemistry for cSCCs. The distribution of the citations shows the importance of the available research on cSCCs by analyzing the first five most-cited articles included in our study in direct concordance with the seven defined clusters. Conclusion: The scientometric research method reveals the interest of research in the multidisciplinary approach used to obtain the best outcomes for the patient, including a targeted investigation, as well as diagnostic and treatment options. The trends in the research reveal that histopathological diagnostics and immunohistochemistry, combined with molecular techniques, are the most important tools used to establish a personalized diagnosis, thus increasing the quality of life and life expectancy for patients with cSCCs.
Collapse
Affiliation(s)
- Iuliu Gabriel Cocuz
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Maria Elena Cocuz
- Fundamental Prophylactic and Clinical Disciplines Department, Faculty of Medicine, Transilvania University of Brasov, 500003 Brașov, Romania
- Clinical Infectious Diseases Hospital of Brasov, 500174 Brasov, Romania
- Correspondence:
| | - Angela Repanovici
- Faculty of Product Design and Environment, Transilvania University of Brasov, 500036 Brasov, Romania
| | - Adrian-Horațiu Sabău
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Raluca Niculescu
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Andreea-Cătălina Tinca
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Vlad Vunvulea
- Anatomy and Embryology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Corina Eugenia Budin
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | - Andreea Raluca Szoke
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| | | | - Raluca Moraru
- Anatomy and Embryology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Department of Plastic Surgery, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Titiana Cornelia Cotoi
- Pharmaceutical Technique Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
- Pharmacy No. 2, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
- Pathophysiology Department, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade” of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
24
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|
25
|
Ma T, Li H, Zhang X. Discovering single-cell eQTLs from scRNA-seq data only. Gene 2022; 829:146520. [PMID: 35452708 DOI: 10.1016/j.gene.2022.146520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/12/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
eQTL studies are essential for understanding genomic regulation. The effects of genetic variations on gene regulation are cell-type-specific and cellular-context-related, so studying eQTLs at a single-cell level is crucial. The ideal solution is to use both mutation and expression data from the same cells. However, the current technology of such paired data in single cells is still immature. We present a new method, eQTLsingle, to discover eQTLs only with single-cell RNA-seq (scRNA-seq) data, without genomic data. It detects mutations from scRNA-seq data and models gene expression of different genotypes with the zero-inflated negative binomial (ZINB) model to find associations between genotypes and phenotypes at the single-cell level. On a glioblastoma and gliomasphere scRNA-seq dataset, eQTLsingle discovered hundreds of cell-type-specific tumor-related eQTLs, most of which cannot be found in bulk eQTL studies. Detailed analyses on examples of the discovered eQTLs revealed important underlying regulatory mechanisms. eQTLsingle is a uniquely powerful tool for utilizing the vast scRNA-seq resources for single-cell eQTL studies, and it is available for free academic use at https://github.com/horsedayday/eQTLsingle.
