1
|
Liu J, Wang G, Shi M, Guo RY, Yuan C, Wang Y, Mehmood A, Zhang L, Li B. BTK and YKL-40 Levels and Their Association with Acute AQP4-IgG-Positive Neuromyelitis Optica Spectrum Disorder. Mol Neurobiol 2024:10.1007/s12035-024-04588-5. [PMID: 39485631 DOI: 10.1007/s12035-024-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
This study investigated the potential correlation between BTK/YKL-40 levels and the severity of AQP4-IgG + NMOSD, aiming to identify biomarkers for disease monitoring and treatment assessment. Plasma YKL-40 expression was measured in 135 AQP4-IgG + NMOSD patients using ELISA. Patients were categorized into pre- and post-IVMP treatment acute phases, as well as during remission, with a healthy control group included. BTK and NF-κB mRNA levels in PBMCs were detected via q-PCR, and BTK/P-BTK protein expression was assessed using Western blotting. Disability was evaluated using the EDSS score, and clinical characteristics were evaluated alongside laboratory tests. Acute-phase NMOSD patients receiving pre-IVMP therapy presented significantly elevated plasma YKL-40 concentrations compared with those of post-treatment patients, patients in remission, and healthy controls. Additionally, these patients presented significantly higher levels of PBMC BTK mRNA, NF-κB mRNA, BTK, and P-BTK protein expression than remission patients and healthy controls. Plasma YKL-40 levels and PBMC BTK/P-BTK protein levels were positively correlated with EDSS scores. The plasma YKL-40 concentration significantly contributes to disease severity and serves as an independent risk factor for acute NMOSD. Elevated BTK, P-BTK, NF-κB, and YKL-40 levels were observed in acute-phase AQP4-IgG + NMOSD patients. These biomarkers are related to disease activity and may predict treatment efficacy. There is a connection among YKL-40, BTK, and P-BTK levels and disease severity, suggesting their potential involvement in the pathogenic mechanism of AQP4-IgG + NMOSD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- The Key Laboratory of Neurology, Shijiazhuang, 050000, Hebei, China.
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
2
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Wang S, Xue M, Wang J, Wu R, Shao Y, Luo K, Liu J, Zhu M. Effects of intravenous pulse methylprednisolone in neuromyelitis optica during the acute phase. Ann Clin Transl Neurol 2024; 11:2731-2744. [PMID: 39222472 PMCID: PMC11514921 DOI: 10.1002/acn3.52188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. While intravenous pulse methylprednisolone (IVMP) is the recommended initial treatment option for acute onset NMOSD, its therapeutic mechanism remains unclear. We hypothesized that IVMP would reduce the expression of pro-inflammatory factors and increase the resolution of inflammation in patients with NMOSD. METHODS Mendelian randomization (MR) analysis was used to screen meaningful inflammatory and resolution factors for inclusion. Three MR methods with inverse variance weighting (IVW) were primarily used to identify positive results. Interleukin (IL)-10, IL-1β, IL-6, C-X-C motif chemokine ligand 12 (CXCL12), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were screened from 41 inflammatory factors, and resolvin D1 (RvD1), maresin 1 (MaR1), and lipoxin A4 (LXA4) were screened from 6 resolution markers for inclusion. Subsequently, 12 patients with NMOSD were enrolled and treated with IVMP. Serum levels of the aforementioned inflammatory and resolution markers were measured by enzyme-linked immunosorbent assay before and after IVMP treatment. RESULTS High levels of TRAIL, CXCL12, and IL-1β were associated with an increased risk of NMOSD (TRAIL: odds ratio [OR], 1.582; 95% confidence interval [CI], 1.003-2.495; CXCL12: OR, 3.610; 95% CI, 1.011-12.889; IL-1β: OR, 4.500; 95% CI, 1.129-17.927). High levels of RvD1, MaR1, and LXA4 were associated with a reduced risk of NMOSD (RvD1: OR, 0.725; 95% CI, 0.538-0.976; MaR1: OR, 0.985; 95% CI, 0.970-0.999; LXA4: OR, 0.849; 95% CI, 0.727-0.993). Among patients with NMOSD, serum levels of IL-6, CXCL12, and TRAIL significantly decreased following IVMP treatment, compared with pretreatment levels, while levels of IL-1β, LXA4, and MaR1 significantly increased after IVMP treatment (p < 0.05). A significant positive correlation was observed between CXCL12 levels and Expanded Disability Status Scale (EDSS) scores (r = 0.451, p < 0.05). CONCLUSION Several systemic inflammatory regulators associated with the pathogenesis of NMOSD were identified. The protective roles of LXA4 and MaR1 may be indispensable components of glucocorticoid treatment. Therefore, the use of resolution markers may be a potential strategy for improving central nervous system injury in individuals with NMOSD.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mengru Xue
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jianglong Wang
- First Operating RoomThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Wu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Yanqing Shao
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Luo
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jiacheng Liu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqin Zhu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
5
|
Ma X, Wang Y, Chen X, Guo J. The levels of circulating cytokines and risk of neuromyelitis optica spectrum disorder: a Mendelian randomization study. Front Immunol 2024; 15:1418309. [PMID: 39011048 PMCID: PMC11246864 DOI: 10.3389/fimmu.2024.1418309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease affecting the central nervous system (CNS). NMOSD pathogenesis involves systemic inflammation. However, a causal relationship between circulating cytokine levels and NMOSD remains unclear. Methods Mendelian randomization (MR) approaches were used to investigate the potential association between genetically determined circulating 19 inflammatory cytokines and 12 chemokines levels and the risk of developing NMOSD. Results After Bonferroni correction, the risk of aquaporin 4-antibody (AQP4-ab)-positive NMOSD was suggested to be causally associated with the circulating levels of three cytokines, including interleukin (IL)-4 [odds ratio (OR): 11.01, 95% confidence interval (CI): 1.16-104.56, P = 0.037], IL-24 (OR: 161.37; 95% CI: 2.46-10569.21, P = 0.017), and C-C motif chemokine 19 (CCL19) (OR: 6.87, 95% CI: 1.78-26.93, P = 0.006). Conclusion These findings suggest that a genetic predisposition to higher levels of IL-4, IL-24, and CCL19 may exert a causal effect on the risk of AQP4-ab-positive NMOSD. Further studies are warranted to clarify how these cytokines affect the development of AQP4-ab-positive NMOSD.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yao Wang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xin Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Nakajima A, Yanagimura F, Saji E, Shimizu H, Toyoshima Y, Yanagawa K, Arakawa M, Hokari M, Yokoseki A, Wakasugi T, Okamoto K, Takebayashi H, Fujii C, Itoh K, Takei YI, Ohara S, Yamada M, Takahashi H, Nishizawa M, Igarashi H, Kakita A, Onodera O, Kawachi I. Stage-dependent immunity orchestrates AQP4 antibody-guided NMOSD pathology: a role for netting neutrophils with resident memory T cells in situ. Acta Neuropathol 2024; 147:76. [PMID: 38658413 DOI: 10.1007/s00401-024-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.
Collapse
Affiliation(s)
- Akihiro Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Fumihiro Yanagimura
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Niigata National Hospital, 3-52 Akasakamachi, Kashiwazaki, Niigata, 945-8585, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Brain Disease Center, Agano Hospital, 6317-15 Yasuda, Agano, Niigata, 959-2221, Japan
| | - Kaori Yanagawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Musashi Arakawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Musashi Clinic, 20-1 Hakusanura 2, Chuo-Ku, Niigata, 951-8131, Japan
| | - Mariko Hokari
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiko Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Niigata Medical Center, 27-11 Kobari 3, Nishi-Ku, Niigata, 950-2022, Japan
| | - Takahiro Wakasugi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Nishiniigata Chuo Hospital, 14-1 Masago 1, Nishi-Ku, Niigata, 950-2085, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan
| | - Chihiro Fujii
- Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizonocho, Moriguchi, Osaka, 570-8507, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yo-Ichi Takei
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
| | - Shinji Ohara
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
- Department of Neurology, Iida Hospital, 1-15 Odori, Iida, Nagano, 395-8505, Japan
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Pathology and Laboratory Medicine, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-Ku, Niigata, 950-1101, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-Ku, Niigata, 950-3198, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan.
- Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan.
| |
Collapse
|
7
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Kim M, Kim WS, Cha H, Kim B, Kwon YN, Kim SM. Early involvement of peripherally derived monocytes in inflammation in an NMO-like mouse model. Sci Rep 2024; 14:1177. [PMID: 38216632 PMCID: PMC10786844 DOI: 10.1038/s41598-024-51759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease that primarily affects the optic nerve and spinal cord within the central nervous system (CNS). Acute astrocyte injury caused by autoantibodies against aquaporin 4 (NMO-IgG) is a well-established key factor in the pathogenesis, ultimately leading to neuronal damage and patient disability. In addition to these humoral immune processes, numerous innate immune cells were found in the acute lesions of NMO patients. However, the origin and function of these innate immune cells remain unclear in NMO pathogenesis. Therefore, this study aims to analyze the origin and functions of these innate immune cells in an NMO-like mouse model and evaluate their role in the pathophysiology of NMO. The expression of Tmem119 on Iba1 + cells in brain tissue disappeared immediately after the injection of NMO-IgG + human complement mixture, while the expression of P2ry12 remained well-maintained at 1 day after injection. Based on these observations, it was demonstrated that monocytes infiltrate the brain during the early stages of the pathological process and are closely associated with the inflammatory response through the expression of the proinflammatory cytokine IL-1β. Understanding the variations in the expression patterns of P2ry12, Tmem119, and other markers could be helpful in distinguishing between these cell types and further analyzing their functions. Therefore, this research may contribute to a better understanding of the mechanisms and potential treatments for NMO.
