1
|
Bomken S, Enshaei A, Schwalbe EC, Mikulasova A, Dai Y, Zaka M, Fung KTM, Bashton M, Lim H, Jones L, Karataraki N, Winterman E, Ashby C, Attarbaschi A, Bertrand Y, Bradtke J, Buldini B, Burke GAA, Cazzaniga G, Gohring G, De Groot-Kruseman HA, Haferlach C, Nigro LL, Parihar M, Plesa A, Seaford E, Sonneveld E, Strehl S, Van der Velden VHJ, Rand V, Hunger SP, Harrison CJ, Bacon CM, Van Delft FW, Loh ML, Moppett J, Vormoor J, Walker BA, Moorman AV, Russell LJ. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 2023; 108:717-731. [PMID: 35484682 PMCID: PMC9973471 DOI: 10.3324/haematol.2021.280557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Collapse
Affiliation(s)
- Simon Bomken
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne.
| | - Amir Enshaei
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Edward C Schwalbe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Masood Zaka
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Kent T M Fung
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne
| | - Huezin Lim
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa Jones
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Nefeli Karataraki
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Emily Winterman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Cody Ashby
- Department of Biomedical Informatics / Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Yves Bertrand
- Department of Institute of Hematology Oncology Pediatric (IHOP), Hospices Civils de Lyon, Lyon
| | - Jutta Bradtke
- Institute of Pathology, Department Cytogenetics, University Hospital Giessen and Marburg
| | | | - G A Amos Burke
- Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza
| | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Hesta A De Groot-Kruseman
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | - Luca Lo Nigro
- Head of Cytogenetic-Cytofluorimetric-Molecular Biology Laboratory, Center of Pediatric Hematology Oncology, Azienda Policlinico "G. Rodolico - San Marco", Catania
| | - Mayur Parihar
- Department of Cytogenetics and Laboratory Haematology, Tata Medical Centre, Kolkata, India
| | - Adriana Plesa
- Hematology and Flow cytometry Laboratory, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon
| | - Emma Seaford
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna
| | | | - Vikki Rand
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine J Harrison
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Chris M Bacon
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Frederik W Van Delft
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - John Moppett
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | - Josef Vormoor
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa J Russell
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
2
|
Burkhardt B, Michgehl U, Rohde J, Erdmann T, Berning P, Reutter K, Rohde M, Borkhardt A, Burmeister T, Dave S, Tzankov A, Dugas M, Sandmann S, Fend F, Finger J, Mueller S, Gökbuget N, Haferlach T, Kern W, Hartmann W, Klapper W, Oschlies I, Richter J, Kontny U, Lutz M, Maecker-Kolhoff B, Ott G, Rosenwald A, Siebert R, von Stackelberg A, Strahm B, Woessmann W, Zimmermann M, Zapukhlyak M, Grau M, Lenz G. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age. Nat Commun 2022; 13:3881. [PMID: 35794096 PMCID: PMC9259584 DOI: 10.1038/s41467-022-31355-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
While survival has improved for Burkitt lymphoma patients, potential differences in outcome between pediatric and adult patients remain unclear. In both age groups, survival remains poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort, including 191 cases and 97 samples from adults. While TP53 and CCND3 mutation frequencies are not age related, samples from pediatric patients showed a higher frequency of mutations in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort confirms that TP53 mutations are significantly associated with higher incidence of relapse (25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for relapse incidence in pediatric BL which will be used in future clinical trials.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany.
| | - Ulf Michgehl
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Jonas Rohde
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin Reutter
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Centre Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Jasmin Finger
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Stephanie Mueller
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Goethe University, Frankfurt, Germany
| | | | | | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathias Lutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Britta Maecker-Kolhoff
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine Division of Pediatric Hematology and Oncology, Medical Center Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Chen MT, Pan F, Chen YC, Zhang W, Lv HJ, Wang Z, Hong HM, Fang XJ, Wang YW, Pan T, Zou LQ, Guo HQ, Xie K, Chen LM, Li XQ, Yao YY, Chen ZG, Weng HW, Li XD, Shen YY, Zhou H, Xue HW, Zhang HL, Huang H, Lin TY. A novel prognostic index for sporadic Burkitt lymphoma in adult patients: a real-word multicenter study. BMC Cancer 2022; 22:45. [PMID: 34996395 PMCID: PMC8740497 DOI: 10.1186/s12885-021-09144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Adult sporadic Burkitt lymphoma (BL) is a rare but highly aggressive subtype of lymphoma which lacks its own unique prognostic model. Systemic inflammatory biomarkers have been confirmed as prognostic markers in several types of malignancy. Our objective was to explore the predictive value of pretreatment inflammatory biomarkers and establish a novel, clinically applicable prognostic index for adult patients with sporadic BL. Methods We surveyed retrospectively 336 adult patients with newly diagnosed sporadic BL at 8 Chinese medical centers and divided into training cohort (n = 229) and validation cohort (n = 107). The pretreatment inflammatory biomarkers were calculated for optimal cut-off value. The association between serum biomarkers and overall survival (OS) was analyzed by Kaplan–Meier curves and Cox proportional models. The risk stratification was defined based on normal LDH level, Ann Arbor stage of I and completely resected abdominal lesion or single extra-abdominal mass < 10 cm. Results and conclusions Univariate and multivariate analyses revealed that platelets< 254 × 109/L, albumin< 40 g/L, lactate dehydrogenase≥334 U/L independently predicted unfavorable OS. We used these data as the basis for the prognostic index, in which patients were stratified into Group 1 (no or one risk factor), Group 2 (two risk factors), or Group 3 (three risk factors), which were associated with 5-year OS rates of 88.1, 72.4, and 45%, respectively. In the subgroup analysis for high-risk patients, our prognostic model results showed that high-risk patients with no more than one adverse factor presented a 5-year survival rate of 85.9%, but patients with three adverse factors had a 5-year survival rate of 43.0%. Harrell’s concordance index (C-index) of the risk group score was 0.768. Therefore, the new prognostic model could be used to develop risk-adapted treatment approaches for adult sporadic BL. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09144-1.