Collapse
Affiliation(s)
- Tianxing Ma
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China; School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
27
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
28
|
Zhang L, Lin W, Zhou Y, Shao F, Gao Y, He J. A Complement-Related Gene Signature for Predicting Overall Survival and Immunotherapy Efficacy in Sarcoma Patients. Front Cell Dev Biol 2022; 10:765062. [PMID: 35493104 PMCID: PMC9046668 DOI: 10.3389/fcell.2022.765062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The prognoses of sarcomas are poor and the responses of them to systemic therapies are limited and controversial. Thus, there is an urgent need to stratify the risk factors and identify the patients who may benefit from systemic therapies. Here, we developed a reliable, complement-based gene signature to predict the prognosis of sarcoma patients. Survival-related complement genes were identified by univariate Cox analyses and were used to build a gene signature, which was further selected using the least absolute shrinkage and selection operator model, and determined using a stepwise Cox proportional hazards regression model. The whole sarcoma cohort of TCGA was randomly divided into a training set and a test set. The signature was constructed using the training set and validated subsequently in the test set, the whole TCGA sarcoma cohort, and another two independent cohorts from the TARGET and GEO databases, respectively. Furthermore, the prognostic value of the signature was also validated in an independent cohort from our center. This model effectively predicted prognoses across the training set, different validation cohorts, and different clinical subgroups. Next, immune cell infiltration analysis, GO and KEGG analysis, and gene set enrichment analysis were performed to explore possible underlying mechanisms of this signature. Moreover, this signature may predict the response to immunotherapy. Collectively, the current complement-related gene signature can predict overall survival and possible immunotherapy response of sarcoma patients; it may serve as a powerful prognostic tool to further optimize clinical treatment and prognosis management for sarcoma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Qingdao Cancer Institute, Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| | - Jie He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Jie He,
| |
Collapse
|
29
|
Qian X, Yang Z, Gao L, Liu Y, Yan J. The role of complement in the clinical course of hepatocellular carcinoma. Immun Inflamm Dis 2022; 10:e569. [PMID: 34813686 PMCID: PMC8926509 DOI: 10.1002/iid3.569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background The complement system, an innate immune system, may either play an antitumor role, or promote tumorigenesis and cancer progression in different kinds of cancer. The function of complement in hepatocellular carcinoma (HCC) is unclear. Methods The gene expressions of the complement system were based on data obtained from TCGA and GEO. We explored gene expressions, mutation, enrichment analysis, clinicopathology, patients' outcome, and immune infiltration via Gepia2, cBioPortal, Metascape, UALCAN, Kaplan–Meier Plotter, and TIMER 2. Results Five complement genes, including C1R, C6, C7, CFP, and CFHR3, were not only found to be significantly downregulated in HCC samples compared with normal liver samples, but also found to be significantly associated with overall survival, disease‐free survival, and progress‐free survival in HCC patients. In addition, lower mRNA expression of C1R, C6, C7, and CFHR3 were found correlated with advanced cancer stages and higher tumor grades in HCC patients. Also, the expression levels of CFP were correlated with many sets of immune markers of tumor immune cells, such as those of CD8+ T cells, CD4+ T cells, B cells, M2 macrophages, neutrophils, DCs, Th1 cells, Th2 cells, and T cell exhaustion in HCC. Based on that, we developed a prognostic model for HCC patients—Riskscore = (−0.0053)*C6+(−0.0498)*C7+(−0.1045)*CFHR3. Conclusion C1R, C6, C7, CFP, and CFHR3 could be prognostic biomarkers for patients with HCC.
Collapse
Affiliation(s)
- Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhoujing Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Gao
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yipiao Liu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Johnson EM, Uppalapati CK, Pascual AS, Estrada SI, Averitte RL, Leyva KJ, Hull EE. Complement Factor H in cSCC: Evidence of a Link Between Sun Exposure and Immunosuppression in Skin Cancer Progression. Front Oncol 2022; 12:819580. [PMID: 35223500 PMCID: PMC8869607 DOI: 10.3389/fonc.2022.819580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with an estimated 750,000 cases diagnosed annually in the United States. Most cases are successfully treated with a simple excision procedure, but ~5% of cases metastasize and have a 5-year survival rate of 25-45%. Thus, identification of biomarkers correlated to cSCC progression may be useful in the early identification of high-risk cSCC and in the development of new therapeutic strategies. This work investigates the role of complement factor H (CFH) in the development of cSCC. CFH is a regulatory component of the complement cascade which affects cell mediated immune responses and increases in complement proteins are associated with poor outcomes in multiple cancer types. We provide evidence that sun exposure may increase levels of CFH, suggesting an immunomodulatory role for CFH early in the development of cSCC. We then document increased levels of CFH in cSCC samples, compared to adjacent normal tissue (ANT) routinely excised in a dermatology clinic which, in paired samples, received the same level of sun exposure. We also provide evidence that levels of CFH are even greater in more advanced cases of cSCC. To provide a potential link between CFH and immune modulation, we assessed immune system function by measuring interferon gamma (IFN-γ) and FOXP3 in patient samples. IFN-γ levels were unchanged in cSCC relative to ANT which is consistent with an ineffective cell-mediated immune response. FOXP3 was used to assess prevalence of regulatory T cells within the tissues, indicating either a derailed or inhibitory immune response. Our data suggest that FOXP3 levels are higher in cSCC than in ANT. Our current working model is that increased CFH downstream of sun exposure is an early event in the development of cSCC as it interferes with proper immune surveillance and decreases the effectiveness of the immune response, and creates a more immunosuppressive environment, thus promoting cSCC progression.