Collapse
Affiliation(s)
- Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea.
| | - Won Seok Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Hyeuk Cha
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Boram Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Young Nam Kwon
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Liu J, Wang G, Yang J, Wang Y, Guo R, Li B. Association between FOXP3 polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Northern Chinese Han population. Transl Neurosci 2024; 15:20220337. [PMID: 38584670 PMCID: PMC10998649 DOI: 10.1515/tnsci-2022-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Background Forkhead box P3 (FOXP3) plays a critical role in the pathogenesis of autoimmune disorders. In the present study, we genotyped three single-nucleotide polymorphisms, namely, rs2232365, rs3761548, and rs3761549, to determine the relationship between FOXP3 polymorphisms and neuromyelitis optica spectrum disorder (NMOSD) susceptibility among the Northern Chinese Han population. Materials and methods We genotyped single nucleotide polymorphisms at loci of the FOXP3 gene (rs2232365, rs3761548, and rs3761549136) in 136 NMOSD patients and 224 healthy subjects using the multiplex SNaPshot technique. Allele, genotype, and haplotype frequencies were compared. qPCR was used to analyze the mRNA expression levels of FOXP3 in the peripheral blood mononuclear cells of 63 NMOSD patients and 35 healthy subjects. Non-parametric tests were used to test the FOXP3 mRNA expression across the different groups. Results The minor allele frequency (MAF) of G in rs2232365 was markedly lower in the NMOSD group than in the control group (odds ratio [OR] = 0.57, 95% confidence interval [95% CI]: 0.41-0.79, p = 0.001). Using genetic (codominant, dominant, and recessive) models and performing haplotype analyses, the MAF of G in rs2232365 was shown to be associated with protection against NMOSD in this population. Furthermore, haplotype analysis revealed that the haplotype GCT and the rs2232365, rs3761548, and rs3761549 alleles predicted protection against NMOSD (OR = 0.63, 95% CI = 0.41-0.97, p = 0.038). The proportions of the three genotypes of rs2232365 (p = 0.001) were not significantly different between the moderate-to-severe (Expanded Disability Status Scale (EDSS) ≥ 3 points) and mild (EDSS < 3 points) groups. Evidently, the proportion of patients with the AA genotype (64.3%) among the rs2232365 patients was significantly greater in the moderate-to-severe group than in the mild group (36.4%). However, the proportion of patients with the GG genotype (15.2%) among the rs2232365 patients was significantly greater in the mild group than in the moderate-to-severe group (2.9%). The mRNA expression of FOXP3 was markedly greater in the NMOSD group than in the control group (p = 0.001). Nevertheless, acute non-treatment patients exhibited lower FOXP3 mRNA expression than healthy controls and patients in the remission group (p = 0.004 and 0.007, respectively). Conclusion FOXP3 polymorphisms and haplotypes are related to NMOSD susceptibility among the Han Chinese population. The minor allele G of FOXP3 rs2232365 and the haplotype GCT are associated with protection against NMOSD. The GG genotype may decrease the severity of NMOSD, whereas the AA genotype is related to moderate-to-severe NMOSD. FOXP3 mRNA expression is greater in patients with NMOSD than in healthy controls. However, it is decreased in acute non-treatment patients compared with healthy controls.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jiahe Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
10
|
Liu S, Tan B, Zhou J, Xiao L, Li M, Yin J. Vitamin D status and the risk of neuromyelitis optica spectrum disorders: A systematic review and meta-analysis. J Clin Neurosci 2024; 119:185-192. [PMID: 38113581 DOI: 10.1016/j.jocn.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Previous studies have linked vitamin D deficiency with autoimmune diseases, and recent research has found low vitamin D levels in neuromyelitis optica spectrum disorder (NMOSD) patients. We aimed to determine the variances in serum 25(OH)D levels between NMOSD patients and healthy controls. METHODS We searched English and Chinese databases (PubMed, Embase, Cochrane Library, Web of Science, CBM, CNKI, WanFang Med, VIP) for observational studies related to serum 25(OH)D levels in NMOSD patients published up to August 24, 2023. We included studies with healthy controls and compared serum 25(OH)D levels between NMOSD patients and controls. We computed the mean difference (MD) and 95% confidence interval (CI) for continuous variables to evaluate serum 25(OH)D levels and combined odds ratios (ORs) and 95% CIs for dichotomized 25(OH)D data. RESULTS Six papers were selected for meta-analysis, including 794 participants (347 in the NMOSD group and 447 in the healthy control group). Meta-analysis showed significantly lower serum 25(OH)D levels in the NMOSD group (MD: -7.83, 95 % CI: -10.99 to -4.68). The risk of 25(OH)D deficiency was 23.36 times higher in the NMOSD group (OR: 23.36, 95 % CI: 0.85 to 640.76, p = 0.06>0.05), with a 94 % occurrence rate. There was no significant difference in the risk of having sufficient 25(OH)D between the groups (p = 0.12>0.05). CONCLUSION NMOSD patients have lower serum 25(OH)D levels than healthy controls. However, the current research results do not provide evidence for a causal relationship between serum 25(OH)D levels and the onset of NMOSD. Routine vitamin D supplementation may be advantageous for patients with NMOSD.
Collapse
Affiliation(s)
- Shuangxi Liu
- Department of Neurology, Hunan University of Medicine General Hospital, Hunan 418000, PR China
| | - Bichun Tan
- Department of Neurology, People's Hospital of Mayang Miao Autonomous County, Hunan 419400, PR China
| | - Jun Zhou
- Department of Neurology, Hunan University of Medicine General Hospital, Hunan 418000, PR China
| | - Liqian Xiao
- Department of Health Management Center, Hunan University of Medicine General Hospital, Hunan 418000, PR China
| | - Minxia Li
- Department of Neurology, Hunan University of Medicine General Hospital, Hunan 418000, PR China
| | - Junjie Yin
- Department of Neurology, Hunan University of Medicine General Hospital, Hunan 418000, PR China.
| |
Collapse
|
11
|
Harsij A, Gharebaghi A, Ghiasian M, Eslami S, Ghafouri-Fard S, Taheri M, Sayad A. Expression analysis of Treg-related lncRNAs in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2024; 81:105350. [PMID: 38091807 DOI: 10.1016/j.msard.2023.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune condition affecting the central nervous system, in which various kinds of immune cells, including T and B cells, and numerous cytokines and chemokines are implicated. LncRNAs modulating the function or differentiation of regulatory T cells (Tregs) may be involved in the pathoetiology of NMO. To assess the involvement of these lncRNAs in this disease, we studied the expression levels of TH2-LCR, MAFTRR, NEST, RMRP, and FLICR in NMO patients and healthy subjects. All of the lncRNAs listed were up-regulated in NMO patients compared with healthy controls. Although the interaction of group and gender factors significantly affected the expression of NEST, RMRP, and TH2-LCR genes, we detected no effect of gender factor on the expression of the examined genes. The highest expression correlation was found between RMRP and TH2-LCR among cases with correlation coefficient 0.73. ROC curve analysis indicated that TH2-LCR, MAFTRR, RMRP, and FLICR had significant prospective diagnostic power (AUC ± SD = 0.99 ± 0.002, 0.97 ± 0.01, 0.91 ± 0.01 and 0.84 ± 0.04, respectively). Best of these genes was TH2-LCR with AUC ± SD = 0.99 ± 0.002, sensitivity= 0.97, specificity= 1, P-value= <0.0001. RMRP and TH2-LCR had a positive correlation with age and age at onset and a negative correlation with EDSS. Cumulatively, TH2-LCR, MAFTRR, RMRP, and FLICR lncRNAs, particularly TH2-LCR, could be considered as potential contributors to the pathogenesis of NMO disease.
Collapse
Affiliation(s)
- Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Ghiasian
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Shafiei M, Mozhgani SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 2023; 60:3839-3854. [PMID: 36947318 DOI: 10.1007/s12035-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Human T lymphotropic virus-associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
13
|
Yang S, Zhang C, Zhang TX, Feng B, Jia D, Han S, Li T, Shen Y, Yan G, Zhang C. A real-world study of interleukin-6 receptor blockade in patients with neuromyelitis optica spectrum disorder. J Neurol 2023; 270:348-356. [PMID: 36066625 DOI: 10.1007/s00415-022-11364-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 01/07/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing autoimmune disease that can cause permanent neurological disabilities. However, the interleukin-6 (IL-6) signaling pathway is a promising therapeutic target for relapse prevention. Therefore, this study evaluated the long-term effectiveness of tocilizumab, a humanized anti-IL-6 receptor antibody, for NMOSD. We enrolled 65 patients with NMOSD who received regular intravenous administration of tocilizumab (8 mg/kg) between October 2017 and January 2022. Then, we retrospectively collected data on the clinical characteristics and baseline glial fibrillary acidic protein (GFAP) and neurofilament light chain levels. The primary outcome was the annualized relapse rate (ARR). Risk factors were assessed using a multivariable logistic regression model. During the median follow-up of 34.1 (interquartile range: 25.5-39.3) months, 23% (15/65) of patients relapsed during tocilizumab treatment, but the median ARR decreased from 1.9 (range 0.12-6.29) to 0.1 (range 0-1.43, p < 0.0001). A prolonged infusion interval (> 4 weeks, odds ratio [OR]: 10.7, 95% confidence interval [CI]: 1.6-71.4, p = 0.014) and a baseline plasma GFAP level of > 220 pg/mL (OR: 20.6, 95% CI 3.3-129.4, p = 0.001) were risk factors for future relapses. During treatment, the median Expanded Disability Status Scale score significantly decreased in aquaporin-4 antibody-positive and -negative patients, but the pain did not considerably improve. There were no severe safety concerns. Tocilizumab treatment significantly reduced the relapse rate in patients with NMOSD. However, prolonged infusion intervals and high baseline plasma GFAP levels may increase the relapse risk during tocilizumab therapy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-Xiang Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Feng
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongmei Jia
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shasha Han
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Li
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Shen
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangxun Yan
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China. .,Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Jiao L, Guo S. Anti-IL-6 therapies in central nervous system inflammatory demyelinating diseases. Front Immunol 2022; 13:966766. [PMID: 36389702 PMCID: PMC9647084 DOI: 10.3389/fimmu.2022.966766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/20/2022] [Indexed: 08/11/2023] Open
Abstract
Current treatments for central nervous system (CNS) inflammatory demyelinating diseases (IDDs) include corticosteroids, plasma exchange, intravenous immunoglobulin, and immunosuppressant drugs. However, some patients do not respond well to traditional therapies. In recent years, novel drugs, such as monoclonal antibodies, targeting the complement component C5, CD19 on B cells, and the interleukin-6 (IL-6) receptor, have been used for the treatment of patients with refractory CNS IDDs. Among these, tocilizumab and satralizumab, humanized monoclonal antibodies against the IL-6 receptor, have shown beneficial effects in the treatment of this group of diseases. In this review, we summarize current research progress and prospects relating to anti-IL-6 therapies in CNS IDDs.
Collapse
Affiliation(s)
- Li Jiao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
15
|
Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23147908. [PMID: 35887254 PMCID: PMC9323454 DOI: 10.3390/ijms23147908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system characterized by relapses and autoimmunity caused by antibodies against the astrocyte water channel protein aquaporin-4. Over the past decade, there have been significant advances in the biologic knowledge of NMOSD, which resulted in the IDENTIFICATION of variable disease phenotypes, biomarkers, and complex inflammatory cascades involved in disease pathogenesis. Ongoing clinical trials are looking at new treatments targeting NMOSD relapses. This review aims to provide an update on recent studies regarding issues related to NMOSD, including the pathophysiology of the disease, the potential use of serum and cerebrospinal fluid cytokines as disease biomarkers, the clinical utilization of ocular coherence tomography, and the comparison of different animal models of NMOSD.
