1
|
Tajeri S, Shiels B, Langsley G, Nijhof AM. Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes. Microb Pathog 2025; 199:107252. [PMID: 39730099 DOI: 10.1016/j.micpath.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood. We previously showed that the Ta9 protein from T. annulata (TA15705) is secreted into the host cell cytoplasm and contributes to infection-induced AP-1 transcriptional activity. The current study employed RNA-seq to investigate the ability of ectopically expressed Ta9 to modulate the gene transcription profile of a bovine macrophage cell line, BoMac. RNA-seq identified 560 (400 upregulated and 160 downregulated) differentially expressed genes. KEGG analysis predicted a high number of upregulated genes associated with carcinogenesis such as CCND1, CDKN1A, ETV4, ETV5, FLI1, FRA1, GLI2, GRO1, HCK, IL7R, MYBL1, MYCN, PIM1 and TAL1. Ta9 introduction also affected genes associated with proinflammatory processes such as cytokines, chemokines, growth factors and metalloproteinases. Enrichment analysis of differentially expressed genes revealed that Ta9 is potentially involved in activating other host cell signaling pathways in addition to those that lead to induction of AP-1. Comparing our data with data on differentially expressed BoMac genes modulated by the secreted TashAT2 factor of T. annulata identified the gene encoding the tyrosine protein kinase hematopoietic cell kinase (HCK) as common to both data sets. HCK is essential for the proliferation of T. parva-transformed B cells and herein, we demonstrate that enzymatic activity of HCK is also essential for T. annulata- and T. lestoquardi-transformed macrophage proliferation.
Collapse
Affiliation(s)
- Shahin Tajeri
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France; Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Ard Menzo Nijhof
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| |
Collapse
|
2
|
Brühlmann F, Perry C, Griessen C, Gunasekera K, Reymond JL, Naguleswaran A, Rottenberg S, Woods K, Olias P. TurboID mapping reveals the exportome of secreted intrinsically disordered proteins in the transforming parasite Theileria annulata. mBio 2024; 15:e0341223. [PMID: 38747635 PMCID: PMC11237503 DOI: 10.1128/mbio.03412-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.
Collapse
Affiliation(s)
- Francis Brühlmann
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Carmen Perry
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Kapila Gunasekera
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | | | - Sven Rottenberg
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Kerry Woods
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Villares M, Lourenço N, Ktorza I, Berthelet J, Panagiotou A, Richard A, Amo A, Koziy Y, Medjkane S, Valente S, Fioravanti R, Pioche-Durieu C, Lignière L, Chevreux G, Mai A, Weitzman JB. Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy. Nat Commun 2024; 15:2235. [PMID: 38472173 DOI: 10.1038/s41467-024-45022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.
Collapse
Affiliation(s)
- Marie Villares
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Nelly Lourenço
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Ivan Ktorza
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aristeidis Panagiotou
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aurélie Richard
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Angélique Amo
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Yulianna Koziy
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Souhila Medjkane
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Sergio Valente
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Laurent Lignière
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, 00185, Italy
| | - Jonathan B Weitzman
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France.
| |
Collapse
|
4
|
Elati K, Tajeri S, Obara I, Mhadhbi M, Zweygarth E, Darghouth MA, Nijhof AM. Dual RNA-seq to catalogue host and parasite gene expression changes associated with virulence of T. annulata-transformed bovine leukocytes: towards identification of attenuation biomarkers. Sci Rep 2023; 13:18202. [PMID: 37875584 PMCID: PMC10598219 DOI: 10.1038/s41598-023-45458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The apicomplexan parasite Theileria annulata is transmitted by Hyalomma ticks and causes an acute lymphoproliferative disease that is invariably lethal in exotic cattle breeds. The unique ability of the schizont stage of T. annulata to transform infected leukocytes to a cancer-like phenotype and the simplicity of culturing and passaging T. annulata-transformed cells in vitro have been explored for live vaccine development by attenuating the transformed cells using lengthy serial propagation in vitro. The empirical in vivo evaluation of attenuation required for each batch of long-term cultured cells is a major constraint since it is resource intensive and raises ethical issues regarding animal welfare. As yet, the molecular mechanisms underlying attenuation are not well understood. Characteristic changes in gene expression brought about by attenuation are likely to aid in the identification of novel biomarkers for attenuation. We set out to undertake a comparative transcriptome analysis of attenuated (passage 296) and virulent (passage 26) bovine leukocytes infected with a Tunisian strain of T. annulata termed Beja. RNA-seq was used to analyse gene expression profiles and the relative expression levels of selected genes were verified by real-time quantitative PCR (RT-qPCR) analysis. Among the 3538 T. annulata genes analysed, 214 were significantly differentially expressed, of which 149 genes were up-regulated and 65 down-regulated. Functional annotation of differentially expressed T. annulata genes revealed four broad categories of metabolic pathways: carbon metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum and biosynthesis of secondary metabolites. It is interesting to note that of the top 40 genes that showed altered expression, 13 were predicted to contain a signal peptide and/or at least one transmembrane domain, suggesting possible involvement in host-parasite interaction. Of the 16,514 bovine transcripts, 284 and 277 showed up-regulated and down-regulated expression, respectively. These were assigned to functional categories relevant to cell surface, tissue morphogenesis and regulation of cell adhesion, regulation of leucocyte, lymphocyte and cell activation. The genetic alterations acquired during attenuation that we have catalogued herein, as well as the accompanying in silico functional characterization, do not only improve understanding of the attenuation process, but can also be exploited by studies aimed at identifying attenuation biomarkers across different cell lines focusing on some host and parasite genes that have been highlighted in this study, such as bovine genes (CD69, ZNF618, LPAR3, and APOL3) and parasite genes such as TA03875.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
5
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
6
|
Valente D, Dutra AP, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. Prevalence and Risk Factors Associated with Theileria annulata Infection in Two Bovine Portuguese Autochthonous Breeds. Pathogens 2023; 12:669. [PMID: 37242339 PMCID: PMC10224420 DOI: 10.3390/pathogens12050669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Tropical Bovine Theileriosis is an important tick-borne disease. This study aims to assess the occurrence of Theileria annulata infection in two indigenous Portuguese cattle breeds. A total of 843 blood samples collected from animals of Alentejana (n = 420) and Mertolenga (n = 423) breeds were analyzed. The detection of Theileria annulata was determined by amplification of a fragment of the merozoite-pyroplasm surface antigen gene with 319 base pairs (bp). The prevalence found (10.8%) is lower than that reported in previous studies (21.3%). A statistically significant difference was found for positivity between breeds (p < 0.05). There is also a higher probability of older animals being positive compared to younger ones (p < 0.05). The region where Mertolenga animals are located is shown to have a significant impact on positivity (p < 0.05). Thus, the development of sustainable T. annulata control strategies and their implementation, adapted to the epidemiological conditions of higher risk, will be extremely important.
Collapse
Affiliation(s)
- Diana Valente
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Animal and Veterinary Research Center, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Paula Dutra
- Unidade Estratégica de Investigação e Serviços—Produção e Saúde Animal (UEIS-PSA), Instituto Nacional de Investigação Agrária e Veterinária, Av. Da República, Quinta do Marquês (edifício sede), 2780-157 Oeiras, Portugal
| | - Nuno Carolino
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, Instituto Nacional de Investigação Agrária e Veterinária, 2005-424 Santarém, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Jacinto Gomes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Animal and Veterinary Research Center, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Herdade da Coutada Real—Assumar, 7450-051 Assumar, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, 7006-806 Évora, Portugal
| | - Inês Carolino
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, Instituto Nacional de Investigação Agrária e Veterinária, 2005-424 Santarém, Portugal
- ISA—Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
7
|
Rahravani M, Moravedji M, Mostafavi E, Mozoun MM, Zeeyaie AH, Mohammadi M, Seyfi H, Adhami G, Esmaeili S, Ameri M. Clinical, hematological and molecular evaluation of piroplasma and Anaplasma infections in small ruminants and tick vectors from Kurdistan province, western Iran. Res Vet Sci 2023; 159:44-56. [PMID: 37080001 DOI: 10.1016/j.rvsc.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Tick-borne haemoparasite infections are a major challenge in small ruminant (SR) production across tropical areas. The present study evaluated the prevalence of Theileria, Babesia and Anaplasma in SRs and their tick vectors and estimated the association between pathogen prevalence with clinical hematological findings among SR populations in Kurdistan province, western Iran. In total, 250 blood samples and 250 tick species (one per animal) were collected from SR populations, along with clinical and hematological examinations. Microscopy of blood smears and molecular analysis were performed to detect potential infection with Theileria, Babesia and Anaplasma. Moreover, haemoparasites were explored in the isolated ticks using semi-nested PCR. Based on microscopy, the prevalence of Theileria, Anaplasma and Babesia infections was 91.2%, 23.2% and 2.4%, respectively. Semi-nested PCR analysis of blood samples demonstrated 86.8%, 78.8% and 14% prevalence for T. ovis, A. ovis and B. ovis, respectively. Dermacentor marginatus and Rhipicephalus turanicus were predominant isolated tick vectors from SR, while D. marginatus was the most contaminated tick in all investigated counties. There were, also, a statistically significant association between the estimated molecular prevalence rates with semi-yellow conjunctiva (A. ovis), body temperature (T. ovis and A. ovis), heart rate (T. ovis and B. ovis), mean white blood cell count (T. ovis and A. ovis), mean red blood cell count (T. ovis and B. ovis), as well as mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in all haemoparasite infections. Future studies are recommended to reveal the epidemiology of such infections in SRs in Iran.
Collapse
Affiliation(s)
- Maryam Rahravani
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Meysam Moravedji
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran; Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | - Ghazaaleh Adhami
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran; Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Ameri
- Clinical Pathology, Non-Clinical Safety (NCS), In Vitro/In Vivo Translation (IVIVT), GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA. 19426, United States of America
| |
Collapse
|
8
|
Liu J, Zhao S, Li Z, Zhang Z, Zhao B, Guan G, Yin H, Luo J. Activation of telomerase activity and telomere elongation of host cells by Theileria annulata infection. Front Microbiol 2023; 14:1128433. [PMID: 36910209 PMCID: PMC9997645 DOI: 10.3389/fmicb.2023.1128433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.
Collapse
Affiliation(s)
- Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhi Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhigang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Baocai Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Trifloxystrobin blocks the growth of Theileria parasites and is a promising drug to treat Buparvaquone resistance. Commun Biol 2022; 5:1253. [DOI: 10.1038/s42003-022-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractTheileria parasites are responsible for devastating cattle diseases, causing major economic losses across Africa and Asia. Theileria spp. stand apart from other apicomplexa parasites by their ability to transform host leukocytes into immortalized, hyperproliferating, invasive cells that rapidly kill infected animals. The emergence of resistance to the theilericidal drug Buparvaquone raises the need for new anti-Theileria drugs. We developed a microscopy-based screen to reposition drugs from the open-access Medicines for Malaria Venture (MMV) Pathogen Box. We show that Trifloxystrobin (MMV688754) selectively kills lymphocytes or macrophages infected with Theileria annulata or Theileria parva parasites. Trifloxystrobin treatment reduced parasite load in vitro as effectively as Buparvaquone, with similar effects on host gene expression, cell proliferation and cell cycle. Trifloxystrobin also inhibited parasite differentiation to merozoites (merogony). Trifloxystrobin inhibition of parasite survival is independent of the parasite TaPin1 prolyl isomerase pathway. Furthermore, modeling studies predicted that Trifloxystrobin and Buparvaquone could interact distinctly with parasite Cytochrome B and we show that Trifloxystrobin was still effective against Buparvaquone-resistant cells harboring TaCytB mutations. Our study suggests that Trifloxystrobin could provide an effective alternative to Buparvaquone treatment and represents a promising candidate for future drug development against Theileria spp.
Collapse
|
10
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
11
|
Valente D, Gomes J, Coelho AC, Carolino I. Genetic Resistance of Bovines to Theileriosis. Animals (Basel) 2022; 12:2903. [PMID: 36359026 PMCID: PMC9657666 DOI: 10.3390/ani12212903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 04/07/2024] Open
Abstract
Diseases caused by ticks have a high impact on the health, welfare, and productivity of livestock species. They are also an important cause of economic losses in farms worldwide. An example of such diseases is theileriosis, which can be controlled by drugs or vaccines, although these are not fully efficient. Therefore, there is a need to develop alternative and more sustainable and efficient complementary strategies. These may involve the identification and selection of animals more resistant to the disease. Several previous studies have identified significant differences in resistance between different breeds, with resistant breeds typically identified as those native to the region where they are being studied, and susceptible as those from exotic breeds. These studies have indicated that resistance traits are intrinsically related to the modulation of the immune response to infection. This review aims to systematize the general knowledge about theileriosis, emphasize resistance to this disease as a sustainable control strategy, and identify which traits of resistance to the disease are already known in cattle.
Collapse
Affiliation(s)
- Diana Valente
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Jacinto Gomes
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Inês Carolino
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
- Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, Instituto Nacional de Investigação Agrária e Veterinária, 2005-424 Santarém, Portugal
- ISA—Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
12
|
Theileria annulata histone deacetylase 1 (TaHDAC1) initiates schizont to merozoite stage conversion. Sci Rep 2022; 12:12710. [PMID: 35882887 PMCID: PMC9325746 DOI: 10.1038/s41598-022-15518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
A fungal metabolite, FR235222, specifically inhibits a histone deacetylase of the apicomplexan parasite Toxoplasma gondii and TgHDAC3 has emerged as a key factor regulating developmental stage transition in this species. Here, we exploited FR235222 to ask if changes in histone acetylation regulate developmental stage transition of Theileria annulata, another apicomplexan species. We found that FR235222 treatment of T. annulata-infected transformed leukocytes induced a proliferation arrest. The blockade in proliferation was due to drug-induced conversion of intracellular schizonts to merozoites that lack the ability to maintain host leukocyte cell division. Induction of merogony by FR235222 leads to an increase in expression of merozoite-marker (rhoptry) proteins. RNA-seq of FR235222-treated T. annulata-infected B cells identified deregulated expression of 468 parasite genes including a number encoding parasite ApiAP2 transcription factors. Thus, similar to T. gondii, FR235222 inhibits T. annulata HDAC (TaHDAC1) activity and places parasite histone acetylation as a major regulatory event of the transition from schizonts to merozoites.
Collapse
|
13
|
Liu J, Guan G, Yin H. Theileria annulata. Trends Parasitol 2021; 38:265-266. [PMID: 34848168 DOI: 10.1016/j.pt.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
14
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|