1
|
Nielsen MH, Nielsen PR, Bzorek M, Eriksen JO, Wehkamp U, Lindahl LM, Woetmann A, Ødum N, Litman T, Gjerdrum LMR. Stage-related increase in PIM2 expression in mycosis fungoides. APMIS 2024; 132:564-570. [PMID: 38757234 DOI: 10.1111/apm.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
The oncogene PIM2 is upregulated in several malignancies but has never been investigated in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). PIM2 is a well-known oncogene and is regulated by cell signaling pathways like the JAK/STAT- and NF-kB-pathway, key regulators in the pathogenesis of CTCL. The aim of this study was to examine the role of PIM2 in MF. PIM2 gene expression was measured in 81 formalin-fixed paraffin-embedded skin biopsies from patients with MF and 46 control biopsies from healthy skin (HS) and benign inflammatory skin disease (BID). Validation of PIM2 protein expression was performed on selected biopsies with immunohistochemical staining. We found a significant difference in gene expression levels between both early stage MF and HS (p < 0.0001), and BID (p < 0.0001). In addition, the PIM2 gene expression was higher in advanced-stage MF compared to early stage disease (p = 0.0001). No significant difference in gene expression levels was found between patients with and without disease progression. In conclusion, we found PIM2 expression is significantly increased in MF compared to controls, and in advanced-stage MF compared to early stage MF. These findings could potentially have diagnostic value in discriminating early stage MF from BID.
Collapse
Affiliation(s)
- Mie Holm Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Ulrike Wehkamp
- Department of Dermatology, University Hospital, Kiel, Schleswig-Holstein, Germany
| | | | - Anders Woetmann
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Copenhagen University Hospital - Zealand University Hospital Roskilde, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Wen P, Xie Y, Wang L. The Role of microRNA in Pathogenesis, Diagnosis, Different Variants, Treatment and Prognosis of Mycosis Fungoides. Front Oncol 2021; 11:752817. [PMID: 34966672 PMCID: PMC8710607 DOI: 10.3389/fonc.2021.752817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), accounting for approximately 50% of all CTCLs. Although various molecular changes in MF have been described in existing studies, no obvious disease-specific changes have been found thus far. microRNAs (miRs) are short, noncoding RNA molecules that play roles in the post-transcriptional regulation of oncogenes and tumor suppressor genes in various diseases. Recently, there has been rapidly expanding experimental evidence for the role of miRs in the progression, early diagnosis, prognosis prediction for MF. Efforts to improve early diagnosis and develop personalized therapy options have become more important in recent years. Here, we provide an overview and update of recent advances regarding miRs associated with MF. Furthermore, we provide insights into future opportunities for miR-based therapies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers (Basel) 2021; 13:cancers13020280. [PMID: 33466582 PMCID: PMC7828698 DOI: 10.3390/cancers13020280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary JAK3 plays an important role in the pathogenesis of cutaneous T cell lymphoma. JAK3 belongs to the Janus kinase family of receptor-associated tyrosine kinases located in cytoplasm adjacent to the plasma membrane. In this study, we show that JAK3 can also be ectopically expressed in the nucleus in CTCL cell lines and primary cells from CTCL patients. Importantly, JAK3 interacts with the nuclear protein RNA polymerase II and phosphorylates Histone H3. Thus, our data provide first evidence for nuclear expression of JAK3 and interactions with key nuclear proteins in malignant T cells suggesting a novel non-canonical role in CTCL. Abstract Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro—an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL.
Collapse
|
4
|
Rittig AH, Johansen C, Celis P, Odum N, Litman T, Woetmann A, Lindahl LM, Iversen L. Suppressed microRNA-195-5p expression in mycosis fungoides promotes tumor cell proliferation. Exp Dermatol 2020; 30:1141-1149. [PMID: 32492224 DOI: 10.1111/exd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Several cancers, including mycosis fungoides (MF), have reported dysregulation of miR-195-5p. miR-195-5p plays a role in cell cycle regulation in several malignant diseases. OBJECTIVES This study aimed to investigate: (a) the expression level of miR-195-5p in lesional MF skin biopsies and (b) the potential regulatory roles of miR-195-5p in MF. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine miR-195-5p expression in MF skin biopsies and cell lines. The effect of miR-195-5p and ADP-ribosylation factor-like protein 2 (ARL2) on cell cycle and apoptosis was measured by flow cytometry assays. Changes in ARL2 expression were determined by RT-qPCR and Western blotting (WB). RESULTS We found lower expression levels of miR-195-5p in lesional skin from MF patients compared with non-lesional MF skin and skin from healthy volunteers. Additionally, miR-195-5p showed lower expression levels in the skin from patients with disease progression compared with patients with stable disease. In vitro studies showed that overexpression of miR-195-5p induced a cell cycle arrest in G0G1. Using microarray analysis, we identified several genes that were regulated after miR-195-5p overexpression. The most downregulated gene after miR-195-5p mimic transfection was ARL2. RT-qPCR and WB analyses confirmed downregulation of ARL2 following transfection with miR-195-5p mimic. Lastly, transfection with siRNA against ARL2 also induced a G0G1 arrest. CONCLUSION Upregulation of miR-195-5p in MF inhibits cycle arrest by downregulation of ARL2. miR-195-5p may thus function as a tumor suppressor in MF and low miR-195-5p expression in lesional MF skin may promote disease progression.
Collapse
Affiliation(s)
- Anne H Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Pamela Celis
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|