1
|
Nazir A, Zafar A, Jones E, Awan M. Vascular Leukoencephalopathy Associated Chorea Due to A Heterozygous Htra 1 Variant: Novel Presentation of Cadasil Type II. Mov Disord Clin Pract 2024; 11:1301-1304. [PMID: 39108045 PMCID: PMC11489607 DOI: 10.1002/mdc3.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
- Alina Nazir
- York & Scarborough NHS Foundation Trust, Allama Iqbal Medical College, Punjab UniversityYorkUK
| | - Ali Zafar
- York & Scarborough NHS Foundation Trust, Allama Iqbal Medical CollegeYorkUK
| | - Edward Jones
- York & Scarborough NHS Foundation Trust, University of Newcastle‐Upon‐TyneYorkUK
| | - Muhammad Awan
- York & Scarborough NHS Foundation Trust, Allama Iqbal Medical CollegeYorkUK
| |
Collapse
|
2
|
Ying Y, Li Y, Yao T, Shao X, Tang W, Montagne A, Chabriat H, Wang DJJ, Wang C, Yang Q, Cheng X. Heterogeneous blood-brain barrier dysfunction in cerebral small vessel diseases. Alzheimers Dement 2024; 20:4527-4539. [PMID: 38787758 PMCID: PMC11247670 DOI: 10.1002/alz.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION We explored how blood-brain barrier (BBB) leakage rate of gadolinium chelates (Ktrans) and BBB water exchange rate (kw) varied in cerebral small vessel disease (cSVD) subtypes. METHODS Thirty sporadic cSVD, 40 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 13 high-temperature requirement factor A serine peptidase 1 (HTRA) -related cSVD subjects were investigated parallel to 40 healthy individuals. Subjects underwent clinical, cognitive, and MRI assessment. RESULTS In CADASIL, no difference in Ktrans, but lower kw was observed in multiple brain regions. In sporadic cSVD, no difference in kw, but higher Ktrans was found in the whole brain and normal-appearing white matter. In HTRA1-related cSVD, both higher Ktrans in the whole brain and lower kw in multiple brain regions were observed. In each patient group, the altered BBB measures were correlated with lesion burden or clinical severity. DISCUSSION In cSVD subtypes, distinct alterations of kw and Ktrans were observed. The combination of Ktrans and kw can depict the heterogeneous BBB dysfunction. HIGHLIGHTS We measured BBB leakage to gadolinium-based contrast agent (Ktrans) and water exchange rate (kw) across BBB in three subtypes of cSVD. CADASIL is characterized by lower kw, HTRA1-related cSVD exhibits both higher Ktrans and lower kw, while sporadic cSVD is distinguished by higher Ktrans. There are distinct alterations in kw and Ktrans among subtypes of cSVD, indicating the heterogeneous nature of BBB dysfunction.
Collapse
Affiliation(s)
- Yunqing Ying
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tingyan Yao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- Centre Neurovasculaire Translationnel, CERVCO, INSERM U1141, FHU NeuroVasc, Université Paris Cité, Paris, France
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Fushimi Y, Nakajima S, Sakata A, Okuchi S, Otani S, Nakamoto Y. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. J Magn Reson Imaging 2024; 59:1914-1929. [PMID: 37681441 DOI: 10.1002/jmri.29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Cersonsky TE, Roth J. A Midsummer Night's Gene: The familial Neurological Illness of Felix Mendelssohn. JOURNAL OF MEDICAL BIOGRAPHY 2024; 32:264-272. [PMID: 34636685 DOI: 10.1177/09677720211046584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Felix Mendelssohn Bartholdy (1805-1847) is widely regarded as one of the musical geniuses of the Romantic period. A prodigy akin to Mozart, Mendelssohn composed piano works, symphonies, and concertos at an early age but died young, at 38. His death has been attributed to neurological disease, but the mystery of his diagnosis is amplified by the fact that his sisters died under similar circumstances, including the renowned composer, Fanny Mendelssohn Hensel. Mendelssohn died after years of suffering from headaches, earaches, and mood disturbances. In the final year of his life, his acute decline was marked by stepwise, progressive neurologic deficits: gait disturbance, loss of sensation in the hands, partial paralysis, and, finally, loss of consciousness. The similar pattern of disease within his family suggests an underlying genetic link, though this may be multifactorial in nature. We present a thorough, posthumous differential diagnosis for Mendelssohn's illness, given his medical history, the familial pattern, and hints from within his music. Possible diagnoses include ruptured cerebral aneurysm with resultant subarachnoid hemorrhage, familial cerebral cavernous malformation, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Continued research into Mendelssohn's life may yield more information about his illness, death, and possibly true diagnosis.