Collapse
Affiliation(s)
- Ellise M Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Chandana K Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Agnes S Pascual
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Sarah I Estrada
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Richard L Averitte
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Kathryn J Leyva
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
31
|
Yu Z, Du M, Lu L. A Novel 16-Genes Signature Scoring System as Prognostic Model to Evaluate Survival Risk in Patients with Glioblastoma. Biomedicines 2022; 10:biomedicines10020317. [PMID: 35203526 PMCID: PMC8869708 DOI: 10.3390/biomedicines10020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found that gene expression levels are associated with prognosis and some genes can be used to predict the survival risk of glioblastoma (GBM) patients. However, most of them just built the survival-related gene signature, and personal survival risk can be evaluated only in group. This study aimed to find the prognostic survival related genes of GBM, and construct survival risk prediction model, which can be used to evaluate survival risk by individual. We collected gene expression data and clinical information from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Cox regression analysis and LASSO-cox regression analysis were performed to get survival-related genes and establish the overall survival prediction model. The ROC curve and Kaplan Meier analysis were used to evaluate the prediction ability of the model in training set and two independent cohorts. We also analyzed the biological functions of survival-related genes by GO and KEGG enrichment analysis. We identified 99 genes associated with overall survival and selected 16 genes (IGFBP2, GPRASP1, C1R, CHRM3, CLSTN2, NELL1, SEZ6L2, NMB, ICAM5, HPCAL4, SNAP91, PCSK1N, PGBD5, INA, UCHL1 and LHX6) to establish the survival risk prediction model. Multivariate Cox regression analysis indicted that the risk score could predict overall survival independent of age and gender. ROC analyses showed that our model was more robust than four existing signatures. The sixteen genes can also be potential transcriptional biomarkers and the model can assist doctors on clinical decision-making and personalized treatment of GBM patients.
Collapse
|
32
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
33
|
Rahmati Nezhad P, Riihilä P, Knuutila JS, Viiklepp K, Peltonen S, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14020305. [PMID: 35053469 PMCID: PMC8773783 DOI: 10.3390/cancers14020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The incidence of the most common metastatic skin malignancy, cutaneous squamous cell carcinoma (cSCC), is growing worldwide, and the prognosis of the metastatic disease is poor. Presently, there are no biomarkers or therapeutic targets for high-risk cSCCs. Recent studies have demonstrated the essential role of autocrine complement synthesis in the progression of cSCC. Here, we have evaluated the role of complement Factor D (FD), the rate-limiting enzyme of the alternative complement pathway, in cSCC development. The results identify FD as a novel biomarker and putative therapeutic target for cSCC and propose the small-molecule FD inhibitor Danicopan as a highly specific drug candidate in the therapy of advanced cSCC. It is expected that the discovery of complement-associated molecular markers for cSCC progression would improve diagnosis, classification, prognostication, and targeted therapy of cSCC and its precursors in the future. Abstract Cutaneous squamous cell carcinoma (cSCC) is the most prevalent metastatic skin cancer. Previous studies have demonstrated the autocrine role of complement components in cSCC progression. We have investigated factor D (FD), the key enzyme of the alternative complement pathway, in the development of cSCC. RT-qPCR analysis of cSCC cell lines and normal human epidermal keratinocytes (NHEKs) demonstrated significant up-regulation of FD mRNA in cSCC cells compared to NHEKs. Western blot analysis also showed more abundant FD production by cSCC cell lines. Significantly higher FD mRNA levels were noted in cSCC tumors than in normal skin. Strong tumor cell-associated FD immunolabeling was detected in the invasive margin of human cSCC xenografts. More intense tumor cell-specific immunostaining for FD was seen in the tumor edge in primary and metastatic cSCCs, in metastases, and in recessive dystrophic epidermolysis bullosa-associated cSCCs, compared with cSCC in situ, actinic keratosis and normal skin. FD production by cSCC cells was dependent on p38 mitogen-activated protein kinase activity, and it was induced by interferon-γ and interleukin-1β. Blocking FD activity by Danicopan inhibited activation of extracellular signal-regulated kinase 1/2 and attenuated proliferation of cSCC cells. These results identify FD as a novel putative biomarker and therapeutic target for cSCC progression.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko S. Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| | - Seppo Meri
- Department of Bacteriology and Immunology, The Translational Immunology Research Program, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (P.R.N.); (P.R.); (J.S.K.); (K.V.); (S.P.); (L.N.)
