1
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Yan S, Xu W, Fang N, Li L, Yang N, Zhao X, Hao H, Zhang Y, Liang Q, Wang Z, Duan Y, Zhang S, Gong Y, Li Y. Ibrutinib-induced pulmonary angiotensin-converting enzyme activation promotes atrial fibrillation in rats. iScience 2024; 27:108926. [PMID: 38357670 PMCID: PMC10864204 DOI: 10.1016/j.isci.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
The molecular mechanism of ibrutinib-induced atrial fibrillation (AF) remains unclear. We here demonstrate that treating rats with ibrutinib for 4 weeks resulted in the development of inducible AF, left atrial enlargement, atrial fibrosis, and downregulation of connexin expression, which were associated with C-terminal Src kinase (CSK) inhibition and Src activation. Ibrutinib upregulated angiotensin-converting enzyme (ACE) protein expression in human pulmonary microvascular endothelial cells (HPMECs) by inhibiting the PI3K-AKT pathway, subsequently increasing circulating angiotensin II (Ang II) levels. However, the expression of ACE and Ang II in the left atria was not affected. Importantly, we observed that perindopril significantly mitigated ibrutinib-induced left atrial remodeling and AF promotion by inhibiting the activation of the ACE and its downstream CSK-Src signaling pathway. These findings indicate that the Ibrutinib-induced activation of the ACE contributes to AF development and could serve as a novel target for potential prevention strategies.
Collapse
Affiliation(s)
- Sen Yan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wei Xu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Ning Fang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Luyifei Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Ning Yang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yun Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qian Liang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Zhiqi Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang 150001, China
- Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
3
|
Siratavičiūtė V, Pangonytė D, Utkienė L, Jusienė L, Marcinkevičienė J, Stanionienė Z, Radikė R. Myocardial Angiotensin-Converting Enzyme 2 Protein Expression in Ischemic Heart Failure. Int J Mol Sci 2023; 24:17145. [PMID: 38138974 PMCID: PMC10743033 DOI: 10.3390/ijms242417145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis plays a significant role in regulating myocardial remodeling and the development of heart failure (HF), with ACE2 being the primary focus. However, contemporary understanding of the membrane-bound form of the human ACE2 protein remains insufficient. The purpose of this study was to determine the expression of ACE2 protein in different cells of the left ventricular myocardium in non-diseased hearts and at various stages of ischemic HF. A total of 103 myocardial tissue samples from the left ventricle underwent quantitative and semi-quantitative immunohistochemical analysis. Upon assessing ACE2 immunostaining in all myocardial cells through unselective digital image analysis, there was no change in the stage A HF group. Nevertheless, the expression of ACE2 membrane protein in cardiomyocytes showed a tendency to increase, while non-cardiomyocyte ACE2 expression decreased significantly (p < 0.001). In the stage B HF group, the intensity of ACE2 immunostaining continued to increase with rising cardiomyocyte ACE2 expression (p < 0.001). Non-cardiomyocyte expression, in contrast, remained similar to that observed in the stage A HF group. In the stages C/D HF group, ACE2 expression reached its highest level in cardiomyocytes (p < 0.001), while ACE2 expression in non-cardiomyocytes was the lowest (p < 0.001). These changes in ACE2 protein levels are associated with left ventricular remodeling in ischemic HF.
Collapse
Affiliation(s)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.S.); (L.U.); (L.J.); (J.M.); (Z.S.); (R.R.)
| | | | | | | | | | | |
Collapse
|
4
|
Mia MS, Hossain D, Woodbury E, Kelleher S, Palamuttam RJ, Rao R, Steen P, Jarajapu YP, Mathew S. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur J Cell Biol 2023; 102:151316. [PMID: 37084657 PMCID: PMC11086052 DOI: 10.1016/j.ejcb.2023.151316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin β1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin β1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin β1 in the kidneys. Deletion of integrin β1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin β1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2β1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin β1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.