Collapse
Affiliation(s)
- Mei-Ting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Fei Pan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Yung-Chang Chen
- Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Wei Zhang
- Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hui-Juan Lv
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Huang-Ming Hong
- Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xiao-Jie Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Ya-Wen Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, P.R. China
| | - Tao Pan
- Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China
| | - Li-Qun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong-Qiang Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Xie
- Department of Oncology, Sichuan Provincial People's Hospital, Chengdu, P.R. China
| | - Li-Min Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xiao-Qian Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Yu-Yi Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Ze-Geng Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Hua-Wei Weng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xu-Dong Li
- Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yuan-Yuan Shen
- Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hui Zhou
- Affiliated Cancer Hospital of Xiangya Medical School, Central South University / Hunan Cancer Hospital, Changsha, 410013, China
| | - Hong-Wei Xue
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, P.R. China
| | - Hui-Lai Zhang
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China.
| | - Tong-Yu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China. .,Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
4
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
5
|
Avgerinou G, Stefanaki K, Liapis K, Kostopoulos IV, Kossiva L, Tzoumaka-Bakoula C, Pavlidis D, Filippidou M, Katsibardi K, Ampatzidou M, Kattamis A, Polychronopoulou S, Mantzourani M, Papadhimitriou SI. Fish evaluation of additional cytogenetic aberrations and hyperdiploidy in childhood Burkitt lymphoma. Leuk Lymphoma 2021; 63:551-561. [PMID: 34727830 DOI: 10.1080/10428194.2021.1998480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Beyond MYC rearrangement, Burkitt lymphoma (BL) often presents with additional aberrations. Biopsy touch imprints from 72 children with BL were tested with interphase fluorescence in-situ hybridization (i-FISH) for MYC, BCL2, BCL6, IGH, IGK and IGL rearrangements and copy-number aberrations involving 1q21/1p32, 7cen/7q31, 9cen/9p21, 13q14/13q34 and 17cen/17p13. Diploid status deviations were investigated with chromosome enumeration probes. MYC rearrangement was demonstrated in all cases. Additional aberrations included +1q (21/72:29.2%), +7q (14/72:19.4%), 13q- (14/72:19.4%), 9p-(6/72:8.3%) and hyperdiploidy (6/72:8.3%). Advanced clinical stage IV, +7q and 9p- were associated with shorter overall survival, with stage IV and +7q retaining prognostic significance on multivariate analysis. No relapse or death was reported among the hyperdiploid cases. This i-FISH investigation provides information on the genetic profile of BL and may prove valuable for patients with no karyotype analysis. Demonstration of hyperdiploidy could evolve research on clonal evolution pathways and probably identify a subgroup of children with favorable prognosis.