Collapse
Affiliation(s)
- Tess Ek Cersonsky
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Julie Roth
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
6
|
Oesch G, Münger R, Steinlin M. Be aware of childhood stroke: Proceedings from EPNS Webinar. Eur J Paediatr Neurol 2024; 49:82-94. [PMID: 38447504 DOI: 10.1016/j.ejpn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Childhood arterial ischaemic stroke (AIS) is a significant health concern with increasing incidence. This review aims to provide an overview of the current understanding of childhood AIS. The incidence of childhood AIS is on the rise especially in developing countries, likely due to improved awareness and diagnostic capabilities. Aetiology of childhood AIS is multifactorial, with both modifiable risk factors and genetic predisposition playing important roles. Identifying and addressing these risk factors, such as infection, sickle cell disease, and congenital heart defects, is essential in prevention and management. Identifying underlying conditions through genetic testing is important for appropriate management and long-term prognosis. Clinically, distinguishing stroke from stroke mimics can be challenging. Awareness of important stroke mimics, including migraines, seizures, and metabolic disorders, is crucial to avoid misdiagnosis and ensure appropriate treatment. The diagnostic approach to childhood AIS involves a comprehensive "chain of care," including initial assessment, neuroimaging, and laboratory investigations. National guidelines play a pivotal role in standardizing and streamlining the diagnostic process, ensuring prompt and accurate management. Early intervention is critical in the management of childhood AIS. Due to the critical time window, the question if mechanical thrombectomy is feasible and beneficial should be addressed as fast as possible. Early initiation of antiplatelet or anticoagulation therapy and, in select cases, thrombolysis can help restore blood flow and minimize long-term neurological damage. Additionally, rehabilitation should start as soon as possible to optimize recovery and improve functional outcomes. In conclusion, childhood AIS is a growing concern. Understanding the increasing incidence, age distribution, risk factors, clinical presentation, diagnostic approach, and management strategies is crucial for optimized management of these patients.
Collapse
Affiliation(s)
- Gabriela Oesch
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robin Münger
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
7
|
Miller LR, Bickel MA, Tarantini S, Runion ME, Matacchiera Z, Vance ML, Hibbs C, Vaden H, Nagykaldi D, Martin T, Bullen EC, Pinckard J, Kiss T, Howard EW, Yabluchanskiy A, Conley SM. IGF1R deficiency in vascular smooth muscle cells impairs myogenic autoregulation and cognition in mice. Front Aging Neurosci 2024; 16:1320808. [PMID: 38425784 PMCID: PMC10902040 DOI: 10.3389/fnagi.2024.1320808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Cerebrovascular pathologies contribute to cognitive decline during aging, leading to vascular cognitive impairment and dementia (VCID). Levels of circulating insulin-like growth factor 1 (IGF-1), a vasoprotective hormone, decrease during aging. Decreased circulating IGF-1 in animal models leads to the development of VCID-like symptoms, but the cellular mechanisms underlying IGF-1-deficiency associated pathologies in the aged cerebrovasculature remain poorly understood. Here, we test the hypothesis that vascular smooth muscle cells (VSMCs) play an integral part in mediating the vasoprotective effects of IGF-1. Methods We used a hypertension-based model of cerebrovascular dysfunction in mice with VSMC-specific IGF-1 receptor (Igf1r) deficiency and evaluated the development of cerebrovascular pathologies and cognitive dysfunction. Results VSMC-specific Igf1r deficiency led to impaired cerebral myogenic autoregulation, independent of blood pressure changes, which was also associated with impaired spatial learning and memory function as measured by radial arm water maze and impaired motor learning measured by rotarod. In contrast, VSMC-specific IGF-1 receptor knockdown did not lead to cerebral microvascular rarefaction. Discussion These studies suggest that VSMCs are key targets for IGF-1 in the context of cerebrovascular health, playing a role in vessel stability alongside other cells in the neurovascular unit, and that VSMC dysfunction in aging likely contributes to VCID.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Megan E. Runion
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zoe Matacchiera
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michaela L. Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica Pinckard
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
9