Collapse
Affiliation(s)
- Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Delowar Hossain
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Emerson Woodbury
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sean Kelleher
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | | | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Preston Steen
- Sanford Health Roger Maris Cancer Center, Fargo, ND, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND, USA; Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Ma X, Meng Q, Gong S, Shi S, Liang X, Lin F, Gong L, Liu X, Li Y, Li M, Wei L, Han W, Gao L, Liu Z, Zhou X. IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction. Heliyon 2023; 9:e17099. [PMID: 37441391 PMCID: PMC10333439 DOI: 10.1016/j.heliyon.2023.e17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Excessive and chronic inflammation post myocardial infarction (MI) causes cardiac fibrosis and progressive ventricular remodeling, which leads to heart failure. We previously found high levels of IL-27 in the heart and serum until day 14 in murine cardiac ischemia‒reperfusion injury models. However, whether IL-27 is involved in chronic inflammation-mediated ventricular remodeling remains unclear. In the present study, we found that MI triggered high IL-27 expression in murine cardiac macrophages. The increased expression of IL-27 in serum is correlated with cardiac dysfunction and aggravated fibrosis after MI. Furthermore, the addition of IL-27 significantly activated the JAK/STAT signaling pathway in cardiac fibroblasts (CFs). Meanwhile, IL-27 treatment promoted the proliferation, migration and extracellular matrix (ECM) production of CFs induced by angiotensin II (Ang II). Collectively, high levels of IL-27 mainly produced by cardiac macrophages post MI contribute to the activation of CFs and aggravate cardiac fibrosis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121000, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Li Gong
- Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121000, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mimi Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Lu Wei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Leng Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, PR China
| | - Zhongmin Liu
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| |
Collapse
|
6
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
7
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
8
|
Liu Y, Dai M, Yang P, Cao L, Lu L. Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) directly binds to proto-oncogene tyrosine-protein kinase Src (c-Src) and promotes the transcriptional activation of connexin 43 (Cx43). Bioengineered 2022; 13:13534-13543. [PMID: 35659197 PMCID: PMC9276044 DOI: 10.1080/21655979.2022.2079252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prevalence of atrial fibrillation (AF), which is one of the common arrhythmias in clinics, is increasing sharply and has affected millions of patients, which is expected to triple by 2050. The purpose of the study was to explore the regulatory relationship between Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) and proto-oncogene tyrosine-protein kinase Src (c-Src) and the regulation of Connexins 43 (Cx43), and its effect on AF was also studied. Mouse atrial myocyte line (HL-1 cell line) was used as the research object. After overexpression of SHP-1, the expressions of p-c-Src, Cx43, and SHP-1 were detected by Western blot and cellular immunofluorescence, respectively. The location and interaction of SHP-1 and c-Src in the cells were detected by immunofluorescence co-localization and co-immunoprecipitation (Co-IP). The regulation of c-Src and Cx43 was detected by DNA pull down, chromatin co-immunoprecipitation (CHIP), and dual-luciferase reporter system. The results revealed that overexpression of SHP-1 could inhibit the phosphorylation and activation of c-Src and increase the expression of Cx43. Moreover, there was a direct binding between SHP-1 and c-Src, and c-Src could bind to the promoter region of Cx43 and inhibit the transcription of Cx43. In conclusion, SHP-1 could bind to c-Src and inhibit the activity of c-Src, thus enhancing the transcriptional activation of Cx43 and improving the function of gap junction.
Collapse
Affiliation(s)
- YiHao Liu
- Department of Cardiovascular Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Dai
- Department of Palliative Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - PengHui Yang