Collapse
Affiliation(s)
- Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantinos Liapis
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece.,Department of Hematology, Alexandroupolis University Hospital, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis V Kostopoulos
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece.,Department of Biology, School of Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Lydia Kossiva
- Second Department of Paediatrics, School of Medicine, "P. & A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens (NKUA)
| | - Chryssa Tzoumaka-Bakoula
- Second Department of Paediatrics, School of Medicine, "P. & A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens (NKUA)
| | - Dimitris Pavlidis
- Department of Laboratory Hematology, "G.Gennimatas" Athens General Hospital, Athens, Greece
| | - Maria Filippidou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Katerina Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Ampatzidou
- Department Of Paediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital Αthens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department Of Paediatric Haematology-Oncology, "Aghia Sophia" Children's Hospital Αthens, Greece
| | - Marina Mantzourani
- Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
6
|
Okabe M, Morishita T, Yasuda T, Sakaguchi H, Sanada M, Kataoka K, Ogawa S, Shiraishi Y, Ichiki T, Kawaguchi Y, Ohbiki M, Matsumoto R, Osaki M, Goto T, Ozawa Y, Miyamura K. Targeted deep next generation sequencing identifies potential somatic and germline variants for predisposition to familial Burkitt lymphoma. Eur J Haematol 2021; 107:166-169. [PMID: 33772882 DOI: 10.1111/ejh.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Motohito Okabe
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takanobu Morishita
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takahiko Yasuda
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Hirotoshi Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoe Ichiki
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yuka Kawaguchi
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Marie Ohbiki
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Rena Matsumoto
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Tatsunori Goto
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| |
Collapse
|
7
|
Smith SM, Wachter K, Burris HA, Schilsky RL, George DJ, Peterson DE, Johnson ML, Markham MJ, Mileham KF, Beg MS, Bendell JC, Dreicer R, Keedy VL, Kimple RJ, Knoll MA, LoConte N, MacKay H, Meisel JL, Moynihan TJ, Mulrooney DA, Mulvey TM, Odenike O, Pennell NA, Reeder-Hayes K, Smith C, Sullivan RJ, Uzzo R. Clinical Cancer Advances 2021: ASCO's Report on Progress Against Cancer. J Clin Oncol 2021; 39:1165-1184. [DOI: 10.1200/jco.20.03420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Kerri Wachter
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | | | | | | | | | - Robert Dreicer
- University of Virginia Cancer Center, Charlottesville, VA
| | | | | | | | - Noelle LoConte
- University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Helen MacKay
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | - Katherine Reeder-Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | |
Collapse
|
8
|
The "Burkitt-like" immunophenotype and genotype is rarely encountered in diffuse large B cell lymphoma and high-grade B cell lymphoma, NOS. Virchows Arch 2021; 479:575-583. [PMID: 33655392 DOI: 10.1007/s00428-021-03050-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Burkitt lymphoma (BL) is a B cell lymphoma composed of monomorphic medium-sized blastic cells with basophilic cytoplasm and a high proliferation index. BL has a characteristic immunophenotype of CD10 and BCL6 positive and BCL2 negative and harbours MYC gene rearrangements (MYCR) in >90% of the cases. Owing to its highly aggressive nature, intensified chemotherapy regimens are usually administered, requiring an exact diagnosis. Since the diagnosis usually warrants an integration of morphologic, immunophenotypic and genetic findings and because there is a morphologic overlap with the new WHO category of high-grade B cell lymphoma, not otherwise specified (HGBL, NOS) and some cases of diffuse large B cell lymphoma (DLBCL), we wanted to test the distinctiveness of the CD10+, BCL6+, BCL2- and MYCR positive immunopheno-genotype in a large cohort of >1000 DLBCL and HGBL. Only 9/982 DLBCL classified by an expert panel of haematopathologists (0.9%) displayed a single MYCR and were CD10+, BCL6+ and BCL2-. In a similar fashion, only one out of 32 HGBL, NOS (3%) displayed the "Burkitt-like" genetic/immunophenotypic constitution. The samples of non-BL showing the BL-typic immunopheno-genotype, interestingly, harboured higher copy number variations (CNV) by OncoScan analysis (mean 7.3 CNVs/sample; range: 2-13 vs. 2.4; range 0-6) and were also distinct from pleomorphic BL cases regarding their mutational spectrum by NGS analysis. This implies that the characteristic immunophenotype of BL, in concert with a single MYCR, is uncommon in these aggressive lymphomas, and that this constellation favours BL.
Collapse
|
9
|
Auerbach A, Schmieg JJ, Aguilera NS. Pediatric Lymphoid and Histiocytic Lesions in the Head and Neck. Head Neck Pathol 2021; 15:41-58. [PMID: 33723759 PMCID: PMC7959275 DOI: 10.1007/s12105-020-01257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
Lymphoid and histiocytic lesions of the head and neck in pediatric patients is a fascinating topic as most of these lesions are benign, but that the neoplastic cases are essential to diagnose accurately for appropriate treatment. It is thought that 90% of children will have palpable lymph nodes between the ages of 4 to 8; most, but not all, are non-malignant and some resolve spontaneously without treatment. This paper will look at many of the benign and malignant lesions of both lymphocytic and histiocytic origin that present in the head and neck of children focusing on their diagnostic criteria. There is a very pertinent discussion of nonmalignant lymphoid proliferations, as infections and other reactive conditions dominate the pathology of pediatric lymphohistiocytic head and neck lesions. Discussion of those lymphomas which arise more frequently in the head and neck focuses on those seen in children and young adults such as classic Hodgkin lymphoma and Burkitt lymphoma, as well as new more controversial entities such as pediatric-type follicular lymphoma. Histiocytic lesions, both benign and malignant, are described and may be challenging to diagnose.
