1
|
Morel C, Lemerle E, Tsai FC, Obadia T, Srivastava N, Marechal M, Salles A, Albert M, Stefani C, Benito Y, Vandenesch F, Lamaze C, Vassilopoulos S, Piel M, Bassereau P, Gonzalez-Rodriguez D, Leduc C, Lemichez E. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane. eLife 2024; 12:RP92078. [PMID: 38517935 PMCID: PMC10959525 DOI: 10.7554/elife.92078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.
Collapse
Affiliation(s)
- Camille Morel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Eline Lemerle
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Feng-Ching Tsai
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and AnalyticsParisFrance
| | - Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Maud Marechal
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT)ParisFrance
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis HubParisFrance
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Department of ImmunologySeattleUnited States
| | - Yvonne Benito
- Centre National de Référence des Staphylocoques, Hospices Civiles de LyonLyonFrance
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, FranceLyonFrance
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR3666, Membrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParisFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Patricia Bassereau
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | | | - Cecile Leduc
- Université Paris Cité, Institut Jacques Monod, CNRS UMR7592ParisFrance
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| |
Collapse
|
2
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Tsai MC, Fleuriot L, Janel S, Gonzalez-Rodriguez D, Morel C, Mettouchi A, Debayle D, Dallongeville S, Olivo-Marin JC, Antonny B, Lafont F, Lemichez E, Barelli H. DHA-phospholipids control membrane fusion and transcellular tunnel dynamics. J Cell Sci 2021; 135:273659. [PMID: 34878112 DOI: 10.1242/jcs.259119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.
Collapse
Affiliation(s)
- Meng-Chen Tsai
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France.,Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Lucile Fleuriot
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Camille Morel
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Amel Mettouchi
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | | | | | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Frank Lafont
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| |
Collapse
|
4
|
Kato T, Ghadban L, Boucher E, Mandato CA. Tension modulation of actomyosin ring assembly and RhoGTPases activity: Perspectives from the Xenopus oocyte wound healing model. Cytoskeleton (Hoboken) 2021; 78:349-360. [PMID: 34541818 DOI: 10.1002/cm.21688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Cells are remarkably resilient structures; they are able to recover from injuries to their plasma membrane (PM) and cytoskeleton that would normally constitute existential threats. This capacity is exemplified by Xenopus laevis oocytes which can recover from very large PM defects through exocytotic and endocytic events and can repair damaged cortical cytoskeleton structures through the formation of a contractile actomyosin ring (AMR). Formation of the AMR involves the localized Ca2+ -dependent activation of RhoA and Cdc42, and the pre-patterning of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, this model fails to account for observations that suggest a link between cytoskeletal dynamics, intracellular tension, and AMR formation. It also does not explain why the formation of an AMR is not involved in the cytoskeletal repair program of adherent cells. We show here evidence for the support of tension as an essential regulatory signal for the formation of AMR. Indeed, oocytes in which global tension has been experimentally reduced were unable to form a functional AMR following injury, showing severely diminished RhoA activity at the wound site. These new insights place the cytoskeleton at the center of events involving changes in cell shape such as cytokinesis which also involves the formation and closure of an AMR.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Logine Ghadban
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Lemichez E, Popoff MR, Satchell KJF. Cellular microbiology: Bacterial toxin interference drives understanding of eukaryotic cell function. Cell Microbiol 2021; 22:e13178. [PMID: 32185903 DOI: 10.1111/cmi.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
Intimate interactions between the armament of pathogens and their host dictate tissue and host susceptibility to infection also forging specific pathophysiological outcomes. Studying these interactions at the molecular level has provided an invaluable source of knowledge on cellular processes, as ambitioned by the Cellular Microbiology discipline when it emerged in early 90s. Bacterial toxins act on key cell regulators or membranes to produce major diseases and therefore constitute a remarkable toolbox for dissecting basic biological processes. Here, we review selected examples of recent studies on bacterial toxins illustrating how fruitful the discipline of cellular microbiology is in shaping our understanding of eukaryote processes. This ever-renewing discipline unveils new virulence factor biochemical activities shared by eukaryotic enzymes and hidden rules of cell proteome homeostasis, a particularly promising field to interrogate the impact of proteostasis breaching in late onset human diseases. It is integrating new concepts from the physics of soft matter to capture biomechanical determinants forging cells and tissues architecture. The success of this discipline is also grounded by the development of therapeutic tools and new strategies to treat both infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- Unité des Toxines Bactériennes, CNRS ERL6002, Institut Pasteur, Paris, France
| | | | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
6
|
Eckly A, Scandola C, Oprescu A, Michel D, Rinckel JY, Proamer F, Hoffmann D, Receveur N, Léon C, Bear JE, Ghalloussi D, Harousseau G, Bergmeier W, Lanza F, Gaits-Iacovoni F, de la Salle H, Gachet C. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. J Thromb Haemost 2020; 18:2987-3001. [PMID: 32702204 DOI: 10.1111/jth.15024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/16/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Blood platelets are anucleate cell fragments that prevent bleeding and minimize blood vessel injury. They are formed from the cytoplasm of megakaryocytes located in the bone marrow. For successful platelet production, megakaryocyte fragments must pass through the sinusoid endothelial barrier by a cell biology process unique to these giant cells as compared with erythrocytes and leukocytes. Currently, the mechanisms by which megakaryocytes interact and progress through the endothelial cells are not understood, resulting in a significant gap in our knowledge of platelet production. OBJECTIVE The aim of this study was to investigate how megakaryocytes interact and progress through the endothelial cells of mouse bone marrow sinusoids. METHODS We used a combination of fluorescence, electron, and three-dimensional microscopy to characterize the cellular events between megakaryocytes and endothelial cells. RESULTS We identified protrusive, F-actin-based podosome-like structures, called in vivo-MK podosomes, which initiate the formation of pores through endothelial cells. These structures present a collective and spatial organization through their interconnection via a contractile network of actomyosin, essential to regulate the endothelial openings. This ensures proper passage of megakaryocyte-derived processes into the blood circulation to promote thrombopoiesis. CONCLUSION This study provides novel insight into the in vivo function of podosomes of megakaryocytes with critical importance to platelet production.
Collapse
Affiliation(s)
- Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Cyril Scandola
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Antoine Oprescu
- INSERM U1048, I2MC, Université Paul Sabatier, Toulouse, France
| | - Deborah Michel
- INSERM U1048, I2MC, Université Paul Sabatier, Toulouse, France
| | - Jean-Yves Rinckel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Fabienne Proamer
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - David Hoffmann
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Nicolas Receveur
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorsaf Ghalloussi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriel Harousseau
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Francois Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | | | - Henri de la Salle
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| |
Collapse
|
7
|
Boucher E, Goldin-Blais L, Basiren Q, Mandato CA. Actin dynamics and myosin contractility during plasma membrane repair and restoration: Does one ring really heal them all? CURRENT TOPICS IN MEMBRANES 2019; 84:17-41. [PMID: 31610862 DOI: 10.1016/bs.ctm.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to survive daily insults, cells have evolved various mechanisms that detect, stabilize and repair damages done to their plasma membrane and cytoskeletal structures. Damage to the PM endangers wounded cells by exposing them to uncontrolled exchanges with the extracellular milieu. The processes and molecular machinery enabling PM repair are therefore at the center of the bulk of the investigations into single-cell repair program. Wounds are repaired by dynamically remodeling the composition and shape of the injured area through exocytosis-mediated release of intracellular membrane components to the wounded area, endocytosis-mediated removal of the injured area, or the shedding of the injury. The wound healing program of Xenopus oocytes and early Drosophila embryos is by contrast, mostly characterized by the rapid formation of a large membrane patch over the wound that eventually fuse with the plasma membrane which restores plasma membrane continuity and lead to the shedding of patch material into the extracellular space. Formation and contraction of actomyosin ring restores normal plasma membrane composition and organizes cytoskeletal repairs. The extend of the contributions of the cytoskeleton to the wound healing program of somatic cells have comparatively received little attention. This review offers a survey of the current knowledge on how actin dynamics, myosin-based contraction and other cytoskeletal structures affects PM and cortical cytoskeleton repair of somatic cells.