- Department of Cardiovascular Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Cheng F, Liu J, Guo Z, Li S, Chen J, Tu C, Fu F, Shen B, Zhang X, Lai G, Lan J. Angiotensin-(1-7) ameliorates high glucose-induced vascular endothelial injury through suppressing chloride channel 3. Bioengineered 2022; 13:4100-4111. [PMID: 35098884 PMCID: PMC8973701 DOI: 10.1080/21655979.2021.1997695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetes Mellitus (DM) is a significant risk factor for cardiovascular disease (CVD), which is leading cause of deaths in DM patients. However, there are limited effective medical therapies for diabetic CVD. Vascular endothelial injury caused by DM is a critical risk factor for diabetic CVD. Previous study has indicated that Angiotensin-(1-7) (Ang-(1-7)) may prevent diabetic CVD, whereas it is not clear that Ang-(1-7) whether attenuates diabetic CVD through suppressing vascular endothelial injury. In this study, we found that Ang-(1-7) alleviated high glucose (HG)-induced endothelial injury in bEnd3 cells. Moreover, Ang-(1-7) ameliorated HG-induced endothelial injury through downregulating chloride channel 3 (CIC-3) via Mas receptor. Furthermore, HG-induced CIC-3 enhanced reactive oxygen species (ROS) and cytokine production and reduced the level of nitric oxide (NO), while Ang-(1-7) preserved the impact of HG-induced CIC-3 on productions of ROS, cytokine and NO through inhibiting CIC-3 via Mas receptor. Summarily, the present study revealed that Ang-(1-7) alleviated HG-induced vascular endothelial injury through the inhibition of CIC-3, suggested that Ang-(1-7) may preserve diabetic CVD through suppressing HG-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Fei Cheng
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China.,Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jing Liu
- Second Ward of General Pediatrics, Dongguan Eighth People's Hospital, Dongguan Children's Hospital, Dongguan City, Guangdong Province 523321, China
| | - Zhuolin Guo
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Shicheng Li
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Jingfu Chen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Chang Tu
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Fengzhou Fu
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Bai Shen
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Xiaojie Zhang
- Second Ward of Cardiovascular Medicine, Dongguan Songshan Lake Center Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan City, Guangdong Province 523326, China
| | - Guohua Lai
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| | - Jun Lan
- Dongguan Cardiovascular Institute, Dongguan Third People's Hospital, Dongguan City, Guangdong Province 523326, China
| |
Collapse
|
10
|
Lu L, Cao L, Liu Y, Chen Y, Fan J, Yin Y. Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)). Bioengineered 2021; 12:10823-10836. [PMID: 34872449 PMCID: PMC8809921 DOI: 10.1080/21655979.2021.1967035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To verify whether Ang-(1-7) produces an antagonistic effect on Ang II-mediated atrial remodeling. Ang II–induced HL-1 cell model and a rat model of Ang II–induced atrial remodeling were constructed and intervened with Ang II Ang-(1-7), AngII +Ang-(1-7), Ang II+ c-Src specific inhibitor (SU6656), and Ang II + Ang-(1-7) + SSG (SHP-1/2 specific inhibitor, stibogluconate), respectively. The systolic blood pressure of the rat caudal artery was detected. And trial fibrosis was detected by Picrosirius red staining and Masson’s trichrome staining. Expressions of transforming growth factor-β (TGF-β), tissue inhibitor of metalloproteinases 1 (TIMP1), Matrix metalloproteinase 2 (MMP-2), connective tissue growth factor (CTGF), galectin-3, α-smooth muscle actin (α-SMA), and collagen I/III were subjected to qPCR and western blot. Furthermore, SHP-1 binding to c-Src was verified by co-immunoprecipitation (Co-IP). Results showed that the expressions of TGF-β, TIMP1, MMP-2, CTGF, α-SMA, galectin-3, and collagen I were increased markedly in the Ang II intervention group, and the expressions of p-ERK1/2, p-Akt, and p-p38MAPK were also increased dramatically. Ang-(1-7) or SU6656 addition could inhibit the action of Ang II factor, thereby minimizing the expressions of the previously described genes and proteins. Simultaneously, SSG supplement reversed the antagonistic effect of Ang-(1-7) on Ang II, and the latter elevated the blood pressure and induced atrial fibrosis in rats. Ang-(1-7) could reverse the changes related to Ang II–induced atrial fibrosis in rats. In conclusion, Ang-(1-7) antagonized Ang II–induced atrial remodeling by regulating SHP-1 and c-Src, thereby affecting the MAPKs/Akt signaling pathway.
Collapse
Affiliation(s)
- Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yihao Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
SAHA could inhibit TGF-β1/p38 pathway in MI-induced cardiac fibrosis through DUSP4 overexpression. Heart Vessels 2021; 37:152-160. [PMID: 34236463 PMCID: PMC8732849 DOI: 10.1007/s00380-021-01900-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/02/2021] [Indexed: 11/01/2022]
Abstract
Growing evidences have revealed that a histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA) has anti-fibrotic effect in different diseases. In this study, we first evaluated whether SAHA could suppress cardiac fibrosis. Mice with MI-induced cardiac fibrosis were treated with SAHA by intraperitoneal injection and their cardiac function was improved after SAHA treatment. Results of western blotting and qRT-PCR in heart tissues suggested that TGFβ1/P38 pathway was activated in MI mice, and this effect was reversed by SAHA. Cell proliferation assay suggested that SAHA could suppress TGF-β1-induced cardiac fibroblasts proliferation. Furthermore, results of western blotting and qRT-PCR in cardiac fibroblasts depicted that SAHA may exert its anti-fibrotic effect through inhibiting TGF-β1-induced P38 phosphorylation by promoting DUSP4 expression. Our findings may substantiate SAHA as a promising treatment for MI-induced cardiac fibrosis.