- FICAN West Cancer Centre, Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
34
|
C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2021; 142:1478-1488.e9. [PMID: 34756877 DOI: 10.1016/j.jid.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. Previous studies have demonstrated the role of complement system in cSCC progression. In this study we have investigated the mechanistic role of serine protease C1r, a component of the classical pathway of complement system, in cSCC. Knockout of C1r in cSCC cells using CRISPR/Cas9 resulted in significant decrease in their proliferation, migration, and invasion through collagen type I compared to wild type cSCC cells. Knockout of C1r suppressed growth and vascularization of cSCC xenograft tumors, and promoted apoptosis of tumor cells in vivo. mRNA-seq analysis after C1r knockdown revealed significantly regulated GO terms Cell-matrix adhesion, Extracellular matrix component, Basement membrane, Metalloendopeptidase activity and KEGG pathway Extracellular matrix-receptor interaction. Among the significantly regulated genes were invasion-associated matrix metalloproteinases MMP1, MMP13, MMP10, and MMP12. Knockout of C1r resulted in decreased production of MMP-1, MMP-13, MMP-10, and MMP-12 by cSCC cells in culture. Knockout of C1r inhibited expression of MMP-13 by tumor cells, suppressed invasion, and reduced the amount of degraded collagen in vivo in xenografts. These results provide evidence for the role of C1r in promoting the invasion of cSCC cells by increasing MMP production.
Collapse
|
35
|
Ura B, Biffi S, Monasta L, Arrigoni G, Battisti I, Di Lorenzo G, Romano F, Aloisio M, Celsi F, Addobbati R, Valle F, Rampazzo E, Brucale M, Ridolfi A, Licastro D, Ricci G. Two Dimensional-Difference in Gel Electrophoresis (2D-DIGE) Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Serum. Cancers (Basel) 2021; 13:cancers13143639. [PMID: 34298850 PMCID: PMC8305989 DOI: 10.3390/cancers13143639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy arising from the endometrium. Identification of serum biomarkers could be beneficial for its early diagnosis. We have used 2D-Difference In Gel Electrophoresis (2D-DIGE) coupled with Mass Spectrometry (MS) procedures to investigate the serum proteome of 15 patients with endometrial cancer and 15 non-cancer subjects. We have identified 16 proteins with diagnostic potential, considering only spots with a fold change in %V ≥ 1.5 or ≤0.6 in intensity, which were statistically significant (p < 0.05). Western blotting data analysis confirmed the upregulation of CLU, ITIH4, SERPINC1, and C1RL in endometrial and exosome cancer sera compared to those of control subjects. The application of the logistic regression constructed based on the abundance of these four proteins separated the controls from the cancers with excellent levels of sensitivity and specificity. After a validation phase, our findings support the potential of using the proposed algorithm as a diagnostic tool in the clinical stage.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
- Correspondence:
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Lorenzo Monasta
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (G.A.); (I.B.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (G.A.); (I.B.)
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35131 Padova, Italy
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Riccardo Addobbati
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
| | - Francesco Valle
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, 50019 Firenze, Italy; (F.V.); (M.B.); (A.R.)
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), 40129 Bologna, Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy;
| | - Marco Brucale
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, 50019 Firenze, Italy; (F.V.); (M.B.); (A.R.)