Collapse
|
16
|
Rezaeimanesh N, Saeedi R, Sahraian MA, Ghadiri F, Naser Moghadasi A. The association between body mass index, demographic and clinical characteristics with cognitive performance in patients with neuromyelitis optica spectrum disorder. CURRENT JOURNAL OF NEUROLOGY 2022; 21:74-82. [PMID: 38011484 PMCID: PMC9860205 DOI: 10.18502/cjn.v21i2.10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2023]
Abstract
Background: Cognitive dysfunction is one of the problems that patients with neuromyelitis optica spectrum disorder (NMOSD) suffer from. We aimed to assess the association between demographic and clinical features as well as body mass index (BMI) and cognitive function in patients with NMOSD. Methods: A cross-sectional study was performed on 41 patients with definite diagnosis of NMOSD. Serum status of neuromyelitis optica immunoglobulin G (NMO-IgG) was determined using enzyme-linked immunosorbent assay (ELISA) method. Cognitive function was assessed by Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) battery which is validated for Persian people before and North American Adult Reading Test (NAART). Results: The mean score of NAART test was higher in participants with normal weight compared with overweight patients (40.47 ± 3.51 vs. 36.00 ± 5.74, P = 0.02). Current age was negatively correlated with Delis-Kaplan Executive Function System (D-KEFS)-Sorting (P = 0.05, r = -0.30). The correlation of duration of disease and cognitive performance was not significant (P > 0.05). Higher physical disability based on Expanded Disability Status Scale (EDSS) was correlated with lower results in Brief Visuospatial Memory Test-Revised (BVMT-R) (P < 0.01, r = -0.50), California Verbal Learning Test-second edition (CVLT-II)-Delayed Recall (P = 0.02, r = -0.35), and Symbol Digit Modalities Test (SDMT) (P = 0.03, r = -0.33) subtests of MACFIMS. Annual relapse rate was indirectly correlated with CVLT-II (P = 0.03, r = -0.34) and CVLT-II-Delayed Recall (P = 0.01, r = -0.38). Male participants obtained better scores in Paced Auditory Serial Addition Test (PASAT) subtest (P = 0.05). NMO-IgG seropositive patients had poorer performance in terms of CVLT-II-Delayed Recall, Controlled Oral Word Association Test (COWAT), and D-KEFS-Descriptive (P < 0.05). Participants with bachelor and master education degrees showed significantly better results compared to those with high school degree (P < 0.05). Conclusion: Investigating the clinical and demographic factors affecting cognitive impairment can increase the awareness of health care providers for early diagnosis of cognitive impairment in patients with NMOSD and increase the quality of health services.
Collapse
Affiliation(s)
- Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Saeedi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Ghadiri
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cai L, Shi Z, Chen H, Du Q, Zhang Y, Zhao Z, Wang J, Lang Y, Kong L, Zhou H. Relationship between the Clinical Characteristics in Patients with Neuromyelitis Optica Spectrum Disorders and Clinical Immune Indicators: A Retrospective Study. Brain Sci 2022; 12:brainsci12030372. [PMID: 35326328 PMCID: PMC8946705 DOI: 10.3390/brainsci12030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: T lymphocytes, complement, and immunoglobulin play an important role in neuromyelitis optica spectrum disorders (NMOSD). As common clinical examination indicators, they have been used as routine indicators in many hospitals, which is convenient for being carried out in clinical work, but there are few articles of guiding significance for clinical practice. The purpose of this study was to study the relationship between commonly used immune indicators and clinical characteristics in patients with NMOSD. Methods: We compared clinical characteristics and clinical immune indicators in 258 patients with NMOSD and 200 healthy controls (HCs). We used multiple linear regression to study the relationship between immunotherapy, disease phase, sex, age, AQP4-IgG, and immune indicators. In addition, lymphocyte subsets were compared before and after immunotherapy in 24 of the 258 patients. We explored the influencing factors and predictors of severe motor disability. Results: The percentages of CD3 ratio (71.4% vs. 73.8%, p = 0.013), CD4 ratio (38.8% vs. 42.2%, p < 0.001), and CD4/CD8 ratio (1.43 vs. 1.66, p < 0.001) in NMOSD patients were significantly lower than those in the HC group. In addition, complement C4 (0.177 g/L vs. 0.221 g/L, p < 0.001) and peripheral blood IgG (10.95 g/L vs. 11.80 g/L, p = 0.026) in NMOSD patients were significantly lower than those in the HC group. CD3 percentage was correlated with blood collection age and disease stage; CD8 percentage was correlated with blood collection age, disease stage, and treatment; CD4/CD8 percentage was correlated with blood collection age and treatment; complement C4 was correlated with blood collection age and sex; and IgG was correlated with disease stage and treatment. Twenty-four patients before and after treatment showed that the percentages of CD3 ratio (74.8% vs. 66.7%, p = 0.001) and CD8 ratio (32.4% vs. 26.2%, p < 0.001) after treatment in NMOSD patients were significantly increased, and the percentage of CD3 before treatment was moderately negatively correlated with ARR (r = −0.507, p = 0.011). Binary logistic regression analysis showed that peripheral blood complement C3 is a serious influencing factor for severe motor disability (EDSS score ≥ 6 points). Peripheral blood complement C3 and C4 are predictors of severe motor disability (p < 0.05). Conclusion: Our results suggest that peripheral blood T lymphocytes, C3, C4 and immunoglobulin are convenient and routine clinical indicators that are convenient for implementation in clinical work. They have certain reference values for disease staging, recurrence, drug efficacy, and motor disability. They have improved our understanding of clinical immune indicators for NMOSD patients, but whether they can be used as biomarkers for clinical prognosis remains to be further studied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hongyu Zhou
- Correspondence: ; Tel./Fax: +86-28-8542-2892
| |
Collapse
|
18
|
Wang L, Huang W, ZhangBao J, Chang X, Tan H, Zhou L, Lu C, Wang M, Lu J, Zhao C, Quan C. The Alteration of Circulating Lymphocyte Subsets During Tacrolimus Therapy in Neuromyelitis Optica Spectrum Disorder and Its Correlation With Clinical Outcomes. Front Neurol 2022; 12:816721. [PMID: 35126303 PMCID: PMC8809081 DOI: 10.3389/fneur.2021.816721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectivesWe aimed to explore the alteration of circulating lymphocyte subsets before and after tacrolimus (TAC) therapy in neuromyelitis optica spectrum disorder (NMOSD) and its correlation with clinical outcomes.MethodsAnti-aquaporin-4 antibody (AQP4-ab)-positive patients with NMOSD treated with TAC were followed and clinically evaluated at 0, 3, 6, and 12 months after initiation of TAC. Flow cytometry was employed to detect the proportion of various whole blood lymphocyte subsets at every time point. Correlation analysis was further performed to explore the association between annualized relapse rate (ARR), the Expanded Disability Status Scale (EDSS) score, and the proportion of circulating lymphocyte subsets before and after TAC therapy.ResultsA total of 13 eligible patients with NMOSD were included. The proportion of CD19+CD24hiCD38hi/CD19+ and CD19+CD5+CD1dhi/CD19+ lymphocyte subsets increased significantly after TAC therapy (p = 0.010 and p < 0.001). The proportion of CD19+BAFFR+, CD19+IFN-γ+, and CD19+IL-10+ subsets decreased significantly after TAC therapy (p = 0.015, 0.018, and 0.042, respectively). There was a negative correlation between CD4+CD25hi subset and EDSS score (p = 0.016, r = −0.652).ConclusionPossibly through increasing regulatory B and suppressing BAFFR+ B and interferon (IFN)-γ+ B subsets, TAC could decrease relapse. EDSS score may be correlated with some lymphocyte subsets after TAC therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Wenjuan Huang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xuechun Chang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Hongmei Tan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- *Correspondence: Chao Quan
| |
Collapse
|
19
|
Fu CC, Gao C, Zhang HH, Mao YQ, Lu JQ, Petritis B, Huang AS, Yang XG, Long YM, Huang RP. Serum molecular biomarkers in neuromyelitis optica and multiple sclerosis. Mult Scler Relat Disord 2022; 59:103527. [DOI: 10.1016/j.msard.2022.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
|
20
|
Yang TT, Yin H, Liu PJ, Niu TT, Wang ZY, He Y, Yuan P, Zhang WW, Xu BL, Liu GZ. A preliminary study of association of cigarette smoking with risk of neuromyelitis optica spectrum disorder. Medicine (Baltimore) 2021; 100:e27234. [PMID: 34664866 PMCID: PMC8447994 DOI: 10.1097/md.0000000000027234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Various studies have revealed an association between cigarette smoking and increased risk for multiple sclerosis (MS). However, its role in neuromyelitis optica spectrum disorder (NMOSD) remains elusive. Therefore, in the present case-control study, we aimed to assess the association of active and passive cigarette smoking with the risk of MS and NMOSD.Thirty-six patients with NMOSD, 46 patients with MS, and 122 healthy individuals were included in this study. Standardized questionnaires and telephone interviews were used to collect information regarding the active and passive cigarette smoking behaviors of the patients and normal controls.The risk of MS was significantly higher among smokers than among nonsmokers (odds ratio = 2.166, 95% confidence interval: 1.109-4.170; P = .027). Further analysis of the risk between active and passive smokers, male smokers and nonsmokers showed no statistical difference. However, neither smokers nor active smokers had a greater or lower risk of NMOSD than their nonsmoking counterparts.Our preliminary study showed no significant association between cigarette smoking and the risk of NMOSD, strongly suggesting that, unlike MS, cigarette smoking might not confer NMOSD susceptibility, at least in the Northern Han Chinese population.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - He Yin