Collapse
Affiliation(s)
- A Auerbach
- The Joint Pathology Center, Silver Spring, MD, USA.
| | - J J Schmieg
- The Joint Pathology Center, Silver Spring, MD, USA
| | - N S Aguilera
- University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
10
|
Minard-Colin V, Aupérin A, Pillon M, Burke GAA, Barkauskas DA, Wheatley K, Delgado RF, Alexander S, Uyttebroeck A, Bollard CM, Zsiros J, Csoka M, Kazanowska B, Chiang AK, Miles RR, Wotherspoon A, Adamson PC, Vassal G, Patte C, Gross TG. Rituximab for High-Risk, Mature B-Cell Non-Hodgkin's Lymphoma in Children. N Engl J Med 2020; 382:2207-2219. [PMID: 32492302 PMCID: PMC7720281 DOI: 10.1056/nejmoa1915315] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Rituximab added to chemotherapy prolongs survival among adults with B-cell cancer. Data on its efficacy and safety in children with high-grade, mature B-cell non-Hodgkin's lymphoma are limited. METHODS We conducted an open-label, international, randomized, phase 3 trial involving patients younger than 18 years of age with high-risk, mature B-cell non-Hodgkin's lymphoma (stage III with an elevated lactate dehydrogenase level or stage IV) or acute leukemia to compare the addition of six doses of rituximab to standard lymphomes malins B (LMB) chemotherapy with standard LMB chemotherapy alone. The primary end point was event-free survival. Overall survival and toxic effects were also assessed. RESULTS Analyses were based on 328 patients who underwent randomization (164 patients per group); 85.7% of the patients had Burkitt's lymphoma. The median follow-up was 39.9 months. Events were observed in 10 patients in the rituximab-chemotherapy group and in 28 in the chemotherapy group. Event-free survival at 3 years was 93.9% (95% confidence interval [CI], 89.1 to 96.7) in the rituximab-chemotherapy group and 82.3% (95% CI, 75.7 to 87.5) in the chemotherapy group (hazard ratio for primary refractory disease or first occurrence of progression, relapse after response, death from any cause, or second cancer, 0.32; 95% CI, 0.15 to 0.66; one-sided P = 0.00096, which reached the significance level required for this analysis). Eight patients in the rituximab-chemotherapy group died (4 deaths were disease-related, 3 were treatment-related, and 1 was from a second cancer), as did 20 in the chemotherapy group (17 deaths were disease-related, and 3 were treatment-related) (hazard ratio, 0.36; 95% CI, 0.16 to 0.82). The incidence of acute adverse events of grade 4 or higher after prephase treatment was 33.3% in the rituximab-chemotherapy group and 24.2% in the chemotherapy group (P = 0.07); events were related mainly to febrile neutropenia and infection. Approximately twice as many patients in the rituximab-chemotherapy group as in the chemotherapy group had a low IgG level 1 year after trial inclusion. CONCLUSIONS Rituximab added to standard LMB chemotherapy markedly prolonged event-free survival and overall survival among children and adolescents with high-grade, high-risk, mature B-cell non-Hodgkin's lymphoma and was associated with a higher incidence of hypogammaglobulinemia and, potentially, more episodes of infection. (Funded by the Clinical Research Hospital Program of the French Ministry of Health and others; ClinicalTrials.gov number, NCT01516580.).
Collapse
Affiliation(s)
- Véronique Minard-Colin
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Anne Aupérin
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Marta Pillon
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - G A Amos Burke
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Donald A Barkauskas
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Keith Wheatley
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Rafael F Delgado
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Sarah Alexander
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Anne Uyttebroeck
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Catherine M Bollard
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - József Zsiros
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Monika Csoka
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Bernarda Kazanowska
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Alan K Chiang
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Rodney R Miles
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Andrew Wotherspoon
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Peter C Adamson
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Gilles Vassal
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Catherine Patte
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| | - Thomas G Gross
- From the Departments of Pediatric and Adolescent Oncology (V.M.-C., C.P.) and Clinical Research (G.V.), INSERM Unité 1015 (V.M.-C.), and the Unit of Biostatistics and Epidemiology and INSERM Unité 1018 (A.A.), Gustave Roussy, Université Paris-Saclay, Villejuif, France; the Department of Pediatric Hematology and Oncology, University of Padua, Padua, Italy (M.P.); the Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge (G.A.A.B.), Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham (K.W.), and the Department of Histopathology, Royal Marsden NHS Foundation Trust, London (A.W.) - all in the United Kingdom; the Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles (D.A.B.); the Department of Pediatric Hematology and Oncology, University of Valencia, Valencia, Spain (R.F.D.); the Division of Haematology-Oncology, Hospital for Sick Children, Toronto (S.A.); the Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium (A.U.); the Center for Cancer and Immunology Research, Children's National Health System and George Washington University, Washington, DC (C.M.B.); Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.Z.); the Department of Pediatric Hematology and Oncology, Semmelweis University, Budapest, Hungary (M.C.); the Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland (B.K.); the Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (A.K.C.); the Department of Pathology, University of Utah, Salt Lake City (R.R.M.); Children's Hospital of Philadelphia, Philadelphia (P.C.A.); and the National Cancer Institute, Center for Global Health, Rockville, MD (T.G.G.)