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), 40129 Bologna, Italy
| | - Andrea Ridolfi
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Firenze, 50019 Firenze, Italy; (F.V.); (M.B.); (A.R.)
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNRISMN), 40129 Bologna, Italy
- Department of Chemistry, University of Firenze, 50019 Firenze, Italy
| | - Danilo Licastro
- ARGO Laboratorio Genomica ed Epigenomica, AREA Science Park, Basovizza, 34149 Trieste, Italy;
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.B.); (L.M.); (G.D.L.); (F.R.); (M.A.); (F.C.); (R.A.); (G.R.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
36
|
Hou Y, Xu Y, Wu D. ADAMTS12 acts as a tumor microenvironment related cancer promoter in gastric cancer. Sci Rep 2021; 11:10996. [PMID: 34040054 PMCID: PMC8154915 DOI: 10.1038/s41598-021-90330-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
The infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein-protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.
Collapse
Affiliation(s)
- Yangming Hou
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, 150086, Heilongjiang, China
| | - Yingjuan Xu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital, Jilin University, No. 126 Xiantai Avenue, Changchun, 130033, China
| | - Dequan Wu
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
37
|
Daugan MV, Revel M, Russick J, Dragon-Durey MA, Gaboriaud C, Robe-Rybkine T, Poillerat V, Grunenwald A, Lacroix G, Bougouin A, Meylan M, Verkarre V, Oudard SM, Mejean A, Vano YA, Perkins G, Validire P, Cathelineau X, Sanchez-Salas R, Damotte D, Fremeaux-Bacchi V, Cremer I, Sautès-Fridman C, Fridman WH, Roumenina LT. Complement C1s and C4d as Prognostic Biomarkers in Renal Cancer: Emergence of Noncanonical Functions of C1s. Cancer Immunol Res 2021; 9:891-908. [PMID: 34039653 DOI: 10.1158/2326-6066.cir-20-0532] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
The complement system plays a complex role in cancer. In clear cell renal cell carcinoma (ccRCC), local production of complement proteins drives tumor progression, but the mechanisms by which they do this are poorly understood. We found that complement activation, as reflected by high plasma C4d or as C4d deposits at the tumor site, was associated with poor prognosis in two cohorts of patients with ccRCC. High expression of the C4-activating enzyme C1s by tumor cells was associated with poor prognosis in three cohorts. Multivariate Cox analysis revealed that the prognostic value of C1s was independent from complement deposits, suggesting the possibility of complement cascade-unrelated, protumoral functions for C1s. Silencing of C1s in cancer cell lines resulted in decreased proliferation and viability of the cells and in increased activation of T cells in in vitro cocultures. Tumors expressing high levels of C1s showed high infiltration of macrophages and T cells. Modification of the tumor cell phenotype and T-cell activation were independent of extracellular C1s levels, suggesting that C1s was acting in an intracellular, noncanonical manner. In conclusion, our data point to C1s playing a dual role in promoting ccRCC progression by triggering complement activation and by modulating the tumor cell phenotype and tumor microenvironment in a complement cascade-independent, noncanonical manner. Overexpression of C1s by tumor cells could be a new escape mechanism to promote tumor progression.See related Spotlight by Magrini and Garlanda, p. 855. See article by Daugan et al., p. 909 (40).