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024:S2090-1232(24)00001-8. [PMID: 38176524 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Guey S, Chabriat H. Monogenic causes of cerebral small vessel disease and stroke. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:273-287. [PMID: 39322384 DOI: 10.1016/b978-0-323-99209-1.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cerebral small vessel disease (cSVDs) account for 25% of stroke and are a frequent cause of cognitive or motor disability in adults. In a small number of patients, cSVDs result from monogenic diseases, the most frequent being cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). An early disease onset, a suggestive family history, and a low vascular risk profile contrasting with a high load of cSVD imaging markers represent red flags that must trigger molecular screening. To date, a dozen of genes is involved in Mendelian cSVDs, most of them are responsible for autosomal dominant conditions of variable penetrance. Some of these mendelian cSVDs (CADASIL, HTRA1-related cSVD, pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), cathepsin-A related arteriopathy with strokes and leukoencephalopathy (CARASAL), and cSVD related to LAMB1 mutations) are causing ischemic stroke. Others (COL4A1/COL4A2-related angiopathy and hereditary cerebral amyloid angiopathy) preferentially lead to intracerebral hemorrhages. The clinical features of different Mendelian cSVDs can overlap. Therefore, the current approach is based on simultaneous screening of all genes involved in these conditions through a panel-targeted sequencing gene or exome sequencing. Nevertheless, a pathogenic variant is identified in less than 15% of patients with a suspected genetic cerebrovascular disease, suggesting that many additional genes remain to be identified.
Collapse
Affiliation(s)
- Stéphanie Guey
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France.
| | - Hugues Chabriat
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France
| |
Collapse
|
11
|
Dilliott AA, Berberian SA, Sunderland KM, Binns MA, Zimmer J, Ozzoude M, Scott CJM, Gao F, Lang AE, Breen DP, Tartaglia MC, Tan B, Swartz RH, Rogaeva E, Borrie M, Finger E, Fischer CE, Frank A, Freedman M, Kumar S, Pasternak S, Pollock BG, Rajji TK, Tang-Wai DF, Abrahao A, Turnbull J, Zinman L, Casaubon L, Dowlatshahi D, Hassan A, Mandzia J, Sahlas D, Saposnik G, Grimes D, Marras C, Steeves T, Masellis M, Farhan SMK, Bartha R, Symons S, Hegele RA, Black SE, Ramirez J. Rare neurovascular genetic and imaging markers across neurodegenerative diseases. Alzheimers Dement 2023; 19:5583-5595. [PMID: 37272523 DOI: 10.1002/alz.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Cerebral small vessel disease (SVD) is common in patients with cognitive impairment and neurodegenerative diseases such as Alzheimer's and Parkinson's. This study investigated the burden of magnetic resonance imaging (MRI)-based markers of SVD in patients with neurodegenerative diseases as a function of rare genetic variant carrier status. METHODS The Ontario Neurodegenerative Disease Research Initiative study included 520 participants, recruited from 14 tertiary care centers, diagnosed with various neurodegenerative diseases and determined the carrier status of rare non-synonymous variants in five genes (ABCC6, COL4A1/COL4A2, NOTCH3/HTRA1). RESULTS NOTCH3/HTRA1 were found to significantly influence SVD neuroimaging outcomes; however, the mechanisms by which these variants contribute to disease progression or worsen clinical correlates are not yet understood. DISCUSSION Further studies are needed to develop genetic and imaging neurovascular markers to enhance our understanding of their potential contribution to neurodegenerative diseases.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Stephanie A Berberian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Kelly M Sunderland
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zimmer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Miracle Ozzoude
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J M Scott
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Fuqiang Gao
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Maria C Tartaglia
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Richard H Swartz
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- St. Joseph's Healthcare Centre, London, Ontario, Canada
| | - Elizabeth Finger
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Frank
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Morris Freedman
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Baycrest Health Sciences, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - David F Tang-Wai
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
| | - Agessandro Abrahao
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
| | - John Turnbull
- Division of Neurology, Department of Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Lorne Zinman