Collapse
Affiliation(s)
- Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laurence Goldin-Blais
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Quentin Basiren
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
DeKraker C, Goldin-Blais L, Boucher E, Mandato CA. Dynamics of actin polymerisation during the mammalian single-cell wound healing response. BMC Res Notes 2019; 12:420. [PMID: 31311589 PMCID: PMC6636100 DOI: 10.1186/s13104-019-4441-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/05/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The contribution of actomyosin contractile rings in the wound healing program of somatic cells as never been directly assessed. This contrast with the events characterising the wound healing response of in wounded Xenopus oocytes, in which formation and contraction of an actomyosin ring provides a platform for cytoskeletal repair and drives the restoration of proper plasma membrane composition at the site of injury. As such, we aimed to characterize, using high-resolution live-cell confocal microscopy, the cytoskeletal repair dynamics of HeLa cells. RESULTS We confirm here that the F-actin enrichment that characterizes the late repair program of laser-wounded cells is mostly uniform and is not associated with co-enrichment of myosin-II or the formation of concentric zones of RhoA and Cdc42 activity.
Collapse
Affiliation(s)
- Corina DeKraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Strathcona Anatomy and Dentistry Bldg, Montreal, QC, H3A 0C7, Canada
| | - Laurence Goldin-Blais
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Strathcona Anatomy and Dentistry Bldg, Montreal, QC, H3A 0C7, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Strathcona Anatomy and Dentistry Bldg, Montreal, QC, H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Strathcona Anatomy and Dentistry Bldg, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
9
|
Ng WP, Webster KD, Stefani C, Schmid EM, Lemichez E, Bassereau P, Fletcher DA. Force-induced transcellular tunnel formation in endothelial cells. Mol Biol Cell 2017; 28:mbc.E17-01-0080. [PMID: 28794268 PMCID: PMC5620373 DOI: 10.1091/mbc.e17-01-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/21/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023] Open
Abstract
The endothelium serves as a protective semipermeable barrier in blood vessels and lymphatic vessels. Leukocytes and pathogens can pass directly through the endothelium by opening holes in endothelial cells, known as transcellular tunnels, which are formed by contact and self-fusion of the apical and basal plasma membranes. Here we test the hypothesis that the actin cytoskeleton is the primary barrier to transcellular tunnel formation using a combination of atomic force microscopy and fluorescence microscopy of live cells. We find that localized mechanical forces are sufficient to induce the formation of transcellular tunnels in HUVECs. When HUVECs are exposed to the bacterial toxin EDIN, which can induce spontaneous transcellular tunnels, less mechanical work is required to form tunnels due to the reduced cytoskeletal stiffness and thickness of these cells, similar to the effects of a ROCK inhibitor. We also observe actin enrichment in response to mechanical indentation that is reduced in cells exposed to the bacterial toxin. Our study shows that the actin cytoskeleton of endothelial cells provides both passive and active resistance against transcellular tunnel formation, serving as a mechanical barrier that can be overcome by mechanical force as well as disruption of the cytoskeleton.
Collapse
Affiliation(s)
- Win Pin Ng
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Kevin D Webster
- Department of Bioengineering, University of California, Berkeley, California 94720
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | - Caroline Stefani
- INSERM, U1065, Université de Nice-Sophie-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France
| | - Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Emmanuel Lemichez
- INSERM, U1065, Université de Nice-Sophie-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Daniel A Fletcher
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
- Biophysics Graduate Group, University of California, Berkeley, California 94720
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
10
|
How tetraspanins shape endothelial and leukocyte nano-architecture during inflammation. Biochem Soc Trans 2017; 45:999-1006. [PMID: 28710286 DOI: 10.1042/bst20170163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/13/2023]
Abstract
Tetraspanins are ubiquitous membrane proteins that induce local membrane curvature and hence co-ordinate cell-to-cell contacts. This review highlights their role in inflammation, which requires control of the nano-architecture of attachment sites between endothelial cells and leukocytes. The active role of endothelial cells in preparing for transmigration of leukocytes and determining the severity of an inflammation is often underscored. A clear hint to endothelial pre-activation is their ability to protrude clustered adhesion proteins upward prior to leukocyte contact. The elevation of molecular adhesive platforms toward the blood stream is crucially dependent on tetraspanins. In addition, leukocytes require tetraspanins for their activation. The example of the B-cell receptor is referenced in some detail here, since it provides deeper insights into the receptor-coreceptor interplay. To lift the role of tetraspanins from an abstract model of inflammation toward a player of clinical significance, two pathologies are analyzed for the known contributions of tetraspanins. The recent publication of the first crystal structure of a full-length tetraspanin revealed a cholesterol-binding site, which provides a strong link to the pathophysiological condition of atherosclerosis. Dysregulation of the inflammatory cascade in autoimmune diseases by endothelial cells is exemplified by the involvement of tetraspanins in multiple sclerosis.
Collapse
|
11
|
Fedorov EG, Shemesh T. Physical Model for Stabilization and Repair of Trans-endothelial Apertures. Biophys J 2017; 112:388-397. [PMID: 28122224 DOI: 10.1016/j.bpj.2016.11.3207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/13/2023] Open
Abstract
Bacterial toxins that disrupt the stability of contractile structures in endothelial cells promote the opening of large-scale apertures, thereby breaching the endothelium barrier. These apertures are formed by fusion of the basal and apical membranes into a tunnel that spans the height of the cell. Subsequent to the aperture formation, an active repair process, driven by a stimulated polymerization of actin, results in asymmetrical membrane protrusions and, ultimately, the closure of the aperture. Here, we propose a physics-based model for the generation, stabilization and repair of trans-endothelial apertures. Our model is based on the mechanical interplay between tension in the plasma membrane and stresses that develop within different actin structures at the aperture's periphery. We suggest that accumulation of cytoskeletal fragments around the aperture's rim during the expansion phase results in parallel bundles of actin filaments and myosin motors, generating progressively greater contraction forces that resist further expansion of the aperture. Our results indicate that closure of the tunnel is driven by mechanical stresses that develop within a cross-linked actin gel that forms at localized regions of the aperture periphery. We show that stresses within the gel are due to continuous polymerization of actin filaments against the membrane surfaces of the aperture's edges. Based on our mechanical model, we construct a dynamic simulation of the aperture repair process. Our model fully accounts for the phenomenology of the trans-endothelial aperture formation and stabilization, and recaptures the experimentally observed asymmetry of the intermediate aperture shapes during closure. We make experimentally testable predictions for localization of myosin motors to the tunnel periphery and of adhesion complexes to the edges of apertures undergoing closure, and we estimate the minimal nucleation size of cross-linked actin gel that can lead to a successful repair of the aperture.
Collapse
Affiliation(s)
- Eduard G Fedorov
- Department of Biology, Israel Institute of Technology, Haifa, Israel
| | - Tom Shemesh
- Department of Biology, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation. Nat Commun 2017. [PMID: 28643776 PMCID: PMC5490010 DOI: 10.1038/ncomms15839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.
Collapse
|
13
|
Abstract
Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens. It serves as a protective response that involves leukocytes, blood vessels and molecular mediators with the purpose to eliminate the initial cause of cell injury and to initiate tissue repair. Inflammation is tightly regulated by the body and is associated with transient crossing of leukocytes through the blood vessel wall, a process called transendothelial migration (TEM) or diapedesis. TEM is a close collaboration between leukocytes on one hand and the endothelium on the other. Limiting vascular leakage during TEM but also when the leukocyte has crossed the endothelium is essential for maintaining vascular homeostasis. Although many details have been uncovered during the recent years, the molecular mechanisms from the vascular part that drive TEM still shows significant gaps in our understanding. This review will focus on the local signals that are induced in the endothelium that regulate leukocyte TEM and simultaneous preservation of endothelial barrier function.
Collapse
Affiliation(s)
- Lilian Schimmel
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Niels Heemskerk
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
14
|
Charles-Orszag A, Lemichez E, Tran Van Nhieu G, Duménil G. Microbial pathogenesis meets biomechanics. Curr Opin Cell Biol 2016; 38:31-7. [PMID: 26849533 DOI: 10.1016/j.ceb.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Introducing concepts from soft matter physics and mechanics has largely contributed to our understanding of a variety of biological processes. In this review, we argue that this holds true for bacterial pathogenesis. We base this argument on three examples of bacterial pathogens and their interaction with host cells during infection: (i) Shigella flexneri exploits actin-dependent forces to come into close contact with epithelial cells prior to invasion of the epithelium; (ii) Neisseria meningitidis manipulates endothelial cells to resist shear stress during vascular colonization; (iii) bacterial toxins take advantage of the biophysical properties of the host cell plasma membrane to generate transcellular macroapertures in the vascular wall. Together, these examples show that a multidisciplinary approach integrating physics and biology is more necessary than ever to understand complex infectious phenomena. Moreover, this avenue of research will allow the exploration of general processes in cell biology, highlighted by pathogens, in the context of other non-communicable human diseases.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Lemichez
- INSERM, U1065, Microbial Toxins in Host-Pathogen Interactions, Centre Méditerranéen De Médecine Moléculaire, C3M, 151 Route St Antoine de Ginestière, 06204 Nice, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR 7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Guillaume Duménil
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
15
|
F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun 2016; 7:10493. [PMID: 26814335 PMCID: PMC4737874 DOI: 10.1038/ncomms10493] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation. Endothelial cells can support leukocyte extravasation without causing vascular leakage, but the exact mechanism underlying this process has not been fully elucidated. Here the authors show that it is regulated through actomyosin-based endothelial pore confinement, which requires local endothelial RhoA activation.
Collapse
|
16
|
Abstract
The virulence of highly pathogenic bacteria such as Salmonella, Yersinia, Staphylococci, Clostridia, and pathogenic strains of Escherichia coli involves intimate cross-talks with the host actin cytoskeleton and its upstream regulators. A large number of virulence factors expressed by these pathogens modulate Rho GTPase activities either by mimicking cellular regulators or by catalyzing posttranslational modifications of these small proteins. This impressive convergence of virulence toward Rho GTPases and actin indeed offers pathogens the capacity to breach host defenses and invade their host, while it promotes inflammatory reactions. In return, the study of this targeting of Rho GTPases in infection has been an invaluable source of information in cell signaling, cell biology, and biomechanics, as well as in immunology. Through selected examples, I highlight the importance of recent studies on this crosstalk, which have unveiled new mechanisms of regulation of Rho GTPases; the relationship between cell shape and actin cytoskeleton organization; and the relationship between Rho GTPases and innate immune signaling.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- UCA, Inserm, C3M, U1065, Team Microbial Toxins in Host Pathogen Interactions, Equipe Labellisée la Ligue Contre le Cancer, Nice, 06204, France.
- UFR Médecine, Université de Nice-Sophia-Antipolis, Nice, France.
| |
Collapse
|
17
|
EDIN-B Promotes the Translocation of Staphylococcus aureus to the Bloodstream in the Course of Pneumonia. Toxins (Basel) 2015; 7:4131-42. [PMID: 26501320 PMCID: PMC4626725 DOI: 10.3390/toxins7104131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
It is crucial to define risk factors that contribute to host invasion by Staphylococcusaureus. Here, we demonstrate that the chromosomally encoded EDIN-B isoform from S. aureus contributes to the onset of bacteremia during the course of pneumonia. Deletion of edinB in a European lineage community-acquired methicillin resistant S. aureus (CA-MRSA) strain (ST80-MRSA-IV) dramatically decreased the frequency and magnitude of bacteremia in mice suffering from pneumonia. This deletion had no effect on the bacterial burden in both blood circulation and lung tissues. Re-expression of wild-type EDIN-B, unlike the catalytically inactive mutant EDIN-R185E, restored the invasive characteristics of ST80-MRSA-IV.
Collapse
|