1
|
Hu X, Zhang M, Xu J, Gao C, Yu X, Li X, Ren H, Wang W, Xie J. Comparison of Obinutuzumab and Rituximab for Treating Primary Membranous Nephropathy. Clin J Am Soc Nephrol 2024; 19:1594-1602. [PMID: 39207845 PMCID: PMC11637703 DOI: 10.2215/cjn.0000000000000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Key Points Obinutuzumab induced more remission than rituximab at 12 months in patients with primary membranous nephropathy. Obinutuzumab shared a similar safety profile as rituximab in patients with primary membranous nephropathy. Background This study compared the effectiveness and safety profiles of obinutuzumab and rituximab in the treatment of patients with primary membranous nephropathy (MN). Methods Patients with primary MN who had urine protein ≥3.5 g/24 hours and eGFR ≥30 ml/min per 1.73 m2 despite 6 months of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker and treatment with obinutuzumab or rituximab were included and matched by propensity score (ratio: 1:2) on the basis of age, sex, urine protein, eGFR, and titers of Anti-Phospholipase A2 receptor (PLA2R) antibody. The primary outcome was defined as a combination of partial or complete remission at 12 months. Logistic regression models, Kaplan–Meier curves, and absolute risk differences were used to compare the therapeutic effectiveness and safety profiles of obinutuzumab and rituximab. Results Sixty-three patients with primary MN were included in the study, with 21 patients receiving obinutuzumab and 42 patients receiving rituximab. At 12 months, the primary outcome was achieved in 20 of 21 patients in the obinutuzumab group and 28 of 42 patients in the rituximab group (obinutuzumab versus rituximab: 95% versus 67%; odds ratio, 10.00; 95% confidence intervals, 1.21 to 82.35; P = 0.03). Moreover, patients in the obinutuzumab group acquired more complete remission (obinutuzumab versus rituximab: 38% versus 14%; odds ratio, 3.69; 95% confidence interval, 1.08 to 12.68; P = 0.04). In PLA2R-associated primary MN subgroup analyses, patients in the obinutuzumab group sustained lower CD19 B-cell counts (CD19 B-cell counts: median [interquartile range] 0 [0–6] cells/μ l versus 20 [3–58] cells/μ l, P = 0.002) and were more prone to achieve immunological remission (defined as PLA2R antibody <2 RU/ml) at 6 months (obinutuzumab versus rituximab: 92% [12 out of 13] versus 64% [16 out of 25], P = 0.06) than rituximab. Both treatment regimens were well tolerated. Conclusions Our study demonstrated that obinutuzumab is associated with higher odds of clinical remission compared with rituximab at 12 months, which may be due to higher immunological remission at 6 months with a similar safety profile in patients with primary MN.
Collapse
Affiliation(s)
- Xiaofan Hu
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China and Institute of Nephrology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Malfona F, Testi AM, Chiaretti S, Moleti ML. Refractory Burkitt Lymphoma: Diagnosis and Interventional Strategies. Blood Lymphat Cancer 2024; 14:1-15. [PMID: 38510818 PMCID: PMC10949171 DOI: 10.2147/blctt.s407804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Despite excellent results in frontline therapy, particularly in pediatric age, refractory Burkitt lymphoma still remains a therapeutic challenge, with dismal outcome. The prognosis is very poor, ranging from less than 10% to 30-40%, with longer survival only in transplanted patients. On account of the paucity of data, mostly reporting on small series of patients, with heterogeneous characteristics and salvage treatments, at present it is impossible to draw definitive conclusions on the treatment of choice for this difficult to treat subset of patients. New insights into Burkitt lymphoma/leukemia cell biology have led to the development of new drugs, currently being tested, directed at different specific targets. Herein, we describe the results so far reported in refractory Burkitt lymphoma/leukemia, with standard treatments and hematopoietic stem cell transplant, and we review the new targeted drugs currently under evaluation.
Collapse
Affiliation(s)
- Francesco Malfona
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Maria Luisa Moleti
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| |
Collapse
|
3
|
Al‐Kali A, Aldoss I, Atherton PJ, Strand CA, Shah B, Webster J, Bhatnagar B, Flatten KS, Peterson KL, Schneider PA, Buhrow SA, Kong J, Reid JM, Adjei AA, Kaufmann SH. A phase 2 and pharmacological study of sapanisertib in patients with relapsed and/or refractory acute lymphoblastic leukemia. Cancer Med 2023; 12:21229-21239. [PMID: 37960985 PMCID: PMC10726920 DOI: 10.1002/cam4.6701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Despite recent approval of several new agents, relapsed acute lymphoblastic leukemia (ALL) remains challenging to treat. Sapanisertib (MLN0128/TAK-228) is an oral TORC1/2 inhibitor that exhibited preclinical activity against ALL. METHODS We conducted a single-arm multi-center Phase II study of sapanisertib monotherapy (3 mg orally daily of the milled formulation for 21 days every 28 days) in patients with ALL through the Experimental Therapeutics Clinical Trials Network (NCI-9775). RESULTS Sixteen patients, 15 of whom were previously treated (median 3 prior lines of therapy), were enrolled. Major grade 3-4 non-hematologic toxicities included mucositis (3 patients) and hyperglycemia (2 patients) as well as hepatic failure, seizures, confusion, pneumonitis, and anorexia (1 patient each). Grade >2 hematological toxicity included leukopenia (3), lymphopenia (2), thrombocytopenia, and neutropenia (1). The best response was stable disease in 2 patients (12.5%), while only 3 patients (19%) were able to proceed to Cycle 2. Pharmacokinetic analysis demonstrated drug exposures similar to those observed in solid tumor patients. Immunoblotting in serially collected samples indicated limited impact of treatment on phosphorylation of mTOR pathway substrates such as 4EBP1, S6, and AKT. CONCLUSION In summary, single-agent sapanisertib had a good safety profile but limited target inhibition or efficacy in ALL as a single agent. This trial was registered at ClinicalTrials.gov as NCT02484430.
Collapse
Affiliation(s)
- Aref Al‐Kali
- Division of HematologyMayo ClinicRochesterMinnesotaUSA
| | - Ibrahim Aldoss
- Division of Hematology and Hematopoietic Cell TransplantationCity of Hope National Medical CenterDuarteCaliforniaUSA
| | | | | | - Bijal Shah
- Division of HematologyMoffitt Cancer CenterTampaFloridaUSA
| | - Jonathan Webster
- Division of Hematological MalignanciesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bhavana Bhatnagar
- Section of Hematology and Medical OncologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | | | | | | | - Sarah A. Buhrow
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Jianping Kong
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Joel M. Reid
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| | - Alex A. Adjei
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Tausig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Scott H. Kaufmann
- Division of HematologyMayo ClinicRochesterMinnesotaUSA
- Division of Oncology ResearchMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Mamidi MK, Huang J, Honjo K, Li R, Tabengwa EM, Neeli I, Randall NL, Ponnuchetty MV, Radic M, Leu CM, Davis RS. FCRL1 immunoregulation in B cell development and malignancy. Front Immunol 2023; 14:1251127. [PMID: 37822931 PMCID: PMC10562807 DOI: 10.3389/fimmu.2023.1251127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Murali K. Mamidi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nar’asha L. Randall
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Manasa V. Ponnuchetty
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming ChiaoTung University, Taipei, Taiwan
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Zhang Q, Huang MJ, Wang HY, Wu Y, Chen YZ. A novel prognostic nomogram for adult acute lymphoblastic leukemia: a comprehensive analysis of 321 patients. Ann Hematol 2023:10.1007/s00277-023-05267-6. [PMID: 37173535 DOI: 10.1007/s00277-023-05267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
The cure rate of acute lymphoblastic leukemia (ALL) in adolescents and adults remains poor. This study aimed to establish a prognostic model for ≥14-year-old patients with ALL to guide treatment decisions. We retrospectively analyzed the data of 321 ALL patients between January 2017 and June 2020. Patients were randomly (2:1 ratio) divided into either the training or validation set. A nomogram was used to construct a prognostic model. Multivariate Cox analysis of the training set showed that age > 50 years, white blood cell count > 28.52×109/L, and MLL rearrangement were independent risk factors for overall survival (OS), while platelet count >37×109/L was an independent protective factor. The nomogram was established according to these independent prognostic factors in the training set, where patients were grouped into two categories: low-risk (≤13.15) and high-risk (>13.15). The survival analysis, for either total patients or sub-group patients, showed that both OS and progression-free survival (PFS) of low-risk patients was significantly better than that of high-risk patients. Moreover, treatment analysis showed that both OS and progression-free survival (PFS) of ALL with stem cell transplantation (SCT) were significantly better than that of ALL without SCT. Further stratified analysis showed that in low-risk patients, the OS and PFS of patients with SCT were significantly better than those of patients without SCT. In contrast, in high-risk patients, compared with non-SCT patients, receiving SCT can only significantly prolong the PFS, but it does not benefit the OS. We established a simple and effective prognostic model for ≥ 14-year-old patients with ALL that can provide accurate risk stratification and determine the clinical strategy.
Collapse
Affiliation(s)
- Qian Zhang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei-Juan Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Han-Yu Wang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
7
|
Chockalingam K, Kumar A, Song J, Chen Z. Chicken-derived CD20 antibodies with potent B-cell depletion activity. Br J Haematol 2022; 199:560-571. [PMID: 36039695 PMCID: PMC9649889 DOI: 10.1111/bjh.18438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
We report four novel anti-human CD20 (hCD20) monoclonal antibodies (mAbs) discovered from a phylogenetically distant species-chickens. The chicken-human chimaeric antibodies exhibit at least 10-fold enhanced antibody-dependent cellular cytotoxicity (ADCC) and 4-8-fold stronger complement-dependent cytotoxicity (CDC) relative to the clinically used mouse-human chimaeric anti-hCD20 antibody rituximab (RTX). Thus, to our knowledge these mAbs are the first to significantly outperform RTX in both Fc-mediated mechanisms of action. The antibodies show 20-100-fold superior depletion of B cells in whole blood from healthy humans relative to RTX and retain efficacy in vivo. One of the mAbs, AC1, can bind mouse CD20, indicating specificity for a novel hCD20 epitope inaccessible to current (mouse-derived) anti-hCD20 mAbs. A humanized version of one antibody, hAC11-10, was created by complementarity-determining region (CDR) grafting into a human variable region framework and this molecule retained the ADCC, in vitro human whole-blood B-cell depletion, and in vivo lymphoma cell depletion activities of the parent. These mAbs represent promising monotherapy candidates for improving upon current less-than-ideal clinical outcomes in lymphoid malignancies and provide an arsenal of biologically relevant molecules for the development of next-generation CD20-mediated immunotherapies including bispecific T-cell engagers (BiTE), antibody-drug conjugates (ADC) and chimaeric antigen receptor-engineered T (CAR-T) cells.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
| |
Collapse
|
8
|
Tommy Gambles M, Li J, Christopher Radford D, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release 2022; 350:584-599. [PMID: 36037975 PMCID: PMC9561060 DOI: 10.1016/j.jconrel.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14082021. [PMID: 35454927 PMCID: PMC9032060 DOI: 10.3390/cancers14082021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. Despite the enormous progress in ALL treatment, which is reflected by a high 5-year overall survival rate that reaches up to 96% in the most recent studies, there are still patients that cannot be saved. Treatment of ALL is based on conventional methods, including chemotherapy and radiotherapy. These methods carry with them the risk of very high toxicities. Severe complications related to conventional therapies decrease their effectiveness and can sometimes lead to death. Therefore, currently, numerous studies are being carried out on novel forms of treatment. In this work, classical methods of treatment have been summarized. Furthermore, novel treatment methods and the possibility of combining them with chemotherapy have been incorporated into the present work. Targeted treatment, CAR-T-cell therapy, and immunotherapy for ALL have been described. Treatment options for the relapse/chemoresistance ALL have been presented. Abstract Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. There has been enormous progress in ALL treatment in recent years, which is reflected by the increase in the 5-year OS from 57% in the 1970s to up to 96% in the most recent studies. ALL treatment is based primarily on conventional methods, which include chemotherapy and radiotherapy. Their main weakness is severe toxicity, which prompts dose reduction, decreases the effectiveness of the treatment, and, in some cases, can lead to death. Currently, numerous modifications in treatment regimens are applied in order to limit toxicities emerging from conventional approaches and improve outcomes. Hematological treatment of pediatric patients is reaching for more novel treatment options, such as targeted treatment, CAR-T-cells therapy, and immunotherapy. These methods are currently used in conjunction with chemotherapy. Nevertheless, the swift progress in their development and increasing efficacity can lead to applying those novel therapies as standalone therapeutic options for pediatric ALL.
Collapse
|
10
|
Hudson R, Rawlings C, Mon SY, Jefferis J, John GT. Treatment resistant M-type phospholipase A2 receptor associated membranous nephropathy responds to obinutuzumab: a report of two cases. BMC Nephrol 2022; 23:134. [PMID: 35392837 PMCID: PMC8991934 DOI: 10.1186/s12882-022-02761-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Membranous Nephropathy (MN) is a common cause of nephrotic syndrome (NS) in adults. Recognition of MN as an antibody mediated autoimmune disease has enabled the introduction of anti-B-cell therapy. Rituximab, a type I anti-CD20 antibody has been used in the management of MN, but has a 35-45% failure rate. Obinutuzumab, a fully humanised type II anti-CD20 monoclonal antibody produces greater CD20 depletion and is superior to rituximab in the treatment of certain B-cell malignancies. In the two reports published to date involving nine patients with M-type phospholipase A2 receptor (PLA2R) associated MN (six of whom were rituximab resistant), treatment with obinutuzumab lead to immunological remission (IR) in 75% of patients, with improvement of proteinuria, normalisation of serum albumin and stable renal function in all patients. Case presentation We report on two cases of PLA2R-associated MN, two males aged 33 and 36-years, who presented with NS and bilateral sub massive pulmonary emboli requiring anticoagulation. Both were diagnosed serologically as PLA2R-associated MN where a renal biopsy was initially deferred due to bleeding risk on anticoagulation, but later confirmed. Both patients were refractory to multiple lines of therapy including rituximab, but achieved IR, normalistation of serum albumin, improved proteinuria and stable renal function with obinutuzumab. Conclusions Our cases add to the current limited literature on the successful use of obinutuzumab in PLA2R associated MN refractory to standard therapy including rituximab. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02761-3.
Collapse
Affiliation(s)
- Rebecca Hudson
- Kidney Health Service, Royal Brisbane and Women's Hospital, Level 9 Ned Hanlon Building, Butterfield Street, Herston, Queensland, 4029, Australia.
| | - Cassandra Rawlings
- Department of Renal Medicine, Townsville University Hospital, Douglas, QLD, Australia
| | - Saw Yu Mon
- Kidney Health Service, Royal Brisbane and Women's Hospital, Level 9 Ned Hanlon Building, Butterfield Street, Herston, Queensland, 4029, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Julia Jefferis
- Kidney Health Service, Royal Brisbane and Women's Hospital, Level 9 Ned Hanlon Building, Butterfield Street, Herston, Queensland, 4029, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - George T John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Level 9 Ned Hanlon Building, Butterfield Street, Herston, Queensland, 4029, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022; 23:381-403. [PMID: 35258793 PMCID: PMC8930876 DOI: 10.1007/s11864-021-00932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago. Engagement with NK cells leading to lysis of NHL targets through antibody-dependent cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action. Despite this important role, the only aspect of B cell NHL therapy that has been adopted as standard therapy that even indirectly augments or restores NK cell function is the introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes of B cell NHL has experienced tremendous growth, with five different CAR T cell products now licensed by the FDA, four of which target CD19 and have approved indications for some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, lisocabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essentially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19 antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-based immunotherapies have been difficult to implement because they require 4–6 weeks of manufacture, are costly, and have significant toxicities. This renewed interest in the potential of cellular immunity—and the manufacturing, supply chain, and administration logistics that have been addressed with these new agents—have ignited a new wave of enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be introduced into the standard toolbox of NHL therapy within the next few years, be it function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy with expanded or genetically modified NK cells.
Collapse
|
12
|
Evaluating outcomes of adult patients with acute lymphoblastic leukemia and lymphoblastic lymphoma treated on the GMALL 07/2003 protocol. Ann Hematol 2022; 101:581-593. [PMID: 35088172 DOI: 10.1007/s00277-021-04738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Chemotherapy-based approaches still constitute an essential feature in the treatment paradigm of adult acute lymphoblastic leukemia (ALL). The German Multicenter Study Group (GMALL) is a well-established protocol for ALL. In this study, we assessed our recent experience with the GMALL 07/2003 protocol reviewing all adult ALL patients who were treated with GMALL in three major centers in Israel during 2007-2020. The analysis comprised 127 patients with a median age of 41 years (range 17-83). Sixty-two were B-ALL (49%), 20 (16%) patients were Philadelphia chromosome positive ALL, and 45 (35%) were T-ALL. The 2-year and 5-year overall survival rates were 71% and 57%, respectively. The 2-year relapse rate was 30% with 2-year and 5-year leukemia-free survival rates of 59% and 50%, respectively. Adolescents and young adults experienced significantly longer overall survival (84 months versus 51 months; p=0.047) as well as leukemia-free survival compared with older patients (66 months versus 54 months, p=0.003; hazard ratio=0.39, 95% confidence interval, 0.19-0.79; p=0.009). T-ALL patients had longer survival compared to B-ALL patients while survival was comparable among Philadelphia chromosome positive patients and Philadelphia chromosome negative patients. An increased number of cytogenetic clones at diagnosis were tightly associated with adverse prognosis (15-month survival for ≥2 clones versus 81 months for normal karyotype; p=0.003). Positive measurable residual disease studies following consolidation were predictive for increased risk of relapse (64% versus 22%; p=0.003) and shorter leukemia-free survival (11 months versus 42 months; p=0.0003). While GMALL is an effective adult regimen, a substantial patient segment still experiences relapse.
Collapse
|
13
|
Salvaris R, Fedele PL. Targeted Therapy in Acute Lymphoblastic Leukaemia. J Pers Med 2021; 11:715. [PMID: 34442359 PMCID: PMC8398498 DOI: 10.3390/jpm11080715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.
Collapse
Affiliation(s)
- Ross Salvaris
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Pasquale Luke Fedele
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| |
Collapse
|
14
|
Kwiatkowski A, Co C, Kameoka S, Zhang A, Coughlin J, Cameron T, Chiao E, Bergelson S, Schmid Mason C. Assessment of the role of afucosylated glycoforms on the in vitro antibody-dependent phagocytosis activity of an antibody to Aβ aggregates. MAbs 2021; 12:1803645. [PMID: 32812835 PMCID: PMC7531570 DOI: 10.1080/19420862.2020.1803645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The terminal sugars of Fc glycans can influence the Fc-dependent biological activities of monoclonal antibody therapeutics. Afucosylated N-glycans have been shown to significantly alter binding to FcγRIIIa and affect antibody-dependent cell-mediated cytotoxicity (ADCC). Therefore, in order to maintain and ensure safety and efficacy for antibodies whose predominant mechanism of action (MOA) is ADCC, afucosylation is routinely monitored and controlled within appropriate limits. However, it is unclear how the composition and levels of afucosylated N-glycans can modulate the biological activities for a recombinant antibody whose target is not a cell surface receptor, as is the case with ADCC. The impact of different types and varying levels of enriched afucosylated N-glycan species on the in vitro bioactivities is assessed for an antibody whose target is aggregated amyloid beta (Aβ). While either the presence of complex biantennary or high mannose afucosylated glycoforms significantly increased FcγRIIIa binding activity compared to fucosylated glycoforms, they did not similarly increase aggregated Aβ uptake activity mediated by different effector cells. These experiments suggest that afucosylated N-glycans are not critical for the in vitro phagocytic activity of a recombinant antibody whose target is aggregated Aβ and uses Fc effector function as part of its MOA.
Collapse
Affiliation(s)
| | - Carl Co
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Sei Kameoka
- Research and Development, Biogen , Cambridge, MA, USA
| | - An Zhang
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - John Coughlin
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Tom Cameron
- Research and Development, Biogen , Cambridge, MA, USA
| | - Eric Chiao
- Research and Development, Biogen , Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Natural Killer Cells in Post-Transplant Lymphoproliferative Disorders. Cancers (Basel) 2021; 13:cancers13081836. [PMID: 33921413 PMCID: PMC8068932 DOI: 10.3390/cancers13081836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications arising after solid organ or hematopoietic stem cell transplantations. Although the majority of these lymphoproliferations are of B cell origin, and are frequently associated with primary Epstein-Barr virus (EBV) infection or reactivation in the post-transplant period, rare cases of T cell and natural killer (NK) cell-originated PTLDs have also been described. A general assumption is that PTLDs result from the impairment of anti-viral and anti-tumoral immunosurveillance due to the long-term use of immunosuppressants in transplant recipients. T cell impairment is known to play a critical role in the immune-pathogenesis of post-transplant EBV-linked complications, while the role of NK cells has been less investigated, and is probably different between EBV-positive and EBV-negative PTLDs. As a part of the innate immune response, NK cells are critical for protecting hosts during the early response to virus-induced tumors. The complexity of their function is modulated by a myriad of activating and inhibitory receptors expressed on cell surfaces. This review outlines our current understanding of NK cells in the pathogenesis of PTLD, and discusses their potential implications for current PTLD therapies and novel NK cell-based therapies for the containment of these disorders.
Collapse
|
16
|
Tanaka J. Recent advances in cellular therapy for malignant lymphoma. Cytotherapy 2021; 23:662-671. [PMID: 33558145 DOI: 10.1016/j.jcyt.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Cellular therapies for malignant lymphoma include autologous or allogeneic hematopoietic stem cell transplantation (HSCT) and adaptive cellular therapy using EBV-specific T cells, cytokine-induced killer (CIK) cells, NKT cells, NK cells, chimeric antigen receptor T (CAR-T) cells and chimeric antigen receptor NK (CAR-NK) cells. In this review we discusses recent advances of these cellular therapies and consider ways to optimize these therapies. Not only a single strategy using one of these cellular therapies, but also multi-disciplinary treatment combines with antibodies, such as an anti-tumor antibody and an immune checkpoint antibody, may be more effective for relapsed and refractory lymphoma.
Collapse
Affiliation(s)
- Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
17
|
Felberg A, Taszner M, Urban A, Majeranowski A, Jaskuła K, Jurkiewicz A, Stasiłojć G, Blom AM, Zaucha JM, Okrój M. Monitoring of the Complement System Status in Patients With B-Cell Malignancies Treated With Rituximab. Front Immunol 2020; 11:584509. [PMID: 33329558 PMCID: PMC7710700 DOI: 10.3389/fimmu.2020.584509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a pioneering anti-CD20 monoclonal antibody that became the first-line drug used in immunotherapy of B-cell malignancies over the last twenty years. Rituximab activates the complement system in vitro, but there is an ongoing debate on the exact role of this effector mechanism in therapeutic effect. Results of both in vitro and in vivo studies are model-dependent and preclude clear clinical conclusions. Additional confounding factors like complement inhibition by tumor cells, loss of target antigen and complement depletion due to excessively applied immunotherapeutics, intrapersonal variability in the concentration of main complement components and differences in tumor burden all suggest that a personalized approach is the best strategy for optimization of rituximab dosage and therapeutic schedule. Herein we critically review the existing knowledge in support of such concept and present original data on markers of complement activation, complement consumption, and rituximab accumulation in plasma of patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphomas (NHL). The increase of markers such as C4d and terminal complement complex (TCC) suggest the strongest complement activation after the first administration of rituximab, but not indicative of clinical outcome in patients receiving rituximab in combination with chemotherapy. Both ELISA and complement-dependent cytotoxicity (CDC) functional assay showed that a substantial number of patients accumulate rituximab to the extent that consecutive infusions do not improve the cytotoxic capacity of their sera. Our data suggest that individual assessment of CDC activity and rituximab concentration in plasma may support clinicians’ decisions on further drug infusions, or instead prescribing a therapy with anti-CD20 antibodies like obinutuzumab that more efficiently activate effector mechanisms other than complement.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Taszner
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Urban
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alan Majeranowski
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kinga Jaskuła
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Jurkiewicz
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Proteomic approaches to investigate gammaherpesvirus biology and associated tumorigenesis. Adv Virus Res 2020; 109:201-254. [PMID: 33934828 DOI: 10.1016/bs.aivir.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.
Collapse
|
19
|
Chu Y, Nayyar G, Kham Su N, Rosenblum JM, Soon-Shiong P, Lee J, Safrit JT, Barth M, Lee D, Cairo MS. Novel cytokine-antibody fusion protein, N-820, to enhance the functions of ex vivo expanded natural killer cells against Burkitt lymphoma. J Immunother Cancer 2020; 8:jitc-2020-001238. [PMID: 33109629 PMCID: PMC7592258 DOI: 10.1136/jitc-2020-001238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of patients with relapsed or progressive B cell (CD20+) non-Hodgkin's lymphoma (B-NHL), including Burkitt lymphoma (BL), is dismal due to chemoradiotherapy resistance. Novel therapeutic strategies are urgently needed. N-820 is a fusion protein of N-803 (formerly known as ALT-803) to four single-chains of rituximab. This agent has tri-specific binding activity to CD20 and enhanced antibody-dependent cell-mediated cytotoxicity. METHODS We investigated the anti-tumor combinatorial effects of N-820 with ex vivo expanded peripheral blood natural killer (exPBNK) cells against rituximab-sensitive and rituximab-resistant CD20+ BL in vitro using cytoxicity assays and in vivo using human BL xenografted NOD/SCID/IL2rγnull (NSG) mice. We also investigated the cytokines/chemokines/growth factors released using ELISA and multiplex assay. Gene expression changes were examined using real-time PCR arrays. RESULTS N-820 significantly enhanced the expression of NK activating receptors (p<0.001) and the proliferation of exPBNK cells with enhanced Ki67 expression and Stat5 phosphorylation (p<0.001). N-820 significantly enhanced the secretion of cytokines, chemokines, and growth factors including GM-CSF, RANTES, MIP-1B (p<0.001) from exPBNK cells as compared with the combination of rituximab+N-803. Importantly, N-820 significantly enhanced in vitro cytotoxicity (p<0.001) of exPBNK with enhanced granzyme B and IFN-γ release (p<0.001) against BL. Gene expression profiles in exPBNK stimulated by N-820+Raji-2R showed enhanced transcription of CXCL9, CXCL1, CSF2, CSF3, GZMB, and IFNG. Moreover, N-820 combined with exPBNK significantly inhibited rituximab-resistant BL growth (p<0.05) and extended the survival (p<0.05) of BL xenografted NSG mice. CONCLUSIONS Our results provide the rationale for the development of a clinical trial of N-820 alone or in combination with endogenous or ex vivo expanded NK cells in patients with CD20+ B-NHL failing prior rituximab containing chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Nang Kham Su
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - John Lee
- ImmunityBio, Inc, Culver City, California, USA
| | | | - Matthew Barth
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Dean Lee
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
20
|
Chu Y, Awasthi A, Lee S, Edani D, Yin C, Hochberg J, Shah T, Chung TH, Ayello J, van de Ven C, Klein C, Lee D, Cairo MS. Obinutuzumab (GA101) vs. rituximab significantly enhances cell death, antibody-dependent cytotoxicity and improves overall survival against CD20+ primary mediastinal B-cell lymphoma (PMBL) in a xenograft NOD-scid IL2Rgnull (NSG) mouse model: a potential targeted agent in the treatment of PMBL. Oncotarget 2020; 11:3035-3047. [PMID: 32850008 PMCID: PMC7429176 DOI: 10.18632/oncotarget.27691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL), a distinct mature B-cell lymphoma, expresses CD20 and has recently been successfully treated with the combination of a type I anti-CD20 monoclonal antibody, rituximab, with multiple combination chemotherapy regimens. Obinutuzumab is a glycoengineered type II anti-CD20 monoclonal antibody (mAb), recognizing a unique CD20 extracellular membrane epitope with enhanced antibody dependent cellular cytotoxicity (ADCC) vs rituximab. We hypothesize that obinutuzumab vs rituximab will significantly enhance in-vitro and in-vivo cytotoxicity against PMBL. PMBL cells were treated with equal dose of obinutuzumab and rituximab for 24 hours (1–100 μg/ml). ADCC were performed with ex-vivo expanded natural killer cells at 10:1 E: T ratio. Mice were xenografted with intravenous injections of luciferase expressing Karpas1106P cells and treated every 7 days for 8 weeks. Tumor burden was monitored by IVIS spectrum system. Compared with rituximab, obinutuzumab significantly inhibited PMBL cell proliferation (p = 0.01), promoted apoptosis (p = 0.05) and enhanced ADCC (p = 0.0002) against PMBL. Similarly, in PMBL xenografted NOD scid gamma mice, obinutuzumab significantly enhanced survival than rituximab when treated with equal doses (p = 0.05). Taken together our results suggest that obinutuzumab significantly enhanced natural killer cytotoxicity, reduced PMBL proliferation and prolonged the overall survival in humanized PMBL xenografted NOD scid gamma mice.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Co-first authors
| | - Aradhana Awasthi
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Co-first authors
| | - Sanghoon Lee
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Dina Edani
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jessica Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Tishi Shah
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Dean Lee
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
21
|
Torka P, Barth M, Ferdman R, Hernandez-Ilizaliturri FJ. Mechanisms of Resistance to Monoclonal Antibodies (mAbs) in Lymphoid Malignancies. Curr Hematol Malig Rep 2020; 14:426-438. [PMID: 31559580 DOI: 10.1007/s11899-019-00542-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Passive immunotherapy with therapeutic monoclonal antibodies (mAbs) has revolutionized the treatment of cancer, especially hematological malignancies over the last 20 years. While use of mAbs has improved outcomes, development of resistance is inevitable in most cases, hindering the long-term survival of cancer patients. This review focuses on the available data on mechanisms of resistance to rituximab and includes some additional information for other mAbs currently in use in hematological malignancies. RECENT FINDINGS Mechanisms of resistance have been identified that target all described mechanisms of mAb activity including altered antigen expression or binding, impaired complement-mediated cytotoxicity (CMC) or antibody-dependent cellular cytotoxicity (ADCC), altered intracellular signaling effects, and inhibition of direct induction of cell death. Numerous approaches to circumvent identified mechanisms of resistance continue to be investigated, but a thorough understanding of which resistance mechanisms are most clinically relevant is still elusive. In recent years, a deeper understanding of the tumor microenvironment and targeting the apoptotic pathway has led to promising breakthroughs. Resistance may be driven by unique patient-, disease-, and antibody-related factors. Understanding the mechanisms of resistance to mAbs will guide the development of strategies to overcome resistance and re-sensitize cancer cells to these biological agents.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Apoptosis
- Complement System Proteins/immunology
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/etiology
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Lymphoma/drug therapy
- Lymphoma/etiology
- Lymphoma/metabolism
- Lymphoma/pathology
- Polymorphism, Genetic
- Receptors, IgG/metabolism
- Risk Factors
- Treatment Outcome
- Tumor Microenvironment
Collapse
Affiliation(s)
- Pallawi Torka
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mathew Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Robert Ferdman
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Francisco J Hernandez-Ilizaliturri
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
22
|
Baleydier F, Bernard F, Ansari M. The Possibilities of Immunotherapy for Children with Primary Immunodeficiencies Associated with Cancers. Biomolecules 2020; 10:biom10081112. [PMID: 32731356 PMCID: PMC7464796 DOI: 10.3390/biom10081112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Many primary immunodeficiencies (PIDs) are recognised as being associated with malignancies, particularly lymphoid malignancies, which represent the highest proportion of cancers occurring in conjunction with this underlying condition. When patients present with genetic errors of immunity, clinicians must often reflect on whether to manage antitumoral treatment conventionally or to take a more personalised approach, considering possible existing comorbidities and the underlying status of immunodeficiency. Recent advances in antitumoral immunotherapies, such as monoclonal antibodies, antigen-specific adoptive cell therapies or compounds with targeted effects, potentially offer significant opportunities for optimising treatment for those patients, especially with lymphoid malignancies. In cases involving PIDs, variable oncogenic mechanisms exist, and opportunities for antitumoral immunotherapies can be considered accordingly. In cases involving a DNA repair defect or genetic instability, monoclonal antibodies can be proposed instead of chemotherapy to avoid severe toxicity. Malignancies secondary to uncontrolled virus-driven proliferation or the loss of antitumoral immunosurveillance may benefit from antivirus cell therapies or allogeneic stem cell transplantation in order to restore the immune antitumoral caretaker function. A subset of PIDs is caused by gene defects affecting targetable signalling pathways directly involved in the oncogenic process, such as the constitutive activation of phosphoinositol 3-kinase/protein kinase B (PI3K/AKT) in activated phosphoinositide 3-kinase delta syndrome (APDS), which can be settled with PI3K/AKT inhibitors. Therefore, immunotherapy provides clinicians with interesting antitumoral therapeutic weapons to treat malignancies when there is an underlying PID.
Collapse
Affiliation(s)
- Frederic Baleydier
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-79-55-34-221; Fax: +41-22-37-24-720
| | - Fanette Bernard
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| | - Marc Ansari
- Department for Women, Children and Adolescents, Paediatric Haemato-Oncology unit, Geneva University Hospital, CH-1211 Geneva, Switzerland; (F.B.); (M.A.)
- CANSEARCH research laboratory, Medical Faculty, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
23
|
Klomjit N, Fervenza FC, Zand L. Successful Treatment of Patients With Refractory PLA 2R-Associated Membranous Nephropathy With Obinutuzumab: A Report of 3 Cases. Am J Kidney Dis 2020; 76:883-888. [PMID: 32311405 DOI: 10.1053/j.ajkd.2020.02.444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Rituximab, a type I anti-CD20 antibody, has been shown to be an effective therapy in treatment of patients with MN associated with M-type phospholipase A2 receptor (PLA2R) antibodies. Despite its effectiveness, up to 40% of patients may fail to respond to rituximab, which may be related to higher PLA2R antibody titers. Obinutuzumab, a type II anti-CD20 depleter, has been shown to produce a more profound CD20 depletion and be more efficacious in treating certain hematologic malignancies compared with rituximab. We report 3 patients with PLA2R-associated MN for whom rituximab failed to induce immunologic or clinical remisison, but who were successfully treated with obinutuzumab. Obinutuzumab resulted in complete immunologic remission in all 3 cases and was followed by partial remission in 2 of the cases. Obinutuzumab appears to be a promising treatment strategy for PLA2R-associated MN that fails to respond to rituximab.
Collapse
Affiliation(s)
- Nattawat Klomjit
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| |
Collapse
|
24
|
Moleti ML, Testi AM, Foà R. Treatment of relapsed/refractory paediatric aggressive B-cell non-Hodgkin lymphoma. Br J Haematol 2020; 189:826-843. [PMID: 32141616 DOI: 10.1111/bjh.16461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Aggressive B-cell non-Hodgkin lymphoma (B-NHL) accounts for ≈60% of NHL in children/adolescents. In newly diagnosed Burkitt lymphoma and diffuse large B-cell lymphoma, short intensive multiagent chemotherapy is associated with a five-year event-free survival of around 90%. Very few children/adolescents with aggressive B-NHL show a relapsed/refractory (r/r) disease. The outcome is poor, with cure rates <30%, and there is no standard of care. Rituximab-containing salvage regimens may provide a complete/partial response in 60-70% of cases. However, long-term survival is <10% for non-transplanted patients. Autologous or allogeneic haematopoietic stem cell transplant is, nowadays, the best option for responding patients, with survival rates around 50%. The benefit of autologous versus allogeneic HSCT is not clear. Numerous novel therapies for r/r B-NHL are currently being tested in adults, including next-generation monoclonal antibodies, novel cellular therapy strategies and therapies directed against new targets. Some are under investigation also in children/adolescents, with promising preliminary results.
Collapse
Affiliation(s)
- Maria L Moleti
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Anna M Testi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| |
Collapse
|
25
|
Deak D, Pop C, Zimta AA, Jurj A, Ghiaur A, Pasca S, Teodorescu P, Dascalescu A, Antohe I, Ionescu B, Constantinescu C, Onaciu A, Munteanu R, Berindan-Neagoe I, Petrushev B, Turcas C, Iluta S, Selicean C, Zdrenghea M, Tanase A, Danaila C, Colita A, Colita A, Dima D, Coriu D, Einsele H, Tomuleasa C. Let's Talk About BiTEs and Other Drugs in the Real-Life Setting for B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:2856. [PMID: 31921126 PMCID: PMC6934055 DOI: 10.3389/fimmu.2019.02856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Therapy for acute lymphoblastic leukemia (ALL) are currently initially efficient, but even if a high percentage of patients have an initial complete remission (CR), most of them relapse. Recent data shows that immunotherapy with either bispecific T-cell engagers (BiTEs) of chimeric antigen receptor (CAR) T cells can eliminate residual chemotherapy-resistant B-ALL cells. Objective: The objective of the manuscript is to present improvements in the clinical outcome for chemotherapy-resistant ALL in the real-life setting, by describing Romania's experience with bispecific antibodies for B-cell ALL. Methods: We present the role of novel therapies for relapsed B-cell ALL, including the drugs under investigation in phase I-III clinical trials, as a potential bridge to transplant. Blinatumomab is presented in a critical review, presenting both the advantages of this drug, as well as its limitations. Results: Bispecific antibodies are discussed, describing the clinical trials that resulted in its approval by the FDA and EMA. The real-life setting for relapsed B-cell ALL is described and we present the patients treated with blinatumomab in Romania. Conclusion: In the current manuscript, we present blinatumomab as a therapeutic alternative in the bridge-to-transplant setting for refractory or relapsed ALL, to gain a better understanding of the available therapies and evidence-based data for these patients in 2019.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Ghiaur
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Angela Dascalescu
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Ion Antohe
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Bogdan Ionescu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Danaila
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Hematology, Coltea Hospital, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Coriu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wurzburg, Würzburg, Germany
| | - Ciprian Tomuleasa
- Department of Hematology/Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Schmied BJ, Lutz MS, Riegg F, Zekri L, Heitmann JS, Bühring HJ, Jung G, Salih HR. Induction of NK Cell Reactivity against B-Cell Acute Lymphoblastic Leukemia by an Fc-Optimized FLT3 Antibody. Cancers (Basel) 2019; 11:cancers11121966. [PMID: 31817795 PMCID: PMC6966676 DOI: 10.3390/cancers11121966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism by which antitumor antibodies mediate therapeutic efficacy. At present, we evaluate an Fc-optimized (amino acid substitutions S239D/I332E) FLT3 antibody termed 4G8-SDIEM (FLYSYN) in patients with acute myeloid leukemia (NCT02789254). Here we studied the possibility to induce NK cell ADCC against B-cell acute lymphoblastic leukemia (B-ALL) by Fc-optimized FLT3 antibody treatment. Flow cytometric analysis confirmed that FLT3 is widely expressed on B-ALL cell lines and leukemic cells of B-ALL patients. FLT3 expression did not correlate with that of CD20, which is targeted by Rituximab, a therapeutic monoclonal antibody (mAb) employed in B-ALL treatment regimens. Our FLT3 mAb with enhanced affinity to the Fc receptor CD16a termed 4G8-SDIE potently induced NK cell reactivity against FLT3-transfectants, the B-ALL cell line SEM and primary leukemic cells of adult B-ALL patients in a target-antigen dependent manner as revealed by analyses of NK cell activation and degranulation. This was mirrored by potent 4G8-SDIE mediated NK cell ADCC in experiments with FLT3-transfectants, the cell line SEM and primary cells as target cells. Taken together, the findings presented in this study provide evidence that 4G8-SDIE may be a promising agent for the treatment of B-ALL, particularly in CD20-negative cases.
Collapse
Affiliation(s)
- Bastian J. Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Fabian Riegg
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Department for Immunology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
| | - Hans-Jörg Bühring
- Department of Hematology and Oncology, Eberhard Karls University, 72076 Tübingen, Germany;
| | - Gundram Jung
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Department for Immunology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (B.J.S.); (M.S.L.); (F.R.); (L.Z.); (J.S.H.)
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-7071/29-83275
| |
Collapse
|
27
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Rafei H, Kantarjian HM, Jabbour EJ. Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Br J Haematol 2019; 188:207-223. [PMID: 31566728 DOI: 10.1111/bjh.16207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The past decade has witnessed tremendous progress in the treatment of acute lymphoblastic leukaemia (ALL), primarily due to the development of targeted therapies, including tyrosine kinase inhibitors targeting BCR-ABL1 tyrosine kinase, monoclonal antibodies targeting cell surface antigens (CD19, CD20 and CD22), bispecific antibodies and chimeric antigen receptor T- cell therapy. A number of new therapies have been approved by the US Food and Drug Administration in the past 5 years, including blinatumomab in 2014, inotuzumab ozagamicin in 2017 and tisagenlecleucel in 2017 for relapsed/refractory ALL. This has led to tremendous improvement in long-term survival, of more than 50% in patients with precursor B-ALL [50-70% in patients with Philadelphia chromosome (Ph)-positive ALL)], 50-60% in T-ALL and 80% in mature B-ALL. Research is ongoing to optimize the benefit of targeted therapeutics with the goal of decreasing the use of cytotoxic therapies.
Collapse
Affiliation(s)
- Hind Rafei
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
NK Cells in the Treatment of Hematological Malignancies. J Clin Med 2019; 8:jcm8101557. [PMID: 31569769 PMCID: PMC6832953 DOI: 10.3390/jcm8101557] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells have the innate ability to kill cancer cells, however, tumor cells may acquire the capability of evading the immune response, thereby leading to malignancies. Restoring or potentiation of this natural antitumor activity of NK cells has become a relevant therapeutic approach in cancer and, particularly, in hematological cancers. The use of tumor-specific antibodies that promote antibody-dependent cell-mediated cytotoxicity (ADCC) through the ligation of CD16 receptor on NK cells has become standard for many hematologic malignancies. Hematopoietic stem cell transplantation is another key therapeutic strategy that harnesses the alloreactivity of NK cells against cancer cells. This strategy may be refined by adoptive transfer of NK cells that may be previously expanded, activated, or redirected (chimeric antigen receptor (CAR)-NK cells) against cancer cells. The antitumor activity of NK cells can also be boosted by cytokines or immunostimulatory drugs such as lenalidomide or pomalidomide. Finally, targeting immunosubversive mechanisms developed by hematological cancers and, in particular, using antibodies that block NK cell inhibitory receptors and checkpoint proteins are novel promising therapeutic approaches in these malignant diseases.
Collapse
|
30
|
Chu Y, Gardenswartz A, Termuhlen AM, Cairo MS. Advances in cellular and humoral immunotherapy - implications for the treatment of poor risk childhood, adolescent, and young adult B-cell non-Hodgkin lymphoma. Br J Haematol 2019; 185:1055-1070. [PMID: 30613939 PMCID: PMC6555680 DOI: 10.1111/bjh.15753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with relapsed, refractory or advanced stage B non-Hodgkin lymphoma (NHL) continue to have a dismal prognosis. This review summarises current and novel cellular and immunotherapy for these high-risk populations, including haematopoietic stem cell transplant, bispecific antibodies, viral-derived cytotoxic T cells, chimeric antigen receptor (CAR) T cells, and natural killer (NK) cell therapy, as discussed at the 6th International Symposium on Childhood, Adolescent and Young Adult Non-Hodgkin Lymphoma on September 26th-29th 2018 in Rotterdam, the Netherlands, and explores the future of NK/CAR NK therapies.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Amanda M. Termuhlen
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pathology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
31
|
Cairo MS. Rituximab in the treatment of childhood mature B-cell lymphoma: "Where do we go from here". Br J Haematol 2019; 185:1017-1020. [PMID: 31115041 DOI: 10.1111/bjh.15940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitchell S Cairo
- Pediatric Hematology, Oncology & Stem Cell Transplantation, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
32
|
Rafei H, Kantarjian HM, Jabbour EJ. Recent advances in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma 2019; 60:2606-2621. [DOI: 10.1080/10428194.2019.1605071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hind Rafei
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J. Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Barth MJ, Minard-Colin V. Novel targeted therapeutic agents for the treatment of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2019; 185:1111-1124. [PMID: 30701541 DOI: 10.1111/bjh.15783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
Abstract
Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of malignancies. Most NHLs in children, adolescent and young adult patients are aggressive lymphomas that are generally treated with multi-agent chemotherapy or immunochemotherapy regimens. While overall survival is high, the treatment can lead to a high rate of acute and long-term toxicity. However, in the rarer instance of relapsed or refractory disease, outcomes are dismal. Novel therapeutic approaches to the treatment of both T-cell and B-cell NHLs are critical to improve outcomes while also minimising the associated toxicity of current treatment regimes. Potential therapeutic approaches in development include humoral and cellular immunotherapies, small molecule inhibitors of relevant signalling pathways and epigenetic modifying agents. In this review, we will highlight the current state of development of agents of interest with a focus on agents relevant to childhood, adolescent and young adult NHL.
Collapse
Affiliation(s)
- Matthew J Barth
- Department of Pediatric Hematology/Oncology, University at Buffalo, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | |
Collapse
|
34
|
Egan G, Goldman S, Alexander S. Mature B-NHL in children, adolescents and young adults: current therapeutic approach and emerging treatment strategies. Br J Haematol 2019; 185:1071-1085. [PMID: 30613948 DOI: 10.1111/bjh.15734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mature B cell lymphomas account for approximately 60% of all cases of non-Hodgkin lymphoma (NHL) in children and adolescents and includes Burkitt lymphoma (BL), diffuse large B cell lymphoma (DLBCL) and other less common histologies. The outcome for patients treated with modern regimens in resource-intensive settings is excellent. Improvements in care have been accomplished through enhanced supportive therapy, including tumour lysis management and incremental refinement of chemotherapy backbones via cooperative group clinical trials in which patients receive risk group-specific intensive chemotherapy. More recent trials have established the safety and efficacy of immunotherapy. Ongoing work is required to address the substantial burden of acute therapy-related toxicity, as well as the identification of effective therapies for those patients with relapsed and refractory disease, for whom outcomes remain very poor. In this review we will summarize the results from recent therapeutic clinical trials, describe the evidence to support the inclusion of rituximab and review the rationale for the investigation of several new categories of novel agents for mature B cell lymphomas in children and adolescents.
Collapse
Affiliation(s)
- Grace Egan
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stan Goldman
- Department of Pediatrics, Medical City Children's Hospital and Texas Oncology, Dallas, TX, USA
| | - Sarah Alexander
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Treatment options for patients with acute lymphoblastic leukemia (ALL) beyond standard chemotherapy have grown significantly in recent years. In this review, we highlight new targeted therapies in ALL, with an emphasis on immunotherapy. RECENT FINDINGS Major advances include antibody-based therapies, such as naked monoclonal antibodies, antibody-drug conjugates and bispecific T cell engaging (BiTE) antibodies, as well as adoptive cellular therapies such as chimeric antigen receptor (CAR) T cells. Apart from the above immunotherapeutic approaches, other targeted therapies are being employed in Philadelphia chromosome-positive (Ph+) ALL, Philadelphia-like (Ph-like) ALL, and T cell ALL. These new treatment strategies are changing the treatment landscape of ALL and challenging the current standard of care. Clinical trials will hopefully help determine how to best incorporate these novel therapies into existing treatment algorithms.
Collapse
Affiliation(s)
- Kathleen W Phelan
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Anjali S Advani
- Taussig Cancer Center, Cleveland Clinic, 10201 Carnegie Avenue, Desk CA60, Cleveland, OH, 44195, USA.
| |
Collapse
|
36
|
Ge X, Chen J, Li L, Ding P, Wang Q, Zhang W, Li L, Lv X, Zhou D, Jiang Z, Zeng H, Xu Y, Hou Y, Hu W. Midostaurin potentiates rituximab antitumor activity in Burkitt's lymphoma by inducing apoptosis. Cell Death Dis 2018; 10:8. [PMID: 30584254 PMCID: PMC6315025 DOI: 10.1038/s41419-018-1259-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
An intensive short-term chemotherapy regimen has substantially prolonged the overall survival of Burkitt’s lymphoma (BL) patients, which has been further improved by addition of rituximab. However, the inevitable development of resistance to rituximab and the toxicity of chemotherapy remain obstacles. We first prepared two BL cell lines resistant to rituximab-mediated CDC. Using a phosphorylation antibody microarray, we revealed that PI3K/AKT pathway contained the most phosphorylated proteins/hits, while apoptosis pathway that may be regulated by PKC displayed the greatest fold enrichment in the resistant cells. The PI3K/AKT inhibitor IPI-145 failed to reverse the resistance. In contrast, the pan-PKC inhibitor midostaurin exhibited potent antitumor activity in both original and resistant cells, alone or in combination with rituximab. Notably, midostaurin promoted apoptosis by reducing the phosphorylation of PKC and consequently of downstream Bad, Bcl-2 and NF-κB. Therefore, midostaurin improved rituximab activity by supplementing pro-apoptotic effects. In vivo, midostaurin alone powerfully prolonged the survival of mice bearing the resistant BL cells compared to rituximab alone treatments. Addition of midostaurin to rituximab led to dramatically improved survival compared to rituximab but not midostaurin monotherapy. Our findings call for further evaluation of midostaurin alone or in combination with rituximab in treating resistant BL in particular.
Collapse
Affiliation(s)
- Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhengzeng Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Abstract
Lymphomas in adolescents and young adults represent approximately one quarter of all cancers in this age group. Historically, adolescent and young adult cancer patients represent a unique population with diverging issues surrounding psychosocial hardships/barriers, economics, and lack of standardization of therapeutic approaches.Furthermore, the biologic differences within the adolescent and young adult population seen in various lymphoma subtypes likely play a role in overall outcomes for this group. Without an organized approach to clinical and translational research for adolescent and young adult patients within specialized treatment centers, this population may continue to experience inferior results. Here we look at the current perspectives of adolescent and young adult lymphomas with respect to disease biology, clinical characteristics, treatment, and prognosis of this unique lymphoma population.
Collapse
|
38
|
Hochberg J, Flower A, Brugieres L, Cairo MS. NHL in adolescents and young adults: A unique population. Pediatr Blood Cancer 2018; 65:e27073. [PMID: 29741220 DOI: 10.1002/pbc.27073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/07/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous group of lymphoid malignancies with high incidence in adolescents and young adults (AYAs). The most common diseases include diffuse large B-cell lymphoma, anaplastic large cell lymphoma, Burkitt lymphoma, lymphoblastic lymphoma, and primary mediastinal large B-cell lymphoma. In comparison to younger children and adults, AYAs (15-39 years) with NHL present a specific set of challenges including variations in tumor biology, inconsistent treatment, pharmacodynamics, and psychosocial barriers. While survival of AYAs with NHL has improved, cure rates remain suboptimal. Incorporation of novel agents into pediatric-inspired treatment regimens specifically designed for NHL in AYAs has led to improved outcomes. Consideration of AYAs as a distinct population in the diagnosis and treatment of NHL is encouraged.
Collapse
Affiliation(s)
- Jessica Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Allyson Flower
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Microbiology & Immunology, New York Medical College, Valhalla, New York
| | | | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Microbiology & Immunology, New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York.,Department of Pathology, New York Medical College, Valhalla, New York.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
39
|
Cairo M, Auperin A, Perkins SL, Pinkerton R, Harrison L, Goldman S, Patte C. Overall survival of children and adolescents with mature B cell non-Hodgkin lymphoma who had refractory or relapsed disease during or after treatment with FAB/LMB 96: A report from the FAB/LMB 96 study group. Br J Haematol 2018; 182:859-869. [PMID: 29984828 DOI: 10.1111/bjh.15491] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 02/04/2023]
Abstract
We determined the risk factors associated with poor survival in children and adolescents with de novo mature B cell non-Hodgkin lymphoma (B-NHL) who had refractory or relapsed disease during or after the French-American-British mature lymphoma B (FAB/LMB) 96 multi-agent chemotherapy. Among the 1 111 registered on study, 104 patients (9·4%) had refractory disease or disease relapse after first complete remission. Among these 104 patients, 28 (27%) patients had refractory disease and 76 (73%) had relapsed disease. The estimated 1- and 2-year overall survival (OS) (95% confidence interval) was 31·5% (23·3-41·0%) and 22·3% (15·3-31·4%), respectively. Prognostic analysis of OS using a Cox multivariate model showed that factors independently associated with OS included lactate dehydrogenase ≥2 upper normal limit [hazard ratio (HR) = 2·86 (1·57-5·2), P = 0·0006]; time to failure (>6 months) [HR = 0·59 (0·36-0·97), P = 0·038]; and failure in bone marrow [HR = 2·78 (1·65-4·68), P = 0·0001]. New therapeutic strategies are required to significantly reduce refractory disease and disease relapse in patients with newly diagnosed mature B-NHL and, more importantly, there is a critical need to develop novel retrieval approaches in patients with chemotherapy-resistant disease.
Collapse
Affiliation(s)
- Mitchell Cairo
- Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | | | | | | | - Lauren Harrison
- Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
40
|
Pierpont TM, Limper CB, Richards KL. Past, Present, and Future of Rituximab-The World's First Oncology Monoclonal Antibody Therapy. Front Oncol 2018; 8:163. [PMID: 29915719 PMCID: PMC5994406 DOI: 10.3389/fonc.2018.00163] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a chimeric mouse/human monoclonal antibody (mAb) therapy with binding specificity to CD20. It was the first therapeutic antibody approved for oncology patients and was the top-selling oncology drug for nearly a decade with sales reaching $8.58 billion in 2016. Since its initial approval in 1997, it has improved outcomes in all B-cell malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. Despite widespread use, most mechanistic data have been gathered from in vitro studies while the roles of the various response mechanisms in humans are still largely undetermined. Polymorphisms in Fc gamma receptor and complement protein genes have been implicated as potential predictors of differential response to rituximab, but have not yet shown sufficient influence to impact clinical decisions. Unlike most targeted therapies developed today, no known biomarkers to indicate target engagement/tumor response have been identified, aside from reduced tumor burden. The lack of companion biomarkers beyond CD20 itself has made it difficult to predict which patients will respond to any given anti-CD20 antibody. In the past decade, two new anti-CD20 antibodies have been approved: ofatumumab, which binds a distinct epitope of CD20, and obinutuzumab, a mAb derived from rituximab with modifications to the Fc portion and to its glycosylation. Both are fully humanized and have biological activity that is distinct from that of rituximab. In addition to these new anti-CD20 antibodies, another imminent change in targeted lymphoma treatment is the multitude of biosimilars that are becoming available as rituximab's patent expires. While the widespread use of rituximab itself will likely continue, its biosimilars will increase global access to the therapy. This review discusses current research into mechanisms and potential biomarkers of rituximab response, as well as its biosimilars and the newer CD20 binding mAb therapies. Increased ability to assess the effectiveness of rituximab in an individual patient, along with the availability of alternative anti-CD20 antibodies will likely lead to dramatic changes in how we use CD20 antibodies going forward.
Collapse
Affiliation(s)
- Timothy M. Pierpont
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Candice B. Limper
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Kristy L. Richards
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
41
|
Krupka C, Lichtenegger FS, Köhnke T, Bögeholz J, Bücklein V, Roiss M, Altmann T, Do TU, Dusek R, Wilson K, Bisht A, Terrett J, Aud D, Pombo-Villar E, Rohlff C, Hiddemann W, Subklewe M. Targeting CD157 in AML using a novel, Fc-engineered antibody construct. Oncotarget 2018; 8:35707-35717. [PMID: 28415689 PMCID: PMC5482610 DOI: 10.18632/oncotarget.16060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results.
Collapse
Affiliation(s)
- Christina Krupka
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Thomas Köhnke
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Jan Bögeholz
- Department of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Veit Bücklein
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Michael Roiss
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Torben Altmann
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - To Uyen Do
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | - Rachel Dusek
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | - Keith Wilson
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | - Arnima Bisht
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | | | - Dee Aud
- CRISPR Therapeutics, Cambridge, MA, USA
| | - Esteban Pombo-Villar
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | - Christian Rohlff
- Independent consultant Oxford BioTherapeutics Ltd, Abingdon, United Kingdom and San Jose, CA, USA
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum of The LMU Munich, Munich, Germany.,Clinical Cooperation Group Immunotherapy at The Helmholtz Institute Munich, Munich, Germany.,Laboratory of Translational Cancer Immunology, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
42
|
Rosenberg J, Huang J. CD8 + T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng 2018; 19:9-20. [PMID: 29623254 PMCID: PMC5880541 DOI: 10.1016/j.coche.2017.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity might be the future direction, along with precision targeting and effective delivery of tumor-specific, memory CD8+ T cells and NK cells.
Collapse
Affiliation(s)
- Jillian Rosenberg
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
- Institute for Molecular Engineering, The University of Chicago, IL 60637, USA
| |
Collapse
|
43
|
Nicolay JP, Wobser M. Cutaneous B-cell lymphomas - pathogenesis, diagnostic workup, and therapy. J Dtsch Dermatol Ges 2018; 14:1207-1224. [PMID: 27992127 DOI: 10.1111/ddg.13164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
Cutaneous B-cell lymphomas (CBCLs) comprise a group of mature lymphoproliferative B-cell disorders that primarily affect the skin. Characterized by great biological and clinical variability among its various subtypes, CBCLs fundamentally differ from primary nodal or systemic B-cell lymphomas. Given their uncomplicated course and excellent prognosis, lymphoma classifications rank primary cutaneous marginal zone lymphoma (PCMZL) and primary cutaneous follicle center lymphoma (PCFCL) as indolent CBCLs. By contrast, diffuse large B-cell lymphoma, leg type (DLBCL-LT) in particular, represent more aggressive lymphoma variants associated with a poorer prognosis. Therapeutic decisions and diagnostic procedures are based on the exact histological and immunohistochemical classification as well as the exclusion of systemic involvement and thus differentiation from nodal and systemic lymphomas. In this context, the diagnostic workup should also include molecular biology methods. Primary therapeutic options for indolent CBCL lesions include surgery and radiation therapy, as well as systemic treatment with rituximab (anti-CD20 antibody) in case of dissemination. More aggressive CBCLs usually require a combination of rituximab and polychemotherapy, primarily the CHOP regimen or modifications thereof. Given that the pathogenesis and biology of CBCLs has not been conclusively elucidated, and given the limited therapeutic armamentarium available, there is great need for comprehensive research, especially with respect to DLBCL-LT.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Dermatology, Venereology and Allergy, University Medical Center Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Marion Wobser
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Germany
| |
Collapse
|
44
|
Dippel E, Assaf C, Becker JC, von Bergwelt-Baildon M, Beyer M, Cozzio A, Eich HT, Follmann M, Grabbe S, Hillen U, Klapper W, Klemke CD, Lamos C, Loquai C, Meiß F, Mestel D, Nashan D, Nicolay JP, Oschlies I, Schlaak M, Stoll C, Vag T, Weichenthal M, Wobser M, Stadler R. S2k-Leitlinie - Kutane Lymphome Update 2016 - Teil 2: Therapie und Nachsorge (ICD10 C82 - C86). J Dtsch Dermatol Ges 2018; 16:112-123. [PMID: 29314698 DOI: 10.1111/ddg.13401_g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Chalid Assaf
- Klinik für Dermatologie und Venerologie, Helios Klinikum Krefeld
| | | | | | - Marc Beyer
- Klinik für Dermatologie, Venerologie und Allergologie, Charité, Universitätsmedizin Berlin
| | - Antonio Cozzio
- Klinik für Dermatologie, Venerologie und Allergologie, Kantonsspital St. Gallen
| | - Hans Theodor Eich
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Münster
| | | | | | - Uwe Hillen
- Klinik für Dermatologie, Universitätsklinikum Essen
| | - Wolfram Klapper
- Institut für Pathologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
| | - Claus-Detlev Klemke
- Hautklinik, Städtisches Klinikum Karlsruhe, Akademisches Lehrkrankenhaus der Universität Freiburg, Karlsruhe
| | | | | | - Frank Meiß
- Klinik für Dermatologie und Venerologie, Universitätsklinik Freiburg
| | | | | | - Jan P Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinik Mannheim
| | - Ilske Oschlies
- Institut für Pathologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
| | - Max Schlaak
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinik Köln
| | | | - Tibor Vag
- Nuklearmedizinische Klinik, Klinikum rechts der Isar, Technische Universität München
| | - Michael Weichenthal
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
| | - Marion Wobser
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg
| | - Rudolf Stadler
- Klinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Universitätsklinikum Minden, Universitätsklinikum der Ruhr-Universität Bochum
| |
Collapse
|
45
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
46
|
Dippel E, Assaf C, Becker JC, von Bergwelt-Baildon M, Beyer M, Cozzio A, Eich HT, Follmann M, Grabbe S, Hillen U, Klapper W, Klemke CD, Lamos C, Loquai C, Meiß F, Mestel D, Nashan D, Nicolay JP, Oschlies I, Schlaak M, Stoll C, Vag T, Weichenthal M, Wobser M, Stadler R. S2k Guidelines - Cutaneous Lymphomas Update 2016 - Part 2: Treatment and Follow-up (ICD10 C82 - C86). J Dtsch Dermatol Ges 2017; 16:112-122. [DOI: 10.1111/ddg.13401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Edgar Dippel
- Department of Dermatology; Ludwigshafen Medical Center; Ludwigshafen Germany
| | - Chalid Assaf
- Department of Dermatology and Venereology; Helios Medical Center; Krefeld Germany
| | - Jürgen C. Becker
- West German Tumor Center; University Medical Center; Essen Germany
| | | | - Marc Beyer
- Department of Dermatology, Venereology and Allergology; Charité University Medicine; Berlin Germany
| | - Antonio Cozzio
- Department of Dermatology, Venereology and Allergology; Canton Hospital; St. Gallen Switzerland
| | - Hans Theodor Eich
- Department of Radiation Oncology; University Medical Center; Münster Germany
| | | | - Stephan Grabbe
- Department of Dermatology; University Medicine; Mainz Germany
| | - Uwe Hillen
- Department of Dermatology; University Medical Center; Essen Germany
| | - Wolfram Klapper
- Institute of Pathology; Schleswig-Holstein University Medical Center; Kiel Germany
| | - Claus-Detlev Klemke
- Department of Dermatology, Karlsruhe Medical Center; Academic Teaching Hospital of the University of Freiburg; Karlsruhe Germany
| | - Cristina Lamos
- Department of Dermatology; Ludwigshafen Medical Center; Ludwigshafen Germany
| | - Carmen Loquai
- Department of Dermatology; University Medicine; Mainz Germany
| | - Frank Meiß
- Department of Dermatology and Venereology; University Medical Center; Freiburg Germany
| | - Dominik Mestel
- Pallas Kliniken AG; Center for Dermatology; Winterthur Switzerland
| | - Dorothee Nashan
- Department of Dermatology; Dortmund Medical Center; Dortmund Germany
| | - Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center; Mannheim Germany
| | - Ilske Oschlies
- Institute of Pathology; Schleswig-Holstein University Medical Center; Kiel Germany
| | - Max Schlaak
- Department of Dermatology and Venereology; University Medical Center; Cologne Germany
| | - Christoph Stoll
- Rehabilitation and Follow-up Treatment Center; Herzoghöhe Bayreuth Germany
| | - Tibor Vag
- Department of Nuclear Medicine; University Medical Center rechts der Isar; Technical University of Munich; Germany
| | - Michael Weichenthal
- Department of Dermatology, Venereology and Allergology; Schleswig-Holstein University Hospital; Campus in Kiel Germany
| | - Marion Wobser
- Department of Dermatology, Venereology and Allergology; University Medical Center; Würzburg Germany
| | - Rudolf Stadler
- Department of Dermatology, Venereology, Allergology and Phlebology, Johannes Wesling Medical Center, Minden, Germany (University Hospital of Ruhr University, Bochum, Germany)
| |
Collapse
|
47
|
Awasthi A, Rolland DCM, Ayello J, van de Ven C, Basrur V, Conlon K, Fermin D, Barth MJ, Klein C, Elenitoba-Johnson KSJ, Lim MS, Cairo MS. A comparative global phosphoproteomics analysis of obinutuzumab (GA101) versus rituximab (RTX) against RTX sensitive and resistant Burkitt lymphoma (BL) demonstrates differential phosphorylation of signaling pathway proteins after treatment. Oncotarget 2017; 8:113895-113909. [PMID: 29371955 PMCID: PMC5768372 DOI: 10.18632/oncotarget.23040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
We recently demonstrated that obinutuzumab (GA101), a novel glycoengineered type II CD20 Ab compared to rituximab (RTX) mediates significantly enhanced antibody-dependent cell cytotoxicity (ADCC) in vitro and increased overall survival in a Burkitt lymphoma (BL) xenograft non-obese diabetic severe combined immunodeficiency gamma (NSG) model. In this study we compared the phosphoproteomic changes by pathway analysis following obinutuzumab vs RTX against RTX-sensitive (Raji) and -resistant BL (Raji4RH). Phosphoproteomic analyses were performed by mass-spectrometry (MS)-based label-free quantitative phosphoproteomic profiling. We demonstrated that 418 proteins in Raji and 377 proteins in Raji 4RH, were differentially phosphorylated (>1.5-fold) after obinutuzumab vs. RTX. Proteins that were significantly differentially phosphorylated included the B cell antigen receptor (BCR) (PLCG2, BTK and GSK3B), Fc gamma phagocytosis (FCRG2B, MAPK1, PLCG2 and RAF1), and natural killer cell-mediated cytotoxicity (MAPK1, RAF1, PLCG2 and MAPK3) signaling pathways. Differential phosphorylation of BCR or cytotoxicity pathway proteins revealed significant up-regulation of BTK, PLCY2 and ERK1/RAF1 after obinutuzumab compared to RTX. Silencing of PLCG2 in the BCR and MAPK1 in the cytotoxicity pathway significantly increased BL proliferation and decreased BL cytotoxicity after obinutuzumab compared to RTX. These results in combination with our previous results demonstrating a significant improvement in in vitro BL cytotoxicity and in vivo BL survival by obinutuzumab compared to RTX may in part be due to differential effects on selected BL protein signaling pathways.
Collapse
Affiliation(s)
- Aradhana Awasthi
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Delphine C M Rolland
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J Barth
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
48
|
Sung AP, Tang JJJ, Guglielmo MJ, Redelman D, Smith-Gagen J, Bateman L, Hudig D. An improved method to quantify human NK cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) per IgG FcR-positive NK cell without purification of NK cells. J Immunol Methods 2017; 452:63-72. [PMID: 29113954 DOI: 10.1016/j.jim.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) lymphocyte ADCC supports anti-viral protection and monoclonal antibody (mAb) anti-tumor therapies. To predict in vivo ADCC therapeutic responses of different individuals, measurement of both ADCC cellular lytic capacity and their NK cellular receptor recognition of antibodies on 'target' cells are needed, using clinically available amounts of blood. Twenty ml of blood provides sufficient peripheral blood mononuclear cells (PBMCs) for the new assay for lytic capacity described here and for an antibody EC50 assay for Fc-receptor recognition. For the lytic capacity assay, we employed flow cytometry to quantify the CD16A IgG Fc-receptor positive NK effector cells from PBMCs to avoid loss of NKs during isolation. Targets were 51Cr-labeled Daudi B cells pretreated with excess obinutuzumab type 2 anti-CD20 mAb and washed; remaining free mAb was insufficient to convert B cells in the PBMCs into 'targets'. We calculated: the percentage Daudis killed at a 1:1 ratio of CD16A-positive NK cells to Daudis (CX1:1); lytic slopes; and ADCC50 lytic units. Among 27 donors, we detected wide ranges in CX1:1 (16-73% targets killed) and in lytic slopes. Slope variations prevented application of lytic units. We recommend CX1:1 to compare individuals' ADCC capacity. CX1:1 was similar for purified NK cells vs. PBMCs and independent of CD16A V & F genotypes and antibody EC50s. With high mAb bound onto targets and the high affinity of obinutuzumab Fc for CD16A, CX1:1 measurements discern ADCC lytic capacity rather than antibody recognition. This assay allows ADCC to be quantified without NK cell isolation and avoids distortion associated with lytic units.
Collapse
Affiliation(s)
- Alexander P Sung
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Jennifer J-J Tang
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Michael J Guglielmo
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Doug Redelman
- University of Nevada Reno School of Medicine, Department of Physiology and Cell Biology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Julie Smith-Gagen
- University of Nevada Reno School of Medicine, School of Community Health Sciences Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT 84102, United States
| | - Dorothy Hudig
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
49
|
Horvat TZ, Seddon AN, Ogunniyi A, King AC, Buie LW, Daley RJ. The ABCs of Immunotherapy for Adult Patients With B-Cell Acute Lymphoblastic Leukemia. Ann Pharmacother 2017; 52:268-276. [PMID: 29025266 DOI: 10.1177/1060028017736539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To review the pharmacology, efficacy, and safety of Food and Drug Administration approved and promising immunotherapy agents used in the treatment of acute lymphoblastic leukemia (ALL). DATA SOURCES A literature search was performed of PubMed and MEDLINE databases (1950 to July 2017) and of abstracts from the American Society of Hematology and the American Society of Clinical Oncology. Searches were performed utilizing the following key terms: rituximab, blinatumomab, inotuzumab, ofatumumab, obinutuzumab, Blincyto, Rituxan, Gazyva, Arzerra, CAR T-cell, and chimeric antigen receptor (CAR). STUDY SELECTION/DATA EXTRACTION Studies of pharmacology, clinical efficacy, and safety of rituximab, ofatumumab, obinutuzumab, inotuzumab, blinatumomab, and CAR T-cells in the treatment of adult patients with ALL were identified. DATA SYNTHESIS Conventional chemotherapy has been the mainstay in the treatment of ALL, producing cure rates of approximately 90% in pediatrics, but it remains suboptimal in adult patients. As such, more effective consolidative modalities and novel therapies for relapsed/refractory disease are needed for adult patients with ALL. In recent years, anti-CD20 antibodies, blinatumomab, inotuzumab, and CD19-targeted CAR T-cells have drastically changed the treatment landscape of B-cell ALL. CONCLUSION Outcomes of patients with relapsed disease are improving thanks to new therapies such as blinatumomab, inotuzumab, and CAR T-cells. Although the efficacy of these therapies is impressive, they are not without toxicity, both physical and financial. The optimal sequencing of these therapies still remains a question.
Collapse
Affiliation(s)
- Troy Z Horvat
- 1 Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda N Seddon
- 2 Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.,3 Rush University Medical Center, Chicago, IL, USA
| | | | - Amber C King
- 1 Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry W Buie
- 1 Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan J Daley
- 1 Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
50
|
Control of NK Cell Activation by Immune Checkpoint Molecules. Int J Mol Sci 2017; 18:ijms18102129. [PMID: 29023417 PMCID: PMC5666811 DOI: 10.3390/ijms18102129] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The development of cancer and chronic infections is facilitated by many subversion mechanisms, among which enhanced expression of immune checkpoints molecules, such as programmed death-1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), on exhausted T cells. Recently, immune checkpoint inhibitors have shown remarkable efficiency in the treatment of a number of cancers. However, expression of immune checkpoints on natural killer (NK) cells and its functional consequences on NK cell effector functions are much less explored. In this review, we focus on the current knowledge on expression of various immune checkpoints in NK cells, how it can alter NK cell-mediated cytotoxicity and cytokine production. Dissecting the role of these inhibitory mechanisms in NK cells is critical for the full understanding of the mode of action of immunotherapies using checkpoint inhibitors in the treatment of cancers and chronic infections.
Collapse
|