Collapse
|
13
|
Passaro F, Tocchetti CG, Spinetti G, Paudice F, Ambrosone L, Costagliola C, Cacciatore F, Abete P, Testa G. Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev 2021; 174:461-481. [PMID: 33984409 DOI: 10.1016/j.addr.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms and signs caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress. Due to increasing incidence, prevalence and, most importantly mortality, HF is a healthcare burden worldwide, despite the improvement of treatment options and effectiveness. Acute and chronic cardiac injuries trigger the activation of neurohormonal, inflammatory, and mechanical pathways ultimately leading to fibrosis, which plays a key role in the development of cardiac dysfunction and HF. The use of nanoparticles for targeted drug delivery would greatly improve therapeutic options to identify, prevent and treat cardiac fibrosis. In this review we will highlight the mechanisms of cardiac fibrosis development to depict the pathophysiological features for passive and active targeting of acute and chronic cardiac fibrosis with nanoparticles. Then we will discuss how cardiomyocytes, immune and inflammatory cells, fibroblasts and extracellular matrix can be targeted with nanoparticles to prevent or restore cardiac dysfunction and to improve the molecular imaging of cardiac fibrosis.
Collapse
|
14
|
Wang Z, Huang W, Ren F, Luo L, Zhou J, Huang D, Jiang M, Du H, Fan J, Tang L. Characteristics of Ang-(1-7)/Mas-Mediated Amelioration of Joint Inflammation and Cardiac Complications in Mice With Collagen-Induced Arthritis. Front Immunol 2021; 12:655614. [PMID: 34079544 PMCID: PMC8165283 DOI: 10.3389/fimmu.2021.655614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is a disabling disease with a high incidence that is regularly accompanied by cardiovascular complications. Several studies have suggested that renin–angiotensin–aldosterone system (RAAS) is closely associated with RA. The aim of this study was to investigate the mechanisms underlying Angiotensin-(1–7) [Ang-(1–7)] and its Mas receptor agonist (AVE0991) on joint inflammation and cardiac complications in a collagen-induced arthritis (CIA) model. Methods Collagen type II was injected into DBA/1 mice to construct an arthritis model. CIA mice were treated with Ang-(1–7) (2.0 mg/kg intraperitoneally) and AVE0991 (3.0 mg/kg intraperitoneally). The serum levels of inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 β, IL-6, and C-reactive protein (CRP)] were determined by ELISA. The mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling pathways in joint tissues and the transforming growth factor (TGF)-β/Smad pathway and levels of α-Smooth muscle action (SMA) and β-myosin heavy chain (MHC) protein expression in cardiac tissues were assessed by western blots. The levels of TGF-β/Smad pathway, α-SMA, and β-MHC RNA in cardiac tissues were analyzed by real time-PCR. The levels of receptor activator of nuclear factor kappa ligand (RANKL) and promoting matrix metalloproteinase (MMP)-3 expression in the ankle joints were detected by immunohistochemistry and real time-PCR. Results Ang-(1–7) and AVE0991 reduced the levels of inflammatory cytokines and inhibited the MAPKs and NF-κB signaling pathways in ankle joint tissues, reduced RANKL and MMP3 expression, and ameliorated local joint inflammation and bone destruction compared with the control group. In addition, Ang-(1–7) and AVE0991 attenuated the TGF-β/Smad signaling pathway, reduced the levels of α-SMA and β-MHC expression, and diminished inflammatory cell infiltration into the myocardial interstitium and myocardial interstitial fibrosis in the hearts of CIA mice. Conclusions Ang-(1–7) alleviated joint damage caused by inflammation likely through the attenuation of NF-κB and MAPK pathways and ameliorated inflammation-induced cardiac fibrosis and activation of the TGF-β/Smad pathway. Moreover, Ang-(1–7) was likely mediated through the Mas receptor. This study provides theoretical evidence for exploring novel clinical therapeutic approaches for RA and its cardiac complications.