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pen-Ju Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tong Niu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze-Yi Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Peng Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei-Wei Zhang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Ma X, Qin C, Chen M, Yu HH, Chu YH, Chen TJ, Bosco DB, Wu LJ, Bu BT, Wang W, Tian DS. Regulatory T cells protect against brain damage by alleviating inflammatory response in neuromyelitis optica spectrum disorder. J Neuroinflammation 2021; 18:201. [PMID: 34526069 PMCID: PMC8444427 DOI: 10.1186/s12974-021-02266-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background and purpose Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4+CD25+ forkhead box P3+ (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD. Methods Twenty-five patients with anti-AQP4-postive NMOSD undergoing an attack and 21 healthy controls (HCs) were enrolled. Frequencies of T cell subsets and Tregs in the peripheral blood were assessed by flow cytometry. Additionally, a model of NMOSD using purified immunoglobulin G from anti-AQP4-antibodies-positive patients with NMOSD and human complement injected into brain of female adult C57BL/6J mice was established. Infiltrated Tregs into NMOSD mouse brain lesions were analyzed by flow cytometry, histological sections, and real-time quantitative Polymerase Chain Reaction. Astrocyte loss, demyelination, and inflammatory response were also evaluated in our NMOSD mouse model. Finally, we examined the effects of both depletion and adoptive transfer of Tregs. Results The percentage of Tregs, especially naïve Tregs, among total T cells in peripheral blood was significantly decreased in NMOSD patients at acute stage when compared to HCs. Within our animal model, the number and proportion of Tregs among CD4+ T cells were increased in the lesion of mice with NMOSD. Depletion of Tregs profoundly enhanced astrocyte loss and demyelination in these mice, while adoptive transfer of Tregs attenuated brain damage. Mechanistically, the absence of Tregs induced more macrophage infiltration, microglial activation, and T cells invasion, and modulated macrophages/microglia toward a classical activation phenotype, releasing more chemokines and pro-inflammatory cytokines. In contrast, Tregs transfer ameliorated immune cell infiltration in NMOSD mice, including macrophages, neutrophils, and T cells, and skewed macrophages and microglia towards an alternative activation phenotype, thereby decreasing the level of chemokines and pro-inflammatory cytokines. Conclusion Tregs may be key immunomodulators ameliorating brain damage via dampening inflammatory response after NMOSD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02266-0.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ting-Jun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
22
|
Wang J, Cui C, Lu Y, Chang Y, Wang Y, Li R, Shan Y, Sun X, Long Y, Wang H, Wang Z, Lee M, He S, Lu Z, Qiu W, Tan S. Therapeutic Response and Possible Biomarkers in Acute Attacks of Neuromyelitis Optica Spectrum Disorders: A Prospective Observational Study. Front Immunol 2021; 12:720907. [PMID: 34421925 PMCID: PMC8372759 DOI: 10.3389/fimmu.2021.720907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
Objective To explore the outcomes of NMOSD attacks and investigate serum biomarkers for prognosis and severity. Method Patients with NMOSD attacks were prospectively and observationally enrolled from January 2019 to December 2020 at four hospitals in Guangzhou, southern China. Data were collected at attack, discharge and 1/3/6 months after acute treatment. Serum cytokine/chemokine and neurofilament light chain (NfL) levels were examined at the onset stage. Results One hundred patients with NMOSD attacks were included. The treatment comprised intravenous methylprednisolone pulse therapy alone (IVMP, 71%), IVMP combined with apheresis (8%), IVMP combined with intravenous immunoglobulin (18%) and other therapies (3%). EDSS scores decreased significantly from a medium of 4 (interquartile range 3.0–5.5) at attack to 3.5 (3.0–4.5) at discharge, 3.5 (2.0–4.0) at the 1-month visit and 3.0 (2.0–4.0) at the 3-month visit (p<0.01 in all comparisons). The remission rate was 38.0% at discharge and 63.3% at the 1-month visit. Notably, relapse occurred in 12.2% of 74 patients by the 6-month follow-up. Higher levels of T helper cell 2 (Th2)-related cytokines, including interleukin (IL)-4, IL-10, IL-13, and IL-1 receptor antagonist, predicted remission at the 1-month visit (OR=9.33, p=0.04). Serum NfL levels correlated positively with onset EDSS scores in acute-phase NMOSD (p<0.001, R2 = 0.487). Conclusions Outcomes of NMOSD attacks were generally moderate. A high level of serum Th2-related cytokines predicted remission at the 1-month visit, and serum NfL may serve as a biomarker of disease severity at attack. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT04101058, identifier NCT04101058.
Collapse
Affiliation(s)
- Jingqi Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunping Cui
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanyu Chang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuge Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Li
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yilong Shan
- Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaobo Sun
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Michael Lee
- Department of Medicine, Harbour BioMed Therapeutics Limited, Shanghai, China
| | - Shane He
- Department of Medicine, Harbour BioMed Therapeutics Limited, Shanghai, China
| | - Zhengqi Lu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sha Tan
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Th17-Related Cytokines as Potential Discriminatory Markers between Neuromyelitis Optica (Devic's Disease) and Multiple Sclerosis-A Review. Int J Mol Sci 2021; 22:ijms22168946. [PMID: 34445668 PMCID: PMC8396435 DOI: 10.3390/ijms22168946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Devic’s disease (NMO; neuromyelitis optica) are autoimmune, inflammatory diseases of the central nervous system (CNS), the etiology of which remains unclear. It is a serious limitation in the treatment of these diseases. The resemblance of the clinical pictures of these two conditions generates a partial possibility of introducing similar treatment, but on the other hand, a high risk of misdiagnosis. Therefore, a better understanding and comparative characterization of the immunopathogenic mechanisms of each of these diseases are essential to improve their discriminatory diagnosis and more effective treatment. In this review, special attention is given to Th17 cells and Th17-related cytokines in the context of their potential usefulness as discriminatory markers for MS and NMO. The discussed results emphasize the role of Th17 immune response in both MS and NMO pathogenesis, which, however, cannot be considered without taking into account the broader perspective of immune response mechanisms.
Collapse
|
24
|
Rezaeimanesh N, Ariyanfar S, Sahraian MA, Moghadasi AN, Ghorbani Z, Razegh-Jahromi S. Whole grains and legumes consumption in association with neuromyelitis optica spectrum disorder odds. CURRENT JOURNAL OF NEUROLOGY 2021; 20:131-138. [PMID: 38011447 PMCID: PMC8984782 DOI: 10.18502/cjn.v20i3.7688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
Background: The environmental risk factors of neuromyelitis optica spectrum disorder (NMOSD) are not fully specified. Regarding the evidence on the possible protective effects of whole grains and legumes against inflammatory disorders, we examined the association between the mentioned dietary components and NMOSD. Methods: 70 patients with NMOSD with definite diagnosis and 164 hospital-based controls were included in this case-control investigation. Data on demographic, clinical, and anthropometric characteristics were collected. Dietary habits of participants were assessed using a previously validated food frequency questionnaire (FFQ) containing 168 food items. Daily intakes of whole grains and legumes were calculated and classified in quartiles. The odds of suffering from NMOSD according to the quartiles of whole grains and legumes were measured in the form of logistic regression models. Results: The mean amount of whole grains (115.29 vs. 44.14 g) and legumes (59.43 vs. 34.50 g) consumption was significantly higher in the control group versus the case group. There was a reverse association between whole grains or legumes and NMOSD odds in both models [P < 0.05, odds ratio (OR) < 1]. In the fully-adjusted model, 90% [95% confidence interval (CI): 0.02-0.39] and 92% (95% CI: 0.01-0.52) reduction in NMOSD odds was observed in the third and fourth quartiles of whole grains intake, respectively. Higher intake of legumes in the third and fourth quartiles led to 81% (95% CI: 0.05-0.71) and 95% (95% CI: 0.01-0.27) reduction in the odds of NMOSD, respectively. Conclusion: Aligned with the results of other investigations on inflammatory disorders, our results suggested a negative association between whole grains and legumes and NMOSD odds.
Collapse
Affiliation(s)
- Nasim Rezaeimanesh
- Student Research Committee, Department of Nutrition Sciences and Food Technology, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Ariyanfar
- Student Research Committee, Department of Nutrition Sciences and Food Technology, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Soodeh Razegh-Jahromi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition Sciences and Food Technology, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Maghbooli Z, Naser Moghadasi A, Rezaeimanesh N, Omidifar A, Varzandi T, Sahraian MA. The possible role of Interleukin-6 as a regulator of insulin sensitivity in patients with neuromyelitis optica spectrum disorder. BMC Neurol 2021; 21:167. [PMID: 33879088 PMCID: PMC8056566 DOI: 10.1186/s12883-021-02198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is associated with inflammatory mediators that may also trigger downstream signaling pathways leading to reduce insulin sensitivity. Methods We aimed to determine the risk association of hyperinsulinemia in NMOSD patients with seropositive AQP4-IgG and the serum levels of interleukin (IL)-6 and IL-17A compared with the control group. Serum levels of metabolic (Insulin, Fasting Blood Sugar (FBS), lipid profile) and inflammatory (IL-6 and IL-17) markers were assessed in 56 NMOSD patients and 100 controls. Results Hyperinsulinemia was more prevalent in NMOSD patients independent of age, sex and body mass index (BMI) (48.2% vs. 26%, p = 0.005) compared to control group. After adjusting age, sex and BMI, there was significant association between lower insulin sensitivity (IS) and NMOSD risk (95% CI: Beta = 0.73, 0.62 to 0.86, p = 0.0001). Circulating levels of IL-6 and IL-17 were higher in NMOSD patients, and only IL-6 had an effect modifier for the association between lower insulin sensitivity and NMOSD risk. Conclusions Our data suggests that inflammatory pathogenesis of NMOSD leads to hyperinsulinemia and increases the risk of insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02198-5.
Collapse
Affiliation(s)
- Zhila Maghbooli
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Takai Y, Misu T, Suzuki H, Takahashi T, Okada H, Tanaka S, Okita K, Sasou S, Watanabe M, Namatame C, Matsumoto Y, Ono H, Kaneko K, Nishiyama S, Kuroda H, Nakashima I, Lassmann H, Fujihara K, Itoyama Y, Aoki M. Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders. Brain 2021; 144:2401-2415. [PMID: 33711152 DOI: 10.1093/brain/awab102] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporin 4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) is an autoimmune astrocytopathic disease pathologically characterized by the massive destruction and regeneration of astrocytes with diverse types of tissue injury with or without complement deposition. However, it is unknown whether this diversity is derived from differences in pathological processes or temporal changes. Furthermore, unlike for the demyelinating lesions in multiple sclerosis, there has been no staging of astrocytopathy in AQP4-IgG+NMOSD based on astrocyte morphology. Therefore, we classified astrocytopathy of the disease by comparing the characteristic features, such as AQP4 loss, inflammatory cell infiltration, complement deposition and demyelination activity, with the clinical phase. We performed histopathological analyses in eight autopsied cases of AQP4-IgG+NMOSD. There were six women and two men, with a median age of 56.5 years (range, 46-71 years) and a median disease duration of 62.5 months (range, 0.6-252 months). Astrocytopathy in AQP4-IgG+NMOSD was classified into the following four stages defined by the astrocyte morphology and immunoreactivity for glial fibrillary acidic protein (GFAP): (a) astrocyte lysis: Extensive loss of astrocytes with fragmented and/or dust-like particles; (b) progenitor recruitment: Loss of astrocytes except small nucleated cells with GFAP-positive fibre-forming foot processes; (c) protoplasmic gliosis: Presence of star-shaped astrocytes with abundant GFAP-reactive cytoplasm; and (d) fibrous gliosis: Lesions composed of densely packed mature astrocytes. The astrocyte lysis and progenitor recruitment stages dominated in clinically acute cases (within 2 months after the last recurrence). Findings common to both stages were the loss of AQP4, a decreased number of oligodendrocytes, the selective loss of myelin-associated glycoprotein and active demyelination with phagocytic macrophages. The infiltration of polymorphonuclear cells and T cells (CD4-dominant) and the deposition of activated complement (C9neo), which reflects the membrane attack complex, a hallmark of acute NMOSD lesions, were selectively observed in the astrocyte lysis stage (98.4% in astrocyte lysis, 1.6% in progenitor recruitment, and 0% in protoplasmic gliosis and fibrous gliosis). Although most of the protoplasmic gliosis and fibrous gliosis lesions were accompanied by inactive demyelinated lesions with a low amount of inflammatory cell infiltration, the deposition of complement degradation product (C3d) was observed in all four stages, even in fibrous gliosis lesions, suggesting the past or chronic occurrence of complement activation, which is a useful finding to distinguish chronic lesions in NMOSD from those in multiple sclerosis. Our staging of astrocytopathy is expected to be useful for understanding the unique temporal pathology of AQP4-IgG+NMOSD.
Collapse
Affiliation(s)
- Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology, National Hospital Organization Sendai Medical Center, Sendai, 983-8520, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, 992-1202, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, 060-0808, Japan
| | - Kenji Okita
- Department of neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Shunichi Sasou
- Department of Pathology, Japanese Red Cross Society Hachinohe Hospital, Hachinohe, 039-1104, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Chihiro Namatame
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yuki Matsumoto
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hirohiko Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kimihiko Kaneko
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Neurology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, 986-8522, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Neurology, South Miyagi Medical Center, Shibata, 989-1253, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.,Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yasuto Itoyama
- International University of Health and Welfare, Fukuoka, 814-0001, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| |
Collapse
|
27
|
Zhou ZJ, Xia P. Elevated levels of NLRP3 inflammasome in serum of patients with chronic inflammatory demyelinating polyradiculoneuropathy are associated with disease severity. Neurol Sci 2021; 42:3383-3387. [PMID: 33409826 DOI: 10.1007/s10072-020-04949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/28/2020] [Indexed: 01/23/2023]
Abstract
This study aims to compare the levels of NLRP3 inflammasome and its related cytokines (IL-1β, IL-6, and IL-17), in serum and cerebrospinal fluid (CSF) of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), non-inflammatory chronic polyneuropathy, and functional neurological disorders. The results showed elevated NLRP3 inflammasome, IL-1β, IL-6, and IL-17 levels in serum but not in CSF of CIDP, compared to the other groups. Moreover, there was a positive correlation between NLRP3 inflammasome level and each cytokine. We also found a positive correlation between serum NLRP3 inflammasome level and disease severity in CIDP patients. Taken together, these results suggested that NLRP3 inflammasome could act as a potential biomarker to diagnose CIDP and assess the severity of the disease.
Collapse
Affiliation(s)
- Zhi-Jie Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Ping Xia
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
28
|
Lotan I, McGowan R, Levy M. Anti-IL-6 Therapies for Neuromyelitis Optica Spectrum Disorders: A Systematic Review of Safety and Efficacy. Curr Neuropharmacol 2021; 19:220-232. [PMID: 32348222 PMCID: PMC8033980 DOI: 10.2174/1570159x18666200429010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder (NMOSD) is a chronic autoimmune disease of the central nervous system that causes recurrent attacks of optic neuritis, myelitis, and brainstem symptoms, resulting in severe neurological disability. Preventive treatment with immunosuppressive agents reduces relapse rate and improves long-term prognosis. In recent years, the potential therapeutical effect of new agents has been investigated. Two of these, the anti-interleukin 6 (IL-6) agents tocilizumab and satralizumab, have been studied in active NMOSD. OBJECTIVE To systematically review the current data regarding the efficacy and safety of anti-IL-6 agents in NMOSD. RESULTS Fourteen case reports and 5 case series of intravenous tocilizumab have shown beneficial clinical and paraclinical effects compared to commonly used therapies, and another case series of subcutaneous tocilizumab has shown it is as effective as the IV formulation. A phase 2 comparative trial has shown tocilizumab IV to be more effective than azathioprine for relapse prevention. A phase 3 trial of subcutaneous satralizumab versus placebo, has shown a lower risk of relapse in the sartralizumab-treated group, both as add-on therapy to stable immunosuppressant and as monotherapy. Tocilizumab also reduced pain severity in two trials and fatigue scores in one trial, but satralizumab did not significantly improve pain and fatigue. Adverse events with both agents were relatively mild and comparable to placebo and azathioprine. CONCLUSION The anti-Il-6 agents tocilizumab and satralizumab show promising results in active NMOSD. Further randomized, larger-scale trials are needed to better define the role of these agents in the growing arsenal of NMOSD treatments.
Collapse
Affiliation(s)
- Itay Lotan
- Address correspondence to this author at the NYU Langone Health, Multiple Sclerosis Comprehensive Care Center, New York, USA; E-mail:
| | | | | |
Collapse
|
29
|
Zhou Y, Xie H, Zhao Y, Zhang J, Li Y, Duan R, Yao Y, Jia Y. Neutrophil-to-Lymphocyte Ratio on Admission is an Independent Risk Factor for the Severity of Neurological Impairment at Disease Onset in Patients with a First Episode of Neuromyelitis Optica Spectrum Disorder. Neuropsychiatr Dis Treat 2021; 17:1493-1503. [PMID: 34040376 PMCID: PMC8140946 DOI: 10.2147/ndt.s311942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To investigate the relationship between the neutrophil-to-lymphocyte ratio (NLR) and the severity of neurological impairment at disease onset in patients with a first episode of neuromyelitis optica spectrum disorder (NMOSD). PATIENTS AND METHODS This retrospective study included 259 patients with newly diagnosed NMOSD who were hospitalized at our institution between January 2013 and January 2020 (NMOSD group) and 169 healthy control subjects who underwent a physical examination at our hospital during the same period (control group). The clinical data collected included general information, past medical history, biochemical test results, imaging findings, NLR, AQP-4 antibody status, and initial Expanded Disability Status Scale score. A logistic regression model was used to analyze NLR as an independent risk factor for the severity of neurological impairment at disease onset in the NMOSD group. Receiver-operating characteristic curve analysis was used to evaluate the ability of the NLR to predict the severity of neurological impairment at disease onset in the NMOSD group and to determine its critical value. RESULTS The NLR was significantly higher in the NMOSD group than in the control group (P<0.001). In the NMOSD group, neurological impairment at disease onset was more severe in those with a high NLR than in those with a low NLR (P<0.001). At onset of disease, patients with severe neurological impairment had a more significant increase in NLR than those with mild-to-moderate neurological impairment (P<0.001). Both univariate (OR 1.180, 95% CI 1.046-1.331, P=0.007) and multivariate (OR 1.146, 95% CI 1.003-1.308, P=0.044) logistic regression analyses showed that the NLR was positively correlated with the severity of neurological impairment at onset of disease in the NMOSD group. The area under the receiver-operating characteristic curve was 0.687. CONCLUSION The NLR is an independent risk factor for the severity of neurological impairment at disease onset in patients with a first episode of NMOSD.
Collapse
Affiliation(s)
- Yongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haojie Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
30
|
Thoman ME, McKarns SC. Metabolomic Profiling in Neuromyelitis Optica Spectrum Disorder Biomarker Discovery. Metabolites 2020; 10:metabo10090374. [PMID: 32961928 PMCID: PMC7570337 DOI: 10.3390/metabo10090374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
There is no specific test for diagnosing neuromyelitis optica spectrum disorder (NMOSD), a disabling autoimmune disease of the central nervous system. Instead, diagnosis relies on ruling out other related disorders with overlapping clinical symptoms. An urgency for NMOSD biomarker discovery is underscored by adverse responses to treatment following misdiagnosis and poor prognosis following the delayed onset of treatment. Pathogenic autoantibiotics that target the water channel aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) contribute to NMOSD pathology. The importance of early diagnosis between AQP4-Ab+ NMOSD, MOG-Ab+ NMOSD, AQP4-Ab− MOG-Ab− NMOSD, and related disorders cannot be overemphasized. Here, we provide a comprehensive data collection and analysis of the currently known metabolomic perturbations and related proteomic outcomes of NMOSD. We highlight short chain fatty acids, lipoproteins, amino acids, and lactate as candidate diagnostic biomarkers. Although the application of metabolomic profiling to individual NMOSD patient care shows promise, more research is needed.
Collapse
Affiliation(s)
- Maxton E. Thoman
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Susan C. McKarns
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
31
|
Osswald D, De Seze J, Collongues N, Speeg-Schatz C. Comparaison clinico-épidémiologique des pathologies du spectre des neuromyélites optiques. J Fr Ophtalmol 2020; 43:598-603. [DOI: 10.1016/j.jfo.2019.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 10/23/2022]
|
32
|
Li X, Tian DC, Fan M, Xiu Y, Wang X, Li T, Jia D, Xu W, Song T, Shi FD, Zhang X. Intravenous immunoglobulin for acute attacks in neuromyelitis optica spectrum disorders (NMOSD). Mult Scler Relat Disord 2020; 44:102325. [DOI: 10.1016/j.msard.2020.102325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
|
33
|
Yang MG, Tian S, Zhang Q, Han J, Liu C, Zhou Y, Zhu J, Jin T. Elevated serum interleukin-39 levels in patients with neuromyelitis optica spectrum disorders correlated with disease severity. Mult Scler Relat Disord 2020; 46:102430. [PMID: 32853892 DOI: 10.1016/j.msard.2020.102430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023]
Abstract
AIMS Neuromyelitis optica spectrum disorders (NMOSD) is an inflammatory demyelinating autoimmune disorder in the central nervous system (CNS), which is mainly mediated by aquaporin 4 antibodies (AQP4-Ab). Interleukin (IL)-39 is a new pro-inflammatory cytokine which belongs to the IL-12 cytokine family. However, the role of IL-39 in patients with NMOSD is not completely understood. Therefore, the aim of this study is to explore the possible implication of IL-39 in the pathogenesis of NMOSD. METHODS In this study, 50 patients with NMOSD, 20 patients with relapsing-remitting multiple sclerosis (RRMS), 30 patients with non-inflammatory neurological disorders (NND) and 78 healthy controls (HCs) were recruited. The levels of serum IL-39 were measured using the enzyme-linked immunosorbent assay (ELISA). RESULTS Our study showed serum IL-39 levels in patients with NMOSD were significantly higher than that in RRMS patients, NND patients and HCs, and positively correlated with Expanded Disability Status Scale (EDSS) score. CONCLUSION These findings suggested that IL-39 may play a pro-inflammatory role in the pathogenesis of NMOSD and correlate with disease severity.
Collapse
Affiliation(s)
- Meng-Ge Yang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Suyan Tian
- Division of Clinical Research, the First Hospital of Jilin University, Changchun, China
| | - Qingxiang Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Yang Zhou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
34
|
Asseyer S, Cooper G, Paul F. Pain in NMOSD and MOGAD: A Systematic Literature Review of Pathophysiology, Symptoms, and Current Treatment Strategies. Front Neurol 2020; 11:778. [PMID: 33473247 PMCID: PMC7812141 DOI: 10.3389/fneur.2020.00778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are autoimmune inflammatory disorders of the central nervous system (CNS). Pain is highly prevalent and debilitating in NMOSD and MOGAD with a severe impact on quality of life, and there is a critical need for further studies to successfully treat and manage pain in these rare disorders. In NMOSD, pain has a prevalence of over 80%, and pain syndromes include neuropathic, nociceptive, and mixed pain, which can emerge in acute relapse or become chronic during the disease course. The impact of pain in MOGAD has only recently received increased attention, with an estimated prevalence of over 70%. These patients typically experience not only severe headache, retrobulbar pain, and/or pain on eye movement in optic neuritis but also neuropathic and nociceptive pain. Given the high relevance of pain in MOGAD and NMOSD, this article provides a systematic review of the current literature pertaining to pain in both disorders, focusing on the etiology of their respective pain syndromes and their pathophysiological background. Acknowledging the challenge and complexity of diagnosing pain, we also provide a mechanism-based classification of NMOSD- and MOGAD-related pain syndromes and summarize current treatment strategies.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| | - Graham Cooper
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt—Universität zu Berlin, Berlin, Germany
| |
Collapse
|
35
|
Hamdy SM, Abdel-Naseer M, Shehata HS, Shalaby NM, Hassan A, Elmazny A, Shaker E, Nada MAF, Ahmed SM, Hegazy MI, Mourad HS, Abdelalim A, Magdy R, Othman AS, Mekkawy DA, Kishk NA. Management Strategies of Patients with Neuromyelitis Optica Spectrum Disorder During the COVID-19 Pandemic Era. Ther Clin Risk Manag 2020; 16:759-767. [PMID: 32884277 PMCID: PMC7443007 DOI: 10.2147/tcrm.s261753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The ongoing coronavirus (COVID-19) pandemic is a global health emergency of international concern and has affected management plans of many autoimmune disorders. Immunosuppressive and immunomodulatory therapies are pivotal in the management of neuromyelitis optica spectrum disorder (NMOSD), potentially placing patients at an increased risk of contracting infections such as COVID-19. The optimal management strategy of NMOSD during the COVID-19 era remains unclear. Here, however, we examined the evidence of NMOSD disease-modifying therapies (DMTs) use during the present period and highlighted different scenarios including treatment of relapses as well as initiation and maintenance of DMTs in order to optimize care of NMOSD patients in the COVID-19 era.
Collapse
Affiliation(s)
- Sherif M Hamdy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maged Abdel-Naseer
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hatem S Shehata
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nevin M Shalaby
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Hassan
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Elmazny
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ehab Shaker
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona A F Nada
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sandra M Ahmed
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed I Hegazy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Husam S Mourad
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abdelalim
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rehab Magdy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alshimaa S Othman
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa A Mekkawy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nirmeen A Kishk
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Rezaeimanesh N, Jahromi SR, Ghorbani Z, Moghadasi AN, Hekmatdoost A, Moghadam NB, Sahraian MA. Low carbohydrate diet score and odds of neuromyelitis optica spectrum disorder: A case-control study. INT J VITAM NUTR RES 2020; 92:321-330. [PMID: 32795169 DOI: 10.1024/0300-9831/a000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Introduction: Neuromyelitis optica spectrum disorder (NMOSD) is a demyelinating inflammatory disease of The Central nervous system. We aimed to investigate the association between low carbohydrate diet (LCD) and NMOSD odds. Method: Seventy NMOSD patients with definite diagnosis and 164 hospital-based controls were enrolled in this case-control study. Dietary data was obtained using a validated 168-item food frequency questionnaire. To determine the LCD score, participants were stratified into 11 groups according to carbohydrate, protein, fat, animal fat, animal protein, vegetable fat and vegetable protein intakes. Higher intake of protein and fat, and lower intake of carbohydrate received a higher score between 0-10. Macronutrients scores were summed together and LCD scores calculated. The association between LCD scores and likelihood of being assigned to NMOSD group was investigated using multiple regression models. Results: Total LCD scores increased from the median of 21.00 in the first decile to 53.00 in the tenth decile of LCD score. After adjustment for confounding factors including age, gender, BMI, energy intake, cigarette smoking and alcohol consumption, an inverse association was detected between LCD scores and odds of NMOSD. The odds of suffering from NMOSD declined significantly about 78% (OR: 0.22; 95% CI: 0.05-0.87) and 76% (OR: 0.24; 95% CI: 0.06-0.93) in the fifth and sixth deciles of LCD score compared to the first decile. Conclusion: From the obtained results it can be speculated that higher carbohydrate and lower protein and fat intakes may be associate with the increased odds of NMOSD. However, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran, Student Research Committee, Department and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Beladi Moghadam
- Department of neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Uzawa A, Mori M, Masuda H, Ohtani R, Uchida T, Aoki R, Kuwabara S. Peroxiredoxins are involved in the pathogenesis of multiple sclerosis and neuromyelitis optica spectrum disorder. Clin Exp Immunol 2020; 202:239-248. [PMID: 32643149 DOI: 10.1111/cei.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Peroxiredoxins (PRXs) are intracellular anti-oxidative enzymes but work as inflammatory amplifiers under the extracellular condition. To date, the function of PRXs in the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is not fully understood. The aim of this study was to investigate whether PRXs play a role in the pathogenesis of MS and NMOSD. We analyzed levels of PRXs (PRX1, PRX5 and PRX6) in the cerebrospinal fluid (CSF) and serum of 16 patients with MS, 16 patients with NMOSD and 15 patients with other neurological disorders (ONDs). We identified potential correlations between significantly elevated PRXs levels and the clinical variables in patients with MS and NMOSD. Additionally, pathological analyses of PRXs (PRX1-6) in the central nervous system (CNS) were performed using the experimental autoimmune encephalomyelitis (EAE), animal model of MS. We found that serum levels of PRX5 and PRX6 in patients with MS and NMOSD were higher compared with those in patients with ONDs (P < 0·05). Furthermore, high levels of PRX5 and PRX6 were partly associated with blood-brain barrier dysfunction and disease duration in NMOSD patients. No significant elevation was found in CSF PRXs levels of MS and NMOSD. Spinal cords from EAE mice showed remarkable PRX5 staining, especially in CD45+ infiltrating cells. In conclusion, PRX5 and PRX6 may play a role in the pathogeneses of MS and NMOSD.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - H Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - R Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - T Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - R Aoki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
38
|
Wu Y, Cai Y, Liu M, Zhu D, Guan Y. The Potential Immunoregulatory Roles of Vitamin D in Neuromyelitis Optica Spectrum Disorder. Mult Scler Relat Disord 2020; 43:102156. [PMID: 32474282 DOI: 10.1016/j.msard.2020.102156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 01/09/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoantibody-mediated disease affecting the central nervous system (CNS). Its pathogenesis involves both innate and acquired immune reactions; specific antibody (Aquaporin-4 antibody) and inflammatory cells cause direct damage on lesion sites, while B cell-T cell interactions facilitate the demyelination. However, its etiology is still not fully understood. Vitamin D deficiency is present in numerous autoimmune diseases, including NMOSD. Evidence suggests that low vitamin D levels mayassociate with disease activity and relapse rate in NMOSD, indicating the participation in the pathogenesis of NMOSD. The immunoregulatory roles of vitamin D in both numerous autoimmune diseases and experimental autoimmune encephalomyelitis (EAE) models are increasingly recognized. Recent studies have revealed vitamin D modulation in cytokine production, immune cell development and differentiation, as well as antibody production. By enhancing an anti-inflammatory environment and suppressing the overactivated autoimmune process, vitamin D shows its potential immunoregulatory roles in NMOSD, which could possibly introduce a new therapy for NMOSD patients.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Neurology, Renji Hospital, School of medicine, Shanghai Jiaotong University, No.127, Pujian Road, Shanghai 200127, China
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of medicine, Shanghai Jiaotong University, No.127, Pujian Road, Shanghai 200127, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai 200437, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, School of medicine, Shanghai Jiaotong University, No.127, Pujian Road, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of medicine, Shanghai Jiaotong University, No.127, Pujian Road, Shanghai 200127, China.
| |
Collapse
|
39
|
Yao XY, Wu YF, Gao MC, Hong RH, Ding J, Hao Y, Zhang Y, Guan YT. Serum albumin level is associated with the severity of neurological dysfunction of NMOSD patients. Mult Scler Relat Disord 2020; 43:102130. [PMID: 32417662 DOI: 10.1016/j.msard.2020.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease of the central nervous system. Serum albumin (SA) has antioxidant, immunomodulatory and anti-inflammatory effects. However, the roles of SA in NMOSD have not been studied. The current study aimed to clarify the association of SA with disease severity and prognosis in NMOSD patients. METHODS Serum levels of albumin were measured by Bromcresol Green method. Serum level measurements of interleukins were performed using enzyme-linked immunoassay (ELISA) method. RESULTS Of all the 130 NMOSD patients, 96 patients were in the acute phase while 34 patients were in the remission phase of disease at the time of sampling. SA concentration was significantly correlated with EDSS score in patients in the acute phase but not in remission phase (r = - 0.388, p < 0.001 and r = - 0.467, p = 0.809, respectively). Logistic analysis revealed that SA was the only significant factor to predict severe NMOSD (EDSS 8.0-9.5) OR = 0.698, 95%CI 0.563-0.865, p = 0.001) after adjustment of other confounding factors. Furthermore, SA was negatively correlated with the serum level of IL-33 (r = -0.438, p = 0.016) in the acute phase of NMOSD patients. CONCLUSION The current study found that low level of SA was an independent indicator of more severe neurological deficit in patients in acute phase of NMOSD. SA concentration was negatively correlated with the serum level of IL-33 in the acute phase of the disease, which implies that SA might participate in the immunopathology of NMOSD partly through its interaction with IL-33.
Collapse
Affiliation(s)
- Xiao-Ying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi-Fan Wu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mei-Chun Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rong-Hua Hong
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Ding
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yong Hao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Zhang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
40
|
Rosso M, Saxena S, Chitnis T. Targeting IL-6 receptor in the treatment of neuromyelitis optica spectrum: a review of emerging treatment options. Expert Rev Neurother 2020; 20:509-516. [PMID: 32306778 DOI: 10.1080/14737175.2020.1757434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Recent research has shown that IL-6 receptor (IL-6 R) inhibitors like tocilizumab and satralizumab are effective in reducing the relapse rate in patients with NMOSD.Areas covered: This review article explores current concepts in NMOSD management and focuses on IL-6 R as a therapeutic target. The authors delve into the biological and immunological role of IL-6 in the pathogenesis of NMOSD. Further, the authors summarize the most recent findings on the use of anti-IL-6 R monoclonal antibodies, tocilizumab and satralizumab, in the treatment of NMOSD.Expert opinion: A better understanding of the role of cytokines in NMOSD may provide the neurologist with novel therapies for this disease. IL-6 R appears to be a central hub to NMOSD pathogenesis and a relevant therapeutic target.
Collapse
Affiliation(s)
- Mattia Rosso
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Peng Y, Chen J, Dai Y, Jiang Y, Qiu W, Gu Y, Wang H. NLRP3 level in cerebrospinal fluid of patients with neuromyelitis optica spectrum disorders: Increased levels and association with disease severity. Mult Scler Relat Disord 2020; 39:101888. [PMID: 31869599 DOI: 10.1016/j.msard.2019.101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) and MS are the most common autoimmune inflammatory demyelinating diseases of the CNS. However, the mechanisms of pathogenesis are still unclear. nucleotide-binding leucine-rich repeat (NLR) family pyrin domain containing 3 (NLRP3), an important protein of the innate immune system that is activated by mitochondrial DNA (mtDNA), has been reported to be associated with various autoimmune disorders. OBJECTIVE To assess the levels of cerebrospinal fluid (CSF) NLRP3, mtDNA and inflammation-associated cytokines (IL-1β, IL-6 and IL-17) in patients with NMOSD and MS, and to examine the correlations between these factors. METHODS 28 NMOSD patients, 15 MS patients, and 16 controls with non-inflammatory neurological diseases were recruited. NLRP3 inflammasome, IL-1β, IL-6 and IL-17 were measured by ELISA. CSF extracellular mtDNA was measured by qPCR. The severity of clinical presentation was evaluated by EDSS score. RESULTS CSF levels of NLRP3, mtDNA, IL-1β, IL-6 and IL-17 were higher in NMOSD patients than in controls. Elevated CSF NLRP3, mtDNA and IL-6 were found in MS patients compared with controls. CSF NLRP3 and IL-6 levels were significantly higher in NMOSD patients than in MS patients. The EDSS scores of NMOSD patients during relapse were positively correlated with CSF NLRP3 and mtDNA. CONCLUSION Our findings suggest that CSF levels of the NLRP3 inflammasome may serve as a diagnostic biomarker for distinguishing NMOSD and MS. Pyroptosis mediated by the NLRP3 inflammasome following mitochondrial damage may play an important role in the pathogenesis of these neuroinflammatory disorders, especially NMOSD.
Collapse
|
42
|
Cho EB, Cho HJ, Choi M, Seok JM, Shin HY, Kim BJ, Min JH. Low high-density lipoprotein cholesterol and high triglycerides lipid profile in neuromyelitis optica spectrum disorder: Associations with disease activity and disability. Mult Scler Relat Disord 2020; 40:101981. [PMID: 32045867 DOI: 10.1016/j.msard.2020.101981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Altered lipid metabolism is a feature of systemic autoimmune diseases. Dyslipidemia is associated with the disease activity and progression in patients with multiple sclerosis. However, in neuromyelitis optica spectrum disorder (NMOSD), changes in the lipid profile and the associations between specific lipid levels and disease activity/disability are unknown. METHODS Serum samples (N = 148) were collected from 53 patients with aquaporin-4 (AQP4)-positive NMOSD when they were not treated with lipid lowering agents. Fasting lipid (total cholesterol, triglyceride [TG], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol) levels were compared between 39 patients with NMOSD, not taking steroids, and 142 age-, sex-, and body mass index-matched healthy controls. In addition, we analyzed the differences in the lipid profile between attack and remission samples and the associations between lipid profiles and clinical outcome in all 148 samples from 53 patients. The generalized estimating equation was used. RESULTS Patients with NMOSD showed lower HDL-C and higher TG levels compared to healthy controls (p = 0.017 and p < 0.001, respectively). HDL-C level was significantly lower during attack than remission (β = -7.851; p = 0.035), and TG level had positive correlation with EDSS scores (β = 0.014; p = 0.002) regardless of disease activity status. However, enhanced lesions on magnetic resonance imaging were not associated with lipid profiles. CONCLUSION Dyslipidemia with low HDL-C and high TG correlated disease activity and disability in AQP4-positive NMOSD. It remains to be elucidated whether altered lipid metabolism contributes to deleterious immune response, possibly through inflammation, or is secondary to neurological disability in NMOSD.
Collapse
Affiliation(s)
- Eun Bin Cho
- Department of Neurology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea; Department of Neurology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea; Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Misong Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Hee Young Shin
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Liu J, Mori M, Sugimoto K, Uzawa A, Masuda H, Uchida T, Ohtani R, Kuwabara S. Peripheral blood helper T cell profiles and their clinical relevance in MOG-IgG-associated and AQP4-IgG-associated disorders and MS. J Neurol Neurosurg Psychiatry 2020; 91:132-139. [PMID: 31806723 DOI: 10.1136/jnnp-2019-321988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the immunological characteristics and their clinical relevance in anti-myelin oligodendrocyte glycoprotein (MOG)-IgG-associated and anti-aquaporin-4 (AQP4)-IgG-associated disorders (MOGAD and AQPAD) and multiple sclerosis (MS). METHODS We measured peripheral blood helper T cell subsets (Th1, Th2, Th17 and regulatory T cell (Treg)) in patients with MOGAD (n=26), AQPAD (n=32) and MS (n=28) in the attack and remission phases by flow cytometry with intracellular cytokine staining. We also studied their correlation with clinical parameters. Ten normal subjects served as healthy controls. RESULTS In all the three disorders, Th17 significantly increased at attack, and downregulated in the remission phases, although still elevated compare with healthy controls. MOGAD and AQPAD patients shared the common T cell profiles, while the extent of Th17 shift was more prominent in AQPAD. Patients with MS showed decreased Th2 than ones with MOGAD and AQPAD at attack. In terms of clinical correlation, MS patients showed that higher Th1 and Th17 proportion was associated with more frequent relapse and more severe clinical disability, whereas in MOGAD, higher Treg was associated with milder clinical severity. In AQPAD, no obvious correlation of Th profiles with clinical manifestation was found. CONCLUSIONS The present study first investigated intracellular cytokine levels among MOGAD, AQPAD and MS. The different patterns and extent of helper T cell profiles could reflect the pathogenesis of each disorders, and may affect disease severity and activity.
Collapse
Affiliation(s)
- Jia Liu
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Masahiro Mori
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Neurology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Akiyuki Uzawa
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Masuda
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Uchida
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryohei Ohtani
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
44
|
Ashtari F, Madanian R, Shaygannejad V, Zarkesh SH, Ghadimi K. Serum levels of IL-6 and IL-17 in multiple sclerosis, neuromyelitis optica patients and healthy subjects. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:267-273. [PMID: 31993101 PMCID: PMC6971496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Studies reported that evaluating the interleukin serum level of MS and NMO patients is helpful for differentiating these two diseases from each other. This study aimed to compare the level of IL-6 and IL-17 in MS and NMO patients and healthy subjects. METHODS This study is a case control study that evaluated the serum level of IL-6 and IL-17 in MS and NMO patients in comparison to controls in patients who referred to Kashani hospital clinics. The level of serum IL-6 and IL-17 were measured by ELISA test in all patients. Participants were divided in to three groups include MS patients, NMO patients and controls and the level of IL-6 and IL-17 were compared in this three groups. RESULTS Mean of serum level of IL-6 in the NMO group was significantly lower than MS and healthy subject (P=0.02 for NMO and MS, P=0.001 for NMO and healthy subjects) but there was no significant difference between MS and healthy subjects (P=0.09). The mean of serum level of IL-17 in the MS and NMO were significantly higher than healthy subjects (P<0.001 for both). Also the mean of serum level of IL-17 in the MS was significantly higher than NMO (P=0.01). A positive significant correlation between age and serum level of IL-6 in all subjects (r=0.23, P=0.01). There was a positive significant correlation between age and serum level of IL-17 in MS and NMO patients (r=0.28, P=0.012). CONCLUSION Using IL-17 and IL-6 were inflammatory markers to diagnosis of NMO, MS and healthy subjects.
Collapse
Affiliation(s)
- Fereshte Ashtari
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical SciencesIsfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Reyhanehsadat Madanian
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical SciencesIsfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical SciencesIsfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Sayyed Hamid Zarkesh
- Department of Immunology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Keyvan Ghadimi
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| |
Collapse
|
45
|
Wu K, Wen L, Duan R, Li Y, Yao Y, Jing L, Jia Y, Teng J, He Q. Triglyceride Level Is an Independent Risk Factor in First-Attacked Neuromyelitis Optica Spectrum Disorders Patients. Front Neurol 2019; 10:1230. [PMID: 31824407 PMCID: PMC6881454 DOI: 10.3389/fneur.2019.01230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: To investigate prospective associations between triglyceride (TG) level and prognosis of first-attacked patients with neuromyelitis optica spectrum disorders (NMOSD). Methods: This retrospective study included 196 patients newly diagnosed with NMOSD from June 2014 to December 2018. Data of clinical parameters, including age of onset, sex, BMI, blood lipid levels, anti-aquaporin-4 status, serum glucose level, therapy regimens, comorbidities, initial Expanded Disability Status Scale (EDSS), relapses, and outcomes were collected. We used logistic regression models to examine the associations among relevant clinical factors and outcomes, and statistical analyses were performed using the SPSS 23.0 software. Results: Compared with the high TG group, residual EDSS was relatively lower in the normal TG group (median 1.0 vs. 2.0, P = 0.002). In the univariate analysis, TG level was positively correlated with outcomes (OR 1.75, 95% CI 1.18-2.60, P = 0.005) and relapses (OR 1.57, 95% CI 1.07-2.31, P = 0.02). Our stratified analysis suggested that patients with normal BMI (OR 4.90, 95% CI 2.10-11.44, P = 0.001) were closely correlated with poor recovery owing to increased TG level. In the multivariate analysis, a statistically significant association still existed between TG level and outcomes (OR 3.44, 95% CI 1.02-11.64; P = 0.040) after adjusting for various variables. Conclusions: In first-attacked NMOSD patients, TG level was positively associated with poor recovery. Early monitoring and treatment of elevated TG level in NMOSD patients are important.
Collapse
Affiliation(s)
- Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - LuLu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qianyi He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Xue Q, Li X, Gu Y, Wang X, Wang M, Tian J, Duan X, Gao H, Ji X, Yan X, Dong W, Fang Q, Zhang X. Unbalanced Expression of ICOS and PD-1 in Patients with Neuromyelitis Optica Spectrum Disorder. Sci Rep 2019; 9:14130. [PMID: 31575949 PMCID: PMC6773714 DOI: 10.1038/s41598-019-50479-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) likely results from humoral immune abnormalities. The role that helper T cells play in the pathogenesis of this disease is not fully understood. To ascertain the clinical significance of two important costimulatory molecules required for T-cell activation in the peripheral blood of patients with NMOSD, we examined the expression levels of a membrane- and soluble-type inducible costimulatory molecule (ICOS), its ligand (ICOSL), programmed death-1 (PD-1), and its ligand (PD-L1) in the peripheral blood of 30 patients with NMOSD and compared these levels with those in patients with longitudinally extensive transverse myelitis (LETM), those with optic neuritis (ON), and healthy controls (HCs). Our results showed that the ICOS/ICOSL and PD-1/PD-L1 pathways may play important roles in the early stages of NMOSD pathogenesis. ICOS and PD-1 are potential therapeutic targets and valuable biomarkers for the differential diagnosis of early-stage NMOSD.
Collapse
Affiliation(s)
- Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China. .,Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China. .,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu, 215004, China.
| | - Xiaoping Li
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yanzheng Gu
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu, 215004, China
| | - Xiaozhu Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mingyuan Wang
- Suzhou Red Cross Central Blood Station, Suzhou, Jiangsu, 215006, China
| | - Jingluan Tian
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoyu Duan
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hanqing Gao
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaopei Ji
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoming Yan
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wanli Dong
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China. .,Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| | - Xueguang Zhang
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China. .,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
47
|
Hou MM, Li YF, He LL, Li XQ, Zhang Y, Zhang SX, Li XY. Proportions of Th17 cells and Th17-related cytokines in neuromyelitis optica spectrum disorders patients: A meta-analysis. Int Immunopharmacol 2019; 75:105793. [PMID: 31401379 DOI: 10.1016/j.intimp.2019.105793] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND T helper (Th17) cells play an important role in many autoimmune diseases. In this meta-analysis, we aimed to specify the proportion of Th17 cells and the levels of Th17-related cytokines in neuromyelitis optica spectrum disorders (NMOSD) patients, we did this meta-analysis. METHODS Using previously reported data from PubMed, EMBASE, and Web of Science and Cochrane, we explored the proportion of Th17 cells in CD4+ T cells in peripheral blood (PB) and the level of Th17-related cytokines, such as interleukin (IL)1β, IL6, IL17, IL21, IL22, IL23 and transforming growth factor -beta (TGFβ), in cerebrospinal fluid (CSF), plasma, and serum in NMOSD patients compared to control group and multiple sclerosis (MS) patients. RESULTS In total, 38 trials were included for our analysis. Results showed that the proportion of Th17 cells was higher in NMOSD patients than in the control and MS groups. The levels of IL1β, IL6, IL17 and IL21 in CSF and plasma, and IL6, IL21, IL22, and IL23 in the serum were higher in NMOSD patients than in the control group. The levels of IL6 in CSF and serum and IL17 in plasma and serum were higher in NMOSD patients than in MS patients. CONCLUSION The proportion of Th17 cells and the levels of Th17-related cytokines was increased in NMOSD patients compared with the control group and MS patients. The results of this meta-analysis indicated that Th17 cells and Th17-associated cytokines may play an essential role in the pathogenesis of NMOSD. PROSPERO registration: CRD42019128785.
Collapse
Affiliation(s)
- Miao-Miao Hou
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng Street, Taiyuan, Shanxi 030024, China
| | - Yu-Feng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China; Clinical Neuroscience Institute of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ling-Ling He
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng Street, Taiyuan, Shanxi 030024, China
| | - Xiao-Qiong Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng Street, Taiyuan, Shanxi 030024, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xin-Yi Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng Street, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
48
|
Yang CS, Zhang QX, Deng Y, Zhou BJ, Zhang LJ, Li LM, Qi Y, Wang J, Yang L, Shi FD. Increased serum IL-36β and IL-36γ levels in patients with neuromyelitis optica spectrum disorders: association with disease activity. BMC Neurol 2019; 19:185. [PMID: 31382910 PMCID: PMC6681488 DOI: 10.1186/s12883-019-1415-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Background Interleukin 36 (IL-36) cytokines belong to the IL-1 family and play an important role in some autoimmune diseases. However, the relationship between IL-36 and neuromyelitis optica spectrum disorders (NMOSD) remains unclear. Methods We determined serum IL-36α, IL-36β and IL-36γ levels and assessed correlations with clinical characteristics in 50 NMOSD patients and 30 healthy controls (HC). Results The concentrations of serum IL-36β and IL-36γ were significantly higher in patients with NMOSD than in HCs and decreased during remission. Serum IL-36β levels were positively correlated with the annual relapse rate (ARR), spinal cord lesion length and Expanded Disability Status Scale (EDSS) scores. Conclusions Serum IL-36β and IL-36γ levels were related to disease activity in NMOSD patients and may be important biomarkers of NMOSD.
Collapse
Affiliation(s)
- Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Qiu Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yu Deng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bing Jie Zhou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Neurology, Tianjin TEDA Hospital, No 65 The Third Road, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Lin Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li Min Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No 154 Anshan Road, Heping District, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| |
Collapse
|
49
|
Imai T, Shibata S, Shinohara K, Sakurai K, Horiuchi M, Hasegawa Y. [Longitudinally extensive transverse myelitis involving fifteen vertebral bodies positive for anti-myelin oligodendrocyte glycoprotein (MOG) antibody: a case report]. Rinsho Shinkeigaku 2019; 59:375-378. [PMID: 31142714 DOI: 10.5692/clinicalneurol.cn-001290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 16-year-old male with no previous medical history developed sudden fever and urinary dysfunction. He was admitted to our hospital due to bilateral leg weakness and sensory disturbance on the third day of weakness onset. A sagittal T2-weighted image displayed a longitudinal extensive lesion of transverse myelitis in the spinal column from the upper cervical (C2) to the thoracic region (Th9). The patient was diagnosed with autoimmune myelitis and treated with four courses of intravenous methylprednisolone (1 g/day for three consecutive days per week). This improved his signs, and his serum sample tested negative for anti-aquaporin-4 (AQP-4) antibody but positive for anti-myelin oligodendrocyte glycoprotein (MOG) antibody in cell-based assays. We report this case of longitudinally extensive transverse myelitis involving fifteen vertebral bodies positive for anti-MOG antibody.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Neurology, Kawasaki Municipal Tama Hospital
| | | | | | - Kenzo Sakurai
- Department of Neurology, Kawasaki Municipal Tama Hospital
| | | | - Yasuhiro Hasegawa
- Department of Internal Medicine, Division of Neurology, St Marianna University School of Medicine
| |
Collapse
|
50
|
Peng Y, Liu B, Pei S, Zheng D, Wang Z, Ji T, Pan S, Shen HY, Wang H. Higher CSF Levels of NLRP3 Inflammasome Is Associated With Poor Prognosis of Anti-N-methyl-D-Aspartate Receptor Encephalitis. Front Immunol 2019; 10:905. [PMID: 31214158 PMCID: PMC6554706 DOI: 10.3389/fimmu.2019.00905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is accepted as an autoimmune disorder of the central nervous system (CNS). NLR family pyrin domain containing 3 (NLRP3) inflammasome, a potent innate inflammatory mediator, can activate IL-1β and induce the migration of T helper cell into CNS. However, the possible role of NLRP3 inflammasome in the pathogenesis of anti-NMDAR encephalitis remains unclear. This study aims to determine the levels of NLRP3 and related cytokines (IL-1β, IL-6, and IL-17) in the cerebrospinal fluid (CSF) of anti-NMDAR encephalitis patients and to assess whether NLRP3 influences the clinical outcomes of this disease. Twenty-five patients with anti-NMDAR encephalitis, 12 viral meningoencephalitis patients and 26 controls with non-inflammatory neurological diseases were recruited. CSF NLRP3 inflammasome, IL-1β, IL-6, and IL-17 were measured by enzyme-linked immunosorbent assay. Thirteen out of 25 patients were re-examed for the concentrations of NLRP3 and cytokines 6 months later. Our results showed significant increases of CSF NLRP3 inflammasome, IL-1β, IL-6, and IL-17 in anti-NMDAR encephalitis patients. There were positive correlations between CSF NLRP3 inflammasome and cytokines in anti-NMDAR encephalitis patients. There was also a positive correlation between maximum modified Rankin Scale (mRS) scores and CSF NLRP3 inflammasome in anti-NMDAR encephalitis patients. During follow-up, the decrease of mRS was positively correlated with the decrease of CSF NLRP3 inflammasomes. These results suggested that the level of CSF NLRP3 inflammasome could represent the severity of anti-NMDAR encephalitis and the reduction of CSF NLRP3 inflammasome could act as an indicator for the prognosis of this disease.
Collapse
Affiliation(s)
- Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Pei
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong Brain Hospital, Guangzhou, China
| | - Teng Ji
- Department of Pediatric Neurology, Legacy Emanuel Medical Center, Randall Children's Hospital, Portland, OR, United States
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Ying Shen
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|