Collapse
Affiliation(s)
- Marie V Daugan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jules Russick
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Biological Immunology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Tania Robe-Rybkine
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Victoria Poillerat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Guillaume Lacroix
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Antoine Bougouin
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Virginie Verkarre
- Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Pathology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Stephane M Oudard
- Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Arnaud Mejean
- Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Urology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Yann A Vano
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Geraldine Perkins
- Hôpital Européen Georges-Pompidou, Gastroenterology and Hepatology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Xavier Cathelineau
- Université de Paris, Paris, France.,Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | | | - Diane Damotte
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Université de Paris, Paris, France.,Hôpital Cochin, Departments of Pathology and Thoracic Surgery, Assistance Publique Hopitaux de Paris, Paris, France
| | - Veronique Fremeaux-Bacchi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges-Pompidou, Biological Immunology Department, Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
38
|
Rahmati Nezhad P, Riihilä P, Piipponen M, Kallajoki M, Meri S, Nissinen L, Kähäri VM. Complement factor I upregulates expression of matrix metalloproteinase-13 and -2 and promotes invasion of cutaneous squamous carcinoma cells. Exp Dermatol 2021; 30:1631-1641. [PMID: 33813765 DOI: 10.1111/exd.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing globally. Here, we have studied the functional role of complement factor I (CFI) in the progression of cSCC. CFI was knocked down in cSCC cells, and RNA-seq analysis was performed. Significant downregulation of genes in IPA biofunction categories Proliferation of cells and Growth of malignant tumor, in Gene Ontology (GO) terms Metallopeptidase activity and Extracellular matrix component, as well as Reactome Degradation of extracellular matrix was detected after CFI knockdown. Further analysis of the latter three networks, revealed downregulation of several genes coding for invasion-associated matrix metalloproteinases (MMPs) after CFI knockdown. The downregulation of MMP-13 and MMP-2 was confirmed at mRNA, protein and tissue levels by qRT-qPCR, Western blot and immunohistochemistry, respectively. Knockdown of CFI decreased the invasion of cSCC cells through type I collagen. Overexpression of CFI in cSCC cells resulted in enhanced production of MMP-13 and MMP-2 and increased invasion through type I collagen and Matrigel, and in increased ERK1/2 activation and cell proliferation. Altogether, these findings identify a novel mechanism of action of CFI in upregulation of MMP-13 and MMP-2 expression and cSCC invasion. These results identify CFI as a prospective molecular marker for invasion and metastasis of cSCC.
Collapse
Affiliation(s)
- Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Li Q, Yang W, Lu M, Zhang R. Identification of a 6-Gene Signature Associated with Resistance to Tyrosine Kinase Inhibitors: Prognosis for Clear Cell Renal Cell Carcinoma. Med Sci Monit 2020; 26:e927078. [PMID: 33296352 PMCID: PMC7734882 DOI: 10.12659/msm.927078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are used to treat metastatic disease associated with clear cell renal cell carcinoma (ccRCC); however, most patients develop resistance after 6 to 15 months. As such, identifying biomarkers of TKI resistance may be useful for prognosis. Material/Methods We analyzed ChIP-seq data related to TKI resistance from the Gene Expression Omnibus and RNA-Seq and clinical data from The Cancer Genome Atlas database. We used univariate Cox analysis and Cox regression/Lasso analysis to determine a risk score. The Kaplan-Meier estimate and receiver operating characteristic curve verified the risk score’s sensitivity and specificity. The stratified analysis and the univariate and multivariate analyses revealed its predictive power. We predicted survival time by constructing a nomogram. Results Of the 32 differentially expressed genes (DEGs) related to TKI resistance, 6 (ACE2, MMP24, SLC44A4, C1R, C1ORF194, ADAMTS15) were used to establish a risk score. Kaplan-Meier analysis showed that high-risk patients had shorter median survival times than low-risk patients, notably among those with metastatic disease (1.51 vs. 4.55 years). The stratified analysis revealed that patients with advanced disease had relatively higher risk scores than patients at early stages (P<0.001). Univariate analysis independently associated the 6-DEGs signature with the prognosis of metastatic ccRCC (hazard ratio, 1.217; 95% confidence interval, 1.090–1.358). The nomogram we constructed based on 6-DEGs signature and clinical parameters predicted survival time accurately. Conclusions We identified a 6-DEGs signature that permitted us to establish a risk score related to TKI resistance that can serve as a reliable biomarker for predicting the survival of patients with ccRCC.