Collapse
Affiliation(s)
- Zhongjie Wang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feifeng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Luo
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Zhou
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongmei Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Jiang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaan Du
- Department of Cardiovascular, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiovascular, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
16
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
17
|
Shi J, Xiao P, Liu X, Chen Y, Xu Y, Fan J, Yin Y. Notch3 Modulates Cardiac Fibroblast Proliferation, Apoptosis, and Fibroblast to Myofibroblast Transition via Negative Regulation of the RhoA/ROCK/Hif1α Axis. Front Physiol 2020; 11:669. [PMID: 32695015 PMCID: PMC7339920 DOI: 10.3389/fphys.2020.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis is a common pathological process in multiple cardiovascular diseases, including myocardial infarction (MI). Abnormal cardiac fibroblast (CF) activity is a key event in cardiac fibrosis. Although the Notch signaling pathway has been reported to play a vital role in protection from cardiac fibrosis, the exact mechanisms underlying cardiac fibrosis and protection from it have not yet been elucidated. Similarly, Hif1α and the RhoA/ROCK signaling pathway have been shown to participate in cardiac fibrosis. The RhoA/ROCK signaling pathway has been reported to be an upstream pathway of Hif1α in several pathophysiological processes. In the present study, we aimed to determine the effects of notch3 on CF activity and its relationship with the RhoA/ROCK/Hif1α signaling pathway. Using in vitro experiments, we demonstrated that notch3 inhibited CF proliferation and fibroblast to myofibroblast transition (FMT) and promoted CF apoptosis. A knockdown of notch3 using siRNAs had the exact opposite effect. Next, we found that notch3 regulated CF activity by negative regulation of the RhoA/ROCK/Hif1α signaling pathway. Extending CF-based studies to an in vivo rat MI model, we showed that overexpression of notch3 by the Ad-N3ICD injection attenuated the increase of RhoA, ROCK1, ROCK2, and Hif1α levels following MI and further prevented MI-induced cardiac fibrosis. On the basis of these results, we conclude that notch3 is involved in the regulation of several aspects of CF activity, including proliferation, FMT, and apoptosis, by inhibiting the RhoA/ROCK/Hif1α signaling pathway. These findings are significant to further our understanding of the pathogenesis of cardiac fibrosis and to ultimately identify new therapeutic targets for cardiac fibrosis, potentially based on the RhoA/ROCK/Hif1α signaling pathway.
Collapse
Affiliation(s)
- Jianli Shi
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peilin Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA, United States
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
19
|
Chen YL, Fan J, Cao L, Han TL, Zeng M, Xu Y, Ling Z, Yin Y. Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res 2019; 378:158-170. [PMID: 30844388 DOI: 10.1016/j.yexcr.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cell metabolic pathways are highly conserved among species and change rapidly in response to drug stimulation. Therefore, we explore the effects of angiotensin-(1-7) in a primary cell model of cardiac fibrosis established in angiotensin II-stimulated cardiac fibroblasts via metabolomics analysis and further clarify the potential protective mechanism of angiotensin-(1-7). METHODS AND RESULTS After exposing cardiac fibroblasts to angiotensin II and/or angiotensin-(1-7), 172 metabolites in these cells were quantified and identified by gas chromatography-mass spectrometry. The data were subsequently analyzed by orthogonal partial least squares discriminant analysis to shortlist biochemically significant metabolites associated with the antifibrotic action of angiotensin-(1-7). Seven significant metabolites were identified: 10,13-dimethyltetradecanoic acid, arachidonic acid, aspartic acid, docosahexaenoic acid (DHA), glutathione, palmitelaidic acid, and pyroglutamic acid. By metabolic network analysis, we found that these metabolites were involved in six metabolic pathways, including arachidonic acid metabolism, leukotriene metabolism, and the γ-glutamyl cycle. Since these metabolic pathways are related to calcium balance and oxidative stress, we further verified that angiotensin-(1-7) suppressed the abnormal extracellular calcium influx and excessive accumulation of intracellular reactive oxygen species (ROS) in angiotensin II-stimulated cardiac fibroblasts. Furthermore, we found that angiotensin-(1-7) suppressed the abnormal calcium- and ROS-dependent activation of calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ), the increased expression of CaMKIIδ-related proteins (NADPH oxidase 4 (Nox4), cellular communication network factor 2 (CTGF), and p-ERK1/2), and excessive collagen deposition in vitro and in vivo. CONCLUSIONS Angiotensin-(1-7) can ameliorate the angiotensin II-stimulated metabolic perturbations associated with cardiac fibroblast activation. These metabolic changes indicate that modulation of calcium- and ROS-dependent activation of CaMKIIδ mediates the activity of angiotensin-(1-7) against cardiac fibrosis. Moreover, pyroglutamic acid and arachidonic acid may be potential biomarkers for monitoring the antifibrotic action of angiotensin-(1-7).
Collapse
Affiliation(s)
- Yun-Lin Chen
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Jinqi Fan
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China; Departments of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Li Cao
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, the 1st Affiliated Hospital of Chongqing Medical University, China; Liggins Institute, University of Auckland, New Zealand; Mass Spectrometry Centre, China-Canada-New Zealand Joint Laboratory of Maternal and Foetal Medicine, Chongqing Medical University, China
| | - Mengying Zeng
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yanping Xu
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Zhiyu Ling
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yuehui Yin
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
20
|
Cao L, Chen Y, Lu L, Liu Y, Wang Y, Fan J, Yin Y. Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim Biophys Sin (Shanghai) 2018; 50:843-852. [PMID: 30060053 DOI: 10.1093/abbs/gmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
In cardiac fibroblasts, angiotensin II (Ang II) can increase connexin 43 (Cx43) expression and promote calmodulin-dependent protein kinase II (CaMKII) activation. Cx43 overexpression is crucial for the fibroblast-myofibroblast transition. The main purpose of the present study was to investigate the role of CaMKII in regulating Cx43 expression and to determine whether the CaMKII/Cx43 pathway is essential for controlling fibroblast activation and differentiation. In vivo, 4 weeks of Ang II infusion enhanced CaMKII activation but reduced Cx43 expression in hearts undergoing fibrosis remodeling, while in cultured neonatal rat fibroblasts, CaMKII activation upregulated Cx43 expression via transforming growth factor-beta1 (TGF-β1). CaMKII inhibition by Ang-(1-7) or autocamtide 2-related inhibitory peptide reversed the Ang II-induced changes in Cx43 expression and attenuated Ang II-induced upregulation of alpha smooth muscle actin and TGF-β1 in both Ang II-infused rats and cultured fibroblasts. Based on the in vivo and in vitro experimental results, CaMKII plays a pivotal role in the Ang II-mediated fibroblast-myofibroblast transition by modulating the expressions of TGF-β1 and Cx43. We conclude that Ang II mediates the fibroblast-myofibroblast transition partially via the Ang II/CaMKII/TGF-β1/Cx43 signaling pathway.
Collapse
Affiliation(s)
- Li Cao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Lu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yihao Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaowen Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Kittana N. Angiotensin-converting enzyme 2-Angiotensin 1-7/1-9 system: novel promising targets for heart failure treatment. Fundam Clin Pharmacol 2017; 32:14-25. [DOI: 10.1111/fcp.12318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Naim Kittana
- Department of Biomedical Sciences; An-Najah National University; New Campus, Pharmacy Building, 2nd Floor, Akademia Street, PO Box: 7 Nablus West-Bank Palestine
| |
Collapse
|
22
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
23
|
Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, Wang X, Zhu M. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway. Mol Med Rep 2016; 14:1610-6. [PMID: 27315199 PMCID: PMC4940101 DOI: 10.3892/mmr.2016.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 05/27/2016] [Indexed: 11/05/2022] Open
Abstract
Jia-Shen decoction (JSD) is a traditional Chinese medicine, which is used widely to treat chronic heart failure. However, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism underlying the effects of JSD on cardiac fibroblast (CF) proliferation and differentiation. The CFs were obtained from the hearts of neonatal (1‑3‑day old) Sprague‑Dawley rats and treated with JSD-medicated serum (JSDS) with or without angiotensin II (Ang II). Cell proliferation was assessed using Cell Counting Kit‑8 reagent. In addition, the mRNA expression levels of transforming growth factor‑β1 (TGF‑β1) and phosphorylated small mothers against decapentaplegic (p‑Smad)2/3 and their protein expression levels were analyzed. CF proliferation was significantly increased in the Ang II‑treated group, compared with the control group (P<0.05). The expression levels of collagen, α‑smooth muscle actin, TGF‑β1 and p‑Smad2/3 were also increased in the Ang II‑treated group (P<0.05). Following JSDS treatment, the increased levels of collagen and cell proliferation were inhibited, and the increased expression levels of p‑Smad2 and p‑Smad3 were also inhibited (P<0.05). These data suggested that JSDS may inhibit CF proliferation via attenuating the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Lin Cui
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Youping Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Yu
- Department of Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bin Li
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shiyang Xie
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yuan Gao
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoxiao Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Mingjun Zhu
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
24
|
Tao H, Cao W, Yang JJ, Shi KH, Zhou X, Liu LP, Li J. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol 2016; 25:381-9. [PMID: 27318893 DOI: 10.1016/j.carpath.2016.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/29/2023] Open
Abstract
Down-regulation of DUSP5 has been shown to increase cell proliferation. DUSP5 expression is regulated through epigenetic events involving LncRNA H19 human choriocarcinoma cell line. However, the molecular mechanisms of H19 modulating the DUSP5 expression in cardiac fibrosis remain largely unknown. Here, we identify H19 negatively regulation of DUSP5 gene expression in cardiac fibroblast and fibrosis tissues. In vivo, the expression levels of H19, DUSP5, α-SMA, p-ERK1/2, and ERK1/2 in cardiac fibrosis tissue were estimated by Western blotting, quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. In vitro stimulation of freshly isolated rat cardiac fibroblasts with recombinant marine TGF-β1 was performed, followed by quantitative reverse transcription-polymerase chain reaction and Western blotting to detect changes in H19, DUSP5, p-ERK1/2, and ERK1/2 levels. Cardiac fibroblasts were transfected with pEX-3-H19 overexpressing, H19-RNAi down-regulating, or pEGFP-C1-DUSP5 overexpressing. Finally, cell proliferation was assessed by the MTT assay and cell cycle. H19 endogenous expression is overexpressed in cardiac fibroblast and fibrosis tissues, and an opposite pattern is observed for DUSP5. H19 ectopic overexpression reduces DUSP5 abundance and increases the proliferation of cardiac fibroblast, whereas H19 silencing causes the opposite effects. In a broader perspective, these results demonstrated that LncRNA H19 contributes to cardiac fibroblast proliferation and fibrosis, which act in part through repression of DUSP5/ERK1/2.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Cao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Li-Ping Liu
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
25
|
Li WQ, Li XH, Du J, Zhang W, Li D, Xiong XM, Li YJ. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:757-67. [PMID: 27052575 DOI: 10.1007/s00210-016-1240-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Abstract
Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway.
Collapse
Affiliation(s)
- Wen-Qun Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wang Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiao-Ming Xiong
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
26
|
Akhtar S, Chandrasekhar B, Attur S, Dhaunsi GS, Yousif MHM, Benter IF. Transactivation of ErbB Family of Receptor Tyrosine Kinases Is Inhibited by Angiotensin-(1-7) via Its Mas Receptor. PLoS One 2015; 10:e0141657. [PMID: 26536590 PMCID: PMC4633289 DOI: 10.1371/journal.pone.0141657] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/12/2015] [Indexed: 01/03/2023] Open
Abstract
Transactivation of the epidermal growth factor receptor (EGFR or ErbB) family members, namely EGFR and ErbB2, appears important in the development of diabetes-induced vascular dysfunction. Angiotensin-(1–7) [Ang-(1–7)] can prevent the development of hyperglycemia-induced vascular complications partly through inhibiting EGFR transactivation. Here, we investigated whether Ang-(1–7) can inhibit transactivation of ErbB2 as well as other ErbB receptors in vivo and in vitro. Streptozotocin-induced diabetic rats were chronically treated with Ang-(1–7) or AG825, a selective ErbB2 inhibitor, for 4 weeks and mechanistic studies performed in the isolated mesenteric vasculature bed as well as in cultured vascular smooth muscle cells (VSMCs). Ang-(1–7) or AG825 treatment inhibited diabetes-induced phosphorylation of ErbB2 receptor at tyrosine residues Y1221/22, Y1248, Y877, as well as downstream signaling via ERK1/2, p38 MAPK, ROCK, eNOS and IkB-α in the mesenteric vascular bed. In VSMCs cultured in high glucose (25 mM), Ang-(1–7) inhibited src-dependent ErbB2 transactivation that was opposed by the selective Mas receptor antagonist, D-Pro7-Ang-(1–7). Ang-(1–7) via Mas receptor also inhibited both Angiotensin II- and noradrenaline/norephinephrine-induced transactivation of ErbB2 and/or EGFR receptors. Further, hyperglycemia-induced transactivation of ErbB3 and ErbB4 receptors could be attenuated by Ang-(1–7) that could be prevented by D-Pro7-Ang-(1–7) in VSMC. These data suggest that Ang-(1–7) via its Mas receptor acts as a pan-ErbB inhibitor and might represent a novel general mechanism by which Ang-(1–7) exerts its beneficial effects in many disease states including diabetes-induced vascular complications.
Collapse
MESH Headings
- Angiotensin I/pharmacology
- Animals
- Blotting, Western
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/pharmacology
- Phosphorylation
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transcriptional Activation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- * E-mail:
| | - Bindu Chandrasekhar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Sreeja Attur
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Gursev S. Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Mariam H. M. Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Ibrahim F. Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
27
|
Zhu L, Carretero OA, Xu J, Harding P, Ramadurai N, Gu X, Peterson E, Yang XP. Activation of angiotensin II type 2 receptor suppresses TNF-α-induced ICAM-1 via NF-кB: possible role of ACE2. Am J Physiol Heart Circ Physiol 2015; 309:H827-34. [PMID: 26163449 DOI: 10.1152/ajpheart.00814.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/09/2015] [Indexed: 11/22/2022]
Abstract
ANG II type 2 receptor (AT2) and ANG I-converting enzyme 2 (ACE2) are important components of the renin-ANG system. Activation of AT2 and ACE2 reportedly counteracts proinflammatory effects of ANG II. However, the possible interaction between AT2 and ACE2 has never been established. We hypothesized that activation of AT2 increases ACE2 activity, thereby preventing TNF-α-stimulated ICAM-1 expression via inhibition of NF-κB signaling. Human coronary artery endothelial cells were pretreated with AT2 antagonist PD123319 (PD) or ACE2 inhibitor DX600 and then stimulated with TNF-α in the presence or absence of AT2 agonist CGP42112 (CGP). We found that AT2 agonist CGP increased both ACE2 protein expression and activity. This effect was blunted by AT2 antagonist PD. ICAM-1 expression was very low in untreated cells but greatly increased by TNF-α. Activation of AT2 with agonist CGP or with ANG II under concomitant AT1 antagonist reduced TNF-α-induced ICAM-1 expression, which was reversed by AT2 antagonist PD or ACE2 inhibitor DX600 or knockdown of ACE2 with small interfering RNA. AT2 activation also suppressed TNF-α-stimulated phosphorylation of inhibitory κB (p-IκB) and NF-κB activity. Inhibition of ACE2 reversed the inhibitory effect of AT2 on TNF-α-stimulated p-IκB and NF-κB activity. Our findings suggest that stimulation of AT2 reduces TNF-α-stimulated ICAM-1 expression, which is partly through ACE2-mediated inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Liping Zhu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Nithya Ramadurai
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Xiaosong Gu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Edward Peterson
- Department of Public Health Science, Henry Ford Hospital, Detroit, Michigan
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| |
Collapse
|
28
|
Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int J Exp Pathol 2014; 95:290-5. [PMID: 24953785 DOI: 10.1111/iep.12087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023] Open
Abstract
Novel treatments are necessary to reduce the burden of cardiovascular disease (CVD). Alamandine binds to MrgD and is reported to induce vasodilation via stimulation of endothelial nitric oxide synthase (eNOS), but its role in atherogenic blood vessels is yet to be determined. To determine the vasoactive role of alamandine and its precursor AngA in diseased aorta, New Zealand White rabbits were fed a diet containing 1% methionine + 0.5% cholesterol + 5% peanut oil for 4 weeks (MC, n = 5) or control (n = 6). In abdominal aorta, alamandine (1 μM) was added 30 min before a dose-response curve to angiotensin II or AngA (1 nM-1 μM), and immunohistochemistry was used to identify MrgD receptors and eNOS. The thoracic aorta, renal, carotid and iliac arteries were mounted in organ baths. Rings were precontracted with phenylephrine, then a bolus dose of alamandine (1 μM) was added 10 min before a dose-response curve to acetylcholine (0.01 μM-10 μM). The MrgD receptor was localized to normal and diseased aorta and colocalized with eNOS. In control but not diseased blood vessels, alamandine enhanced acetylcholine-mediated vasodilation in the thoracic aorta and the iliac artery (P < 0.05) and reduced it in the renal artery (P < 0.05). In control abdominal aorta, AngA evoked less desensitization than AngII (P < 0.05) and alamandine reduced AngA-mediated vasoconstriction (P < 0.05). In MC, AngA constriction was markedly reduced vs. control (P < 0.05). The vasoactivity of alamandine and AngA are reduced in atherogenesis. Its role in the prevention of CVD remains to be validated.
Collapse
Affiliation(s)
- Belthrand Habiyakare
- Centre for Chronic Disease Prevention & Management (CCDPM), College of Health and Biomedicine, Victoria University, St Albans Campus, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|