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
| | - Leanne Casaubon
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Jennifer Mandzia
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Demetrios Sahlas
- Division of Neurology, Department of Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Grimes
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Thomas Steeves
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Robert Bartha
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences and University of Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Li YM, Jia W, Xin T, Fang YQ. Case report: Heterozygous mutation in HTRA1 causing typical cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Front Genet 2023; 14:1235650. [PMID: 37799144 PMCID: PMC10547585 DOI: 10.3389/fgene.2023.1235650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an autosomal recessive disorder characterized by baldness, recurrent ischemic stroke, lumbago, headache, and dementia which is closely related to homozygous mutations of the high-temperature requirement serine peptidase A1 (HTRA1) gene. Heterozygous mutations of HTRA1 are usually considered to be non-pathogenic. Although it has been revealed that only a few patients with heterozygous mutations could present some manifestations, their clinical symptoms were atypical, milder, and always with a lower frequency of extra-neurological features. Here, a rare patient with heterozygous mutation of HTRA1 who had all typical features of CARASIL as well as severe clinical symptoms and rapid progression was initially reported in our study. Case presentation: A 43-year-old female patient presented with a gradual onset of headache and cognitive decline. As time progressed, her headache intensified and symptoms of dementia began to manifest gradually. During her early years, she had thinning hair and subsequently experienced two occurrences of ischemic strokes in her thirties. Furthermore, she also had a history of lumbago and urinary retention before visiting our hospital. The patient's magnetic resonance imaging revealed the presence of widespread white matter lesions, infarctions, and microbleeds, in addition to lumbar disc herniation and degenerative lesions. The observed clinical characteristics had a strong correlation with CARASIL, and the patient was diagnosed with a heterozygous missense mutation of 905G>A (Arg302Gln) in the HTRA1 gene. The patient has been under continuous follow-up for a duration exceeding 3 years subsequent to her release from the hospital. She underwent cystostomy, and symptoms of bulbar paralysis developed in a progressive way. Currently, there has been a notable decrease in motor function and activities of daily living, resulting in the individual being confined to bed for a duration exceeding 1 year. Conclusion: This case suggests that patients carrying a heterozygous mutation in G905A may also have typical clinical features of CARASIL, which allows us to have a more comprehensive understanding of CARASIL.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Post-Doctoral Scientific Research Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qing Fang
- Post-Doctoral Scientific Research Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
13
|
Myllykangas L. Alzheimer's disease with a CADASIL twist - neuropathological examination proves its value in clarifying the genetics behind familial dementia. J Neurol Sci 2023; 452:120769. [PMID: 37625337 DOI: 10.1016/j.jns.2023.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Affiliation(s)
- Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki, Finland.
| |
Collapse
|
14
|
Shirah B, Algahtani H, Algahtani R, Alfares A, Hassan A. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): A challenging diagnosis and a rare multiple sclerosis mimic. J Stroke Cerebrovasc Dis 2023; 32:107225. [PMID: 37348440 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an extremely rare hereditary cerebral small vessel disease caused by homozygous or compound heterozygous mutations in the gene coding for high-temperature requirement A serine peptidase 1 (HtrA1). Given the rare nature of the disease, delays in diagnosis and misdiagnosis are not uncommon. In this article, we reported the first case of CARASIL from Saudi Arabia with a novel homozygous variant c.1156C>T in exon 7 of the HTRA1 gene. The patient was initially misdiagnosed with primary progressive multiple sclerosis and treated with rituximab. CARASIL should be considered in the differential diagnosis of patients with suspected atypical progressive multiple sclerosis who have additional signs such as premature scalp alopecia and low back pain with diffuse white matter lesions in brain MRI. Genetic testing is important to confirm the diagnosis.
Collapse
Affiliation(s)
- Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia.