| |
Collapse
|
11
|
Zayac AS, Olszewski AJ. Burkitt lymphoma: bridging the gap between advances in molecular biology and therapy. Leuk Lymphoma 2020; 61:1784-1796. [PMID: 32255708 DOI: 10.1080/10428194.2020.1747068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genomic studies have revealed molecular mechanisms involved in the pathogenesis of Burkitt's lymphoma, including the ID3/TCF3-dependent centroblast gene expression program, tonic PI3K-AKT-mTOR signaling, and deregulation of cell cycle and apoptosis through mutations in cyclin D3, CDKN2A, or TP53. Unfortunately, these advances have not been translated into treatment, which relies on dose-intense cytotoxic chemotherapy. While most patients achieve long-term survival, options for relapsed/refractory disease are lacking, as Burkitt lymphoma is often excluded from clinical trials of novel approaches. The lower-intensity, dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) regimen constitutes a major advance allowing for treatment of older and HIV-positive patients but needs augmentation to better address the central nervous system involvement. Furthermore, DA-EPOCH-R provides a platform for the study of targeted or immunotherapeutic approaches while de-escalating cytotoxic agents and their associated adverse effects. In this review we discuss the epidemiology and molecular genetics of BL, first-line treatment considerations, and potential novel treatment strategies.
Collapse
Affiliation(s)
- Adam S Zayac
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Adam J Olszewski
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
12
|
Gravos A, Sakellaridis K, Tselioti P, Katsifa K, Grammatikopoulou V, Nodarou A, Sarantos Κ, Tourtoglou A, Tsovolou E, Tsapas C, Prekates A. Burkitt lymphoma of the ovaries mimicking sepsis: a case report and review of the literature. J Med Case Rep 2018; 12:285. [PMID: 30286805 PMCID: PMC6172811 DOI: 10.1186/s13256-018-1828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is not unusual for systemic diseases to mimic sepsis and, in any case, the clinician should thoroughly investigate this possibility. CASE PRESENTATION We present the case of a 21-year-old Greek woman who presented to the Intensive Care Unit of our hospital with severe septic shock - multiple organ failure as a result of a suspected gynecological infection of the ovaries. An immediate improvement of her clinical condition in combination with strong clinical suspicion and negative cultures led to the differential diagnosis of diseases other than sepsis. Based on the results of the biopsies that were obtained by research laparotomy, our patient suffered from primary Burkitt ovarian lymphoma. Her clinical condition improved with supportive treatment and chemotherapy. Chemotherapy is the dominant treatment for Burkitt's lymphoma, while surgery or radiotherapy has no place. CONCLUSIONS All intensivists should be aware of clinical conditions that mimic sepsis as early diagnosis can lead to appropriate therapy and avoid unnecessary diagnostic tests and antibiotic abuse.
Collapse
Affiliation(s)
- Athanasios Gravos
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece.
| | | | - Paraskeui Tselioti
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Konstantina Katsifa
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | | | - Aikaterini Nodarou
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Κonstantinos Sarantos
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Alexandros Tourtoglou
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Eirini Tsovolou
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Charilaos Tsapas
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| | - Athanasios Prekates
- Intensive Care Unit, Tzaneio General Hospital of Piraeus, Dodonis 26, 13451, Kamatero, Greece
| |
Collapse
|
13
|
Kimura R, Ishii Y, Tomiwa K, Awaya T, Nakata M, Kato T, Okazaki S, Heike T, Hagiwara M. Williams-Beuren Syndrome as a Potential Risk Factor for Burkitt Lymphoma. Front Genet 2018; 9:368. [PMID: 30233648 PMCID: PMC6131482 DOI: 10.3389/fgene.2018.00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/22/2018] [Indexed: 11/24/2022] Open
Abstract
Williams–Beuren syndrome (WBS) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion on chromosome 7q11.23. Though at present there is a limited number of reports on WBS patients with tumors, most cases are related to blood cancer in children with WBS. We describe a case of Burkitt lymphoma in a 21-year-old man with WBS. In addition to providing a summary of published reports describing tumors observed in patients with WBS, we present a hypothesis about a possible mechanism of oncogenesis. In particular, we identified some significantly dysregulated cancer-related genes using blood samples from this patient at the age of 19 years (who have not yet developed Burkitt lymphoma). Our findings may provide a new perspective on the relation between WBS and Burkitt lymphoma.
Collapse
Affiliation(s)
- Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuko Ishii
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Kiyotaka Tomiwa
- Department of Child Neurology, Osaka City General Hospital, Osaka, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Todaiji Ryoiku Hospital for Children, Nara, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Nakata
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Okazaki
- Department of Child Neurology, Osaka City General Hospital, Osaka, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
15
|
Management of aggressive B-cell NHLs in the AYA population: an adult vs pediatric perspective. Blood 2018; 132:369-375. [PMID: 29895666 DOI: 10.1182/blood-2018-02-778480] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
The adolescents and young adult (AYA) population represent a group wherein mature B-cell lymphomas constitute a significant proportion of the overall malignancies that occur. Among these are aggressive B-cell non-Hodgkin lymphomas (NHLs), which are predominantly diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, and Burkitt lymphoma. For the most part, there is remarkable divide in how pediatric/adolescent patients (under the age of 18 years) with lymphoma are treated vs their young adult counterparts, and molecular data are lacking, especially in pediatric and AYA series. The outcome for AYA patients with cancers has historically been inferior to that of children or older adults, highlighting the necessity to focus on this population. This review discusses the pediatric vs adult perspective in terms of how these diseases are understood and approached and emphasizes the importance of collaborative efforts in both developing consensus for treatment of this population and planning future research endeavors.
Collapse
|
16
|
Karimi P, Birmann BM, Anderson LA, McShane CM, Gadalla SM, Sampson JN, Mbulaiteye SM. Risk factors for Burkitt lymphoma: a nested case-control study in the UK Clinical Practice Research Datalink. Br J Haematol 2018; 181:505-514. [PMID: 29676453 DOI: 10.1111/bjh.15229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Burkitt lymphoma (BL) occurs as three subtypes: endemic BL, immunosuppression-related BL and sporadic BL. Descriptive studies of BL age-specific incidence patterns have suggested multimodal peaks near 10, 40 and 70 years of age, but the risk factors for BL at different ages are unknown. We investigated risk factors for BL in the United Kingdom among 156 BL cases and 608 matched BL-free controls identified in the Clinical Practice Research Datalink (CPRD) between 1992 and 2016. Associations with pre-diagnostic body mass index, cigarette smoking, alcohol consumption, hepatitis, Epstein-Barr virus (EBV), human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS), malaria, allergic and autoimmune conditions, and prednisone use were evaluated. Overall, we identified inverse associations between smoking and BL risk, and positive associations between prior EBV infection, HIV/AIDS and prescription or use of prednisone with BL risk. In age-group stratified analyses, BL was associated with malaria exposure (vs. no exposure, odds ratio [OR] 8·00, 95% confidence interval [CI] 1·46-43·7) among those aged 20-59 years old and with hepatitis infection (vs. no infection, OR 3·41, 95% CI 1·01-11·5) among those aged 60+ years old. The effects of EBV, malaria, HIV/AIDS, prednisone and hepatitis on BL remained significant in mutually-adjusted age-group-specific analyses. No risk factors were associated with childhood BL. We report novel associations for BL in non-endemic settings.
Collapse
Affiliation(s)
- Parisa Karimi
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lesley A Anderson
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Charlene M McShane
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Case Reports in Oncological Medicine Myoepithelioma: A New Rearrangement Involving the LPP Locus in a Case of Multiple Bone and Soft Tissue Lesions. Case Rep Oncol Med 2018; 2018:3512847. [PMID: 29992069 PMCID: PMC5848058 DOI: 10.1155/2018/3512847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/10/2017] [Indexed: 01/24/2023] Open
Abstract
We report a case of multiple myoepithelioma with synchronous bone and soft tissue tumors, associated with a new genomic alteration of the LPP locus. The lesions occurred in the foot by presenting one lump in the plantar soft tissue, and three lesions were detected in the calcaneus and in the navicular bone. All tumors showed the double immunophenotype of epithelial markers and S100 protein expression. No rearrangement of the EWSR1 and FUS loci was detected as reported in myoepitheliomas. However, molecular karyotyping detected an unbalanced rearrangement of the LPP locus, not involving the HMGA2 locus, which is the most frequent translocation partner observed in benign mesenchymal tumors such as lipomas (of soft tissue as well as parosteal) and pulmonary chondroid hamartoma.
Collapse
|
18
|
Rohde M, Bonn BR, Zimmermann M, Lange J, Möricke A, Klapper W, Oschlies I, Szczepanowski M, Nagel I, Schrappe M, Loeffler M, Siebert R, Reiter A, Burkhardt B. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Münster protocols. Haematologica 2017; 102:1091-1098. [PMID: 28209658 PMCID: PMC5451341 DOI: 10.3324/haematol.2016.156885] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Mature B-cell non-Hodgkin lymphoma is the most common subtype of non-Hodgkin lymphoma in childhood and adolescence. B-cell non-Hodgkin lymphomas are further classified into histological subtypes, with Burkitt lymphoma and Diffuse large B-cell lymphoma being the most common subgroups in pediatric patients. Translocations involving the MYC oncogene are known as relevant but not sufficient for Burkitt lymphoma pathogenesis. Recently published large-scale next-generation sequencing studies unveiled sets of additional recurrently mutated genes in samples of pediatric and adult B-cell non-Hodgkin lymphoma patients. ID3, TCF3 and CCND3 are potential drivers of Burkitt lymphomagenesis. In the study herein, frequency and clinical relevance of mutations in ID3, TCF3 and CCND3 were analyzed within a well-defined cohort of 84 uniformly diagnosed and treated pediatric B-cell non-Hodgkin lymphoma patients of the Berlin-Frankfurt-Münster group. Mutation frequency was 78% (ID3), 13% (TCF3) and 36% (CCND3) in Burkitt lymphoma (including Burkitt leukemia). ID3 and CCND3 mutations were associated with more advanced stages of the disease in MYC rearrangement positive Burkitt lymphoma. In conclusion, ID3-TCF3-CCND3 pathway genes are mutated in more than 88% of MYC-rearranged pediatric B-cell non-Hodgkin lymphoma and the pathway may represent a highly relevant second hit of Burkitt lymphoma pathogenesis, especially in children and adolescents.
Collapse
Affiliation(s)
- Marius Rohde
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Bettina R Bonn
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Jonas Lange
- Pediatric Hematology and Oncology, University Hospital Münster, Germany.,Translational Oncology, Department of Medicine A, University Hospital Münster; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Anja Möricke
- Pediatric Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Monika Szczepanowski
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrecht University, Kiel, Germany
| | - Inga Nagel
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Schrappe
- Pediatric Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | | | | | - Markus Loeffler
- Institute for Medical Informatics Statistics and Epidemiology, University Leipzig, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Germany.,Institute of Human Genetics, University of Ulm and University Medical Center Ulm, Germany
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Münster, Germany
| |
Collapse
|
19
|
Mukhtar F, Boffetta P, Risch HA, Park JY, Bubu OM, Womack L, Tran TV, Zgibor JC, Luu HN. Survival predictors of Burkitt's lymphoma in children, adults and elderly in the United States during 2000-2013. Int J Cancer 2017; 140:1494-1502. [PMID: 28006853 DOI: 10.1002/ijc.30576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 02/05/2023]
Abstract
Burkitt's Lymphoma (BL) has three peaks of occurrence, in children, adults and elderly, at 10, 40 and 70 years respectively. To the best of our knowledge, no study has been conducted to assess predictors of survival in the three age groups. We hypothesized that survival predictors may differ by age group. We, therefore, sought to determine survival predictors for BL in these three groups: children (<15 years of age), adults (40-70 years of age) and elderly (>70 years of age). Using the Surveillance, Epidemiology, and End Results (SEER) database covering the years 2000-2013, we identified 797 children, 1,994 adults and 757 elderly patients newly diagnosed with BL. We used adjusted Cox proportional hazards regression models to determine prognostic factors for survival for each age group. Five-year relative survival in BL for children, adults and elderly were 90.4, 47.8 and 28.9%, respectively. Having at least Stage II disease and multiple primaries were associated with higher mortality in the elderly group. In adults, multiple primaries, Stage III or IV disease, African American race and bone marrow primary were associated with increased mortality whereas Stage IV disease and multiple primaries were associated with worse outcome in children. These findings demonstrate commonalities and differences in predictors of survival that may have implications for management of BL patients.
Collapse
Affiliation(s)
- Fahad Mukhtar
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Paolo Boffetta
- Icahn School of Medicine, Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT.,Yale Cancer Center, New Haven, CT
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612
| | - Omonigho M Bubu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Lindsay Womack
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Thuan V Tran
- Vietnam National Cancer Hospital, Hanoi, Vietnam.,Vietnam National Institute for Cancer Control, Hanoi, Vietnam
| | - Janice C Zgibor
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Hung N Luu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
20
|
Dozzo M, Carobolante F, Donisi PM, Scattolin A, Maino E, Sancetta R, Viero P, Bassan R. Burkitt lymphoma in adolescents and young adults: management challenges. Adolesc Health Med Ther 2017; 8:11-29. [PMID: 28096698 PMCID: PMC5207020 DOI: 10.2147/ahmt.s94170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
About one-half of all Burkitt lymphoma (BL) patients are younger than 40 years, and one-third belong to the adolescent and young adult (AYA) subset, defined by an age between 15 and 25-40 years, based on selection criteria used in different reports. BL is an aggressive B-cell neoplasm displaying highly characteristic clinico-diagnostic features, the biologic hallmark of which is a translocation involving immunoglobulin and c-MYC genes. It presents as sporadic, endemic, or epidemic disease. Endemicity is pathogenetically linked to an imbalance of the immune system which occurs in African children infected by malaria parasites and Epstein-Barr virus, while the epidemic form strictly follows the pattern of infection by HIV. BL shows propensity to extranodal involvement of abdominal organs, bone marrow, and central nervous system, and can cause severe metabolic and renal impairment. Nevertheless, BL is highly responsive to specifically designed short-intensive, rotational multiagent chemotherapy programs, empowered by the anti-CD20 monoclonal antibody rituximab. When carefully applied with appropriate supportive measures, these modern programs achieve a cure rate of approximately 90% in the average AYA patient, irrespective of clinical stage, which is the best result achievable in any aggressive lymphoid malignancy to date. The challenges ahead concern the following: optimization of management in underdeveloped countries, with reduction of diagnostic and referral-for-care intervals, and the applicability of currently curative regimens; the development of lower intensity but equally effective treatments for frail or immunocompromised patients at risk of death by complications; the identification of very high-risk patients through positron-emission tomography and minimal residual disease assays; and the assessment in these and the few refractory/relapsed ones of new monoclonals (ofatumumab, blinatumomab, inotuzumab ozogamicin) and new molecules targeting c-MYC and key proliferative steps of B-cell malignancies.
Collapse
Affiliation(s)
- Massimo Dozzo
- Complex Operative Unit of Hematology, Ospedale dell’Angelo
| | | | - Pietro Maria Donisi
- Simple Departmental Operative Unit of Anatomic Pathology, Ospedale Ss. Giovanni e Paolo, Venice, Italy
| | | | - Elena Maino
- Complex Operative Unit of Hematology, Ospedale dell’Angelo
| | | | - Piera Viero
- Complex Operative Unit of Hematology, Ospedale dell’Angelo
| | - Renato Bassan
- Complex Operative Unit of Hematology, Ospedale dell’Angelo
- Correspondence: Renato Bassan, Complex Operative Unit of Hematology, Ospedale dell’Angelo, Via Paccagnella 11, 30174 Mestre-Venice, Italy, Tel +39 41 965 7362, Fax +39 41 965 7361, Email
| |
Collapse
|
21
|
Lange J, Lenz G, Burkhardt B. Mature aggressive B-cell lymphoma across age groups - molecular advances and therapeutic implications. Expert Rev Hematol 2016; 10:123-135. [PMID: 27936978 DOI: 10.1080/17474086.2017.1271318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mature B-cell lymphoma represents the most common type of Non-Hodgkin lymphoma, and different subtypes prevail at different patient ages. Areas covered: We review recent data on differences and commonalities in mature B-cell lymphoma occurring in adult and pediatric patients, with a special emphasis on molecular advances and therapeutic implications. To this end, we will discuss knowledge on diffuse large B-cell lymphoma and Burkitt lymphoma/leukemia, which are the most frequent subtypes in adult and pediatric patients, respectively, and on primary mediastinal B-cell lymphoma, which is a subtype of mature B-cell lymphoma occurring mainly in adolescents and young adults with a female predominance. Expert commentary: Molecular profiling has revealed molecular alterations that can be used to further classify the subtypes of mature B-cell lymphoma. These new subgroups frequently respond differentially to targeted therapeutic strategies. Future clinical trials utilizing new drugs will address this issue by combining clinical data and response assessment with a molecular workup of the corresponding lymphomas.
Collapse
Affiliation(s)
- Jonas Lange
- a Pediatric Hematology and Oncology , University Hospital Muenster , Muenster , Germany.,b Translational Oncology, Department of Medicine A , University Hospital Muenster, Muenster, Germany; Cluster of Excellence EXC 1003, Cells in Motion , Muenster , Germany
| | - Georg Lenz
- b Translational Oncology, Department of Medicine A , University Hospital Muenster, Muenster, Germany; Cluster of Excellence EXC 1003, Cells in Motion , Muenster , Germany
| | - Birgit Burkhardt
- a Pediatric Hematology and Oncology , University Hospital Muenster , Muenster , Germany
| |
Collapse
|
22
|
Poirel HA, Vikkula M. Age-related heterogeneity of Burkitt lymphoma: response to Mbulaiteye and Anderson. Br J Haematol 2016; 180:155-156. [PMID: 27612331 DOI: 10.1111/bjh.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hélène A Poirel
- Centre for Human Genetics, Cliniques universitaires Saint-Luc - Université catholique de Louvain, Brussels, Belgium.,Human Molecular Genetics (GEHU), de Duve Institute - Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics (GEHU), de Duve Institute - Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
23
|
Affiliation(s)
- Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William F Anderson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|