Collapse
Affiliation(s)
- Qinke Li
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Wenbo Yang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Maoqing Lu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
40
|
Prodinger C, Bauer JW, Laimer M. Translational perspectives to treat Epidermolysis bullosa-Where do we stand? Exp Dermatol 2020; 29:1112-1122. [PMID: 33043517 PMCID: PMC7756480 DOI: 10.1111/exd.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB) is the prototypical example of genetic skin fragility disorders. Genotypic heterogeneity, modifier genes, epigenetic, biochemical and environmental factors alter and determine pathogenic traits and, ultimately, the wide and striking phenotypic variability in EB. Besides the primary structural-functional defect, chronic tissue damage with induction and dysregulation of inflammatory pathways is a common pathogenic mechanism in EB. In localized variants, the inflammatory aberrations may mainly affect the micromilieu of lesional skin, while a systemic inflammatory response was shown to contribute to the systemic morbidity in severe EB subtypes with extensive cutaneous involvement. Our continued understanding of the pathophysiology of EB, as well as advances in molecular technologies, has paved the way for translational therapeutic approaches. The spectrum comprises of corrective and symptom-relieving therapies that include innovative therapeutic options garnered from the bench, repurposed drugs approved for other diseases, as well as strategies for gene-, protein- and cell-based therapies. Immunological traits further define new targets of therapy, aimed at improving skin barrier restoration, microbial surveillance and infection control, wound healing and anti-neoplastic effects. Clinical availability and feasibility of these approaches for all EB patients and subtypes are currently limited, reflecting issues of efficacy, specificity, tolerability and safety. A multistep targeting approach and highly individualized, risk-stratified combinatory treatment plans will thus be essential for sustained efficacy and improved overall quality of life in EB.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Johann W Bauer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Martin Laimer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| |
Collapse
|
41
|
Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis. TOXICS 2020; 8:toxics8030073. [PMID: 32961854 PMCID: PMC7560251 DOI: 10.3390/toxics8030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Collapse
|
42
|
Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P, Miller CA, Dehner C, Dahiya S, Hirbe AC. Unmasking Intra-tumoral Heterogeneity and Clonal Evolution in NF1-MPNST. Genes (Basel) 2020; 11:genes11050499. [PMID: 32369930 PMCID: PMC7291009 DOI: 10.3390/genes11050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future.
Collapse
Affiliation(s)
- Chang-In Moon
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - William Tompkins
- Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yuxi Wang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Abigail Godec
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Xiaochun Zhang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Patrik Pipkorn
- Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
| | - Christopher A. Miller
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sonika Dahiya
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Angela C. Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Correspondence: ; Tel.: +1-314-747-3096
| |
Collapse
|
43
|
Roumenina LT, Daugan MV, Petitprez F, Sautès-Fridman C, Fridman WH. Context-dependent roles of complement in cancer. Nat Rev Cancer 2019; 19:698-715. [PMID: 31666715 DOI: 10.1038/s41568-019-0210-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
The tumour microenvironment (TME) highly influences the growth and spread of tumours, thus impacting the patient's clinical outcome. In this context, the complement system plays a major and complex role. It may either act to kill antibody-coated tumour cells, support local chronic inflammation or hamper antitumour T cell responses favouring tumour progression. Recent studies demonstrate that these opposing effects are dependent upon the sites of complement activation, the composition of the TME and the tumour cell sensitivity to complement attack. In this Review, we present the evidence that has so far accrued showing a role for complement activation and its effects on cancer control and clinical outcome under different TME contexts. We also include a new analysis of the publicly available transcriptomic data to provide an overview of the prognostic value of complement gene expression in 30 cancer types. We argue that the interplay of complement components within each cancer type is unique, governed by the properties of the tumour cells and the TME. This concept is of critical importance for the design of efficient therapeutic strategies aimed at targeting complement components and their signalling.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France.
| | - Marie V Daugan
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Florent Petitprez
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France.
| |
Collapse
|
44
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
45
|
Kopecki Z. Tumour serine proteases C1r and C1s as novel biomarkers and therapeutic targets in invasive sporadic and recessive dystrophic epidermolysis bullosa-associated cutaneous squamous cell carcinoma. Br J Dermatol 2019; 182:530-531. [PMID: 31486079 DOI: 10.1111/bjd.18419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Z Kopecki
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|