| | | | - Raghad Algahtani
- Department of Medicine, Aseer Central Hospital, Abha, Saudi Arabia
| | - Ahmed Alfares
- Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| | - Ahmed Hassan
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
16
|
Mishra B, Vibha D, Tripathi M. Broadening the Genetic Horizons of CADASIL: New Variants of the NOTCH3 Gene Revealed and their Association with CADASIL. Ann Indian Acad Neurol 2023; 26:356-358. [PMID: 37970253 PMCID: PMC10645246 DOI: 10.4103/aian.aian_301_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Biswamohan Mishra
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Goldstein ED, Gopal N, Badi MK, Hodge DO, de Havenon A, Glover P, Durham PL, Huang JF, Lin MP, Baradaran H, Majersik JJ, Meschia JF. CGRP, Migraine, and Brain MRI in CADASIL: A Pilot Study. Neurologist 2023; 28:231-236. [PMID: 36729391 PMCID: PMC10277309 DOI: 10.1097/nrl.0000000000000478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Migraine is associated with neuroimaging differences in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, it is unknown if migraine-related disability (MRD) or if calcitonin gene-related peptide (CGRP), a vasoactive peptide important in migraine pathology, have radiographic implications. The aims of this study were to identify whether MRD or interictal serum CGRP levels impacted neuroimaging findings for those with CADASIL. MATERIALS AND METHODS A cross-sectional analysis was performed. The primary outcomes were neuroimaging differences associated with MRD among those with migraine or interictal serum CGRP levels of those with and without migraine. MRD was defined by 2 migraine disability scales (Migraine Disability Assessment, Headache Impact Test-6). Retrospective brain magnetic resonance imaging was reviewed (average 1.7 ± 2.0 y before enrollment). Rank-sum and χ 2 tests were used. RESULTS Those with migraine (n=25, vs. n=14 without) were younger [median 49 (25 to 82) y vs. 60 (31 to 82) y, P <0.007], had fewer cerebral microbleeds (0 to 31 vs. 0 to 50, P =0.02) and less frequently had anterior temporal lobe T2 hyperintensities [68% (17/25) vs 100% (14/14), P =0.02]. MRD scale outcomes had no significant radiographic associations. Interictal serum CGRP did not differ (migraine: n=18, 27.0±9.6 pg/mL vs. no migraine: n=10, 26.8±15.7 pg/mL, P =0.965). CONCLUSIONS Migraine may forestall microangiopathy in CADASIL, though possibly independent of severity as measured by MRD. Interictal serum CGRP did not differ in our cohort suggesting CGRP may not be vital to migraine pathophysiology in CADASIL. Larger studies are needed to account for age differences.
Collapse
Affiliation(s)
- Eric D. Goldstein
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Neethu Gopal
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mohammed K. Badi
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - David O. Hodge
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Adam de Havenon
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Patrick Glover
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Paul L. Durham
- Department of Biology, Missouri State University, Springfield, MO, USA
| | | | - Michelle P Lin
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Hediyeh Baradaran
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | | | - James F. Meschia
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
18
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
19
|
Panahi M, Hase Y, Gallart-Palau X, Mitra S, Watanabe A, Low RC, Yamamoto Y, Sepulveda-Falla D, Hainsworth AH, Ihara M, Sze SK, Viitanen M, Behbahani H, Kalaria RN. ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics. Acta Neuropathol Commun 2023; 11:76. [PMID: 37158955 PMCID: PMC10169505 DOI: 10.1186/s40478-023-01558-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area, University Hospital Arnau de Vilanova (HUAV) - Department of Psychology, University of Lleida (UdL), Lleida, Spain
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430, Morioka-cho, Obu-shi, 474-8511, Aichi, Japan
| | - Roger C Low
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Masafumi Ihara
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
- Department of Geriatrics, University of Turku, Turku City Hospital, Kunnallissairaalantie 20, Turku, 20700, Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
20
|
Haffner C. The emerging role of the HTRA1 protease in brain microvascular disease. FRONTIERS IN DEMENTIA 2023; 2:1146055. [PMID: 39081996 PMCID: PMC11285548 DOI: 10.3389/frdem.2023.1146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies.
Collapse
Affiliation(s)
- Christof Haffner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Johansen MC. The Future of Ischemic Stroke Diagnosis and a Review of Underrecognized Ischemic Stroke Etiologies. Neurotherapeutics 2023; 20:613-623. [PMID: 37157043 PMCID: PMC10275839 DOI: 10.1007/s13311-023-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Accurate ischemic stroke etiologic determination and diagnosis form the foundation of excellent cerebrovascular care as from it stems initiation of the appropriate secondary prevention strategy as well as appropriate patient education regarding specific risk factors for that subtype. Recurrent stroke rates are highest among those patients who receive an incorrect initial stroke diagnosis. Patient distrust and patient reported depression are also higher. The cause of the ischemic stroke also informs predicted patient outcomes and the anticipated recovery trajectory. Finally, determining the accurate cause of the ischemic stroke provides the patient the opportunity to enroll in appropriate research studies studying mechanism, or targeting treatment approaches for that particular disease process. Advances in ischemic stroke research, imaging techniques, biomarkers, and the ability to rapidly perform genetic sequencing over the past decade have shown that classifying patients into large etiologic buckets may not always be appropriate and may represent one reason why some patients are labeled as cryptogenic, or for whom an underlying etiology is never found. Aside from the more traditional stroke mechanisms, there is new research emerging regarding clinical findings that are not normative, but the contributions to ischemic stroke are unclear. In this article, we first review the essential steps to accurate ischemic stroke etiologic classification and then transition to a discussion of embolic stroke of undetermined source (ESUS) and other new entities that have been postulated as causal in ischemic stroke (i.e., genetics and subclinical atherosclerosis). We also discuss the limitations that are inherent in the current ischemic stroke diagnostic algorithms and finally review the most recent studies regarding more uncommon diagnoses and the future of stroke diagnostics and classification.
Collapse
|
22
|
Muppa J, Yaghi S, Goldstein ED. Antiplatelet use and CADASIL: a retrospective observational analysis. Neurol Sci 2023:10.1007/s10072-023-06773-1. [PMID: 36966219 DOI: 10.1007/s10072-023-06773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
OBJECTIVES Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is hallmarked by age-dependent accumulation of microangiopathy with antiplatelet medications commonly used for stroke prevention though without known therapeutic benefit. Our objective was to identify whether antiplatelet therapy impacted the incidence of acute ischemic stroke (AIS) or intracerebral hemorrhage (ICH) in those with reported CADASIL. MATERIALS AND METHODS Owing to the rarity of the disease, we performed a retrospective study of anonymized data from the international TriNetX Research Network (Oct 2015 through January 2021). Individuals had an ICD-10 code (I67.850) for CADASIL. The primary outcome was incidence of validated ICD-10 codes for AIS (I63) and ICH (I61) linked with unique hospital admission encounters. The primary exposure was use of an antiplatelet medication for at least 1 month prior to the primary outcome. Age-adjusted logistic regression was used for likelihood ratios. RESULTS We identified 455 individuals: 36% female, 40 (8.8%) antiplatelet exposed. Those with antiplatelet use were older (antiplatelet: 61±12 years vs. unexposed: 57±14 years, p = 0.034) with similar rates of AIS [antiplatelet: 23%(9/40) vs. unexposed: 14%(60/415); p=0.18] and ICH [antiplatelet: 3%(1/40) vs. unexposed: 5%(19/415); p = 0.54) and without significant impact on age-adjusted AIS likelihood (OR 1.62, 95%CI 0.73-3.60, p=0.23). Sample size precluded ICH regression analyses. CONCLUSIONS Our data suggests that antiplatelet use did not significantly impact incidence of AIS or ICH within a group of individuals with suspected CADASIL This study highlights the need for further understanding of the pathophysiology of CADASIL to lead to disease modifying treatments.
Collapse
Affiliation(s)
- Jayachandra Muppa
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shadi Yaghi
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, RI, 02903, USA
| | - Eric D Goldstein
- Department of Neurology, Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5th Floor, Providence, RI, 02903, USA.
| |
Collapse
|
23
|
Magaki S, Chen Z, Severance A, Williams CK, Diaz R, Fang C, Khanlou N, Yong WH, Paganini-Hill A, Kalaria RN, Vinters HV, Fisher M. Neuropathology of microbleeds in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). J Neuropathol Exp Neurol 2023; 82:333-344. [PMID: 36715085 PMCID: PMC10025882 DOI: 10.1093/jnen/nlad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cerebral microbleeds (CMBs) detected on magnetic resonance imaging are common in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The neuropathologic correlates of CMBs are unclear. In this study, we characterized findings relevant to CMBs in autopsy brain tissue of 8 patients with genetically confirmed CADASIL and 10 controls within the age range of the CADASIL patients by assessing the distribution and extent of hemosiderin/iron deposits including perivascular hemosiderin leakage (PVH), capillary hemosiderin deposits, and parenchymal iron deposits (PID) in the frontal cortex and white matter, basal ganglia and cerebellum. We also characterized infarcts, vessel wall thickening, and severity of vascular smooth muscle cell degeneration. CADASIL subjects had a significant increase in hemosiderin/iron deposits compared with controls. This increase was principally seen with PID. Hemosiderin/iron deposits were seen in the majority of CADASIL subjects in all brain areas. PVH was most pronounced in the frontal white matter and basal ganglia around small to medium sized arterioles, with no predilection for the vicinity of vessels with severe vascular changes or infarcts. CADASIL subjects have increased brain hemosiderin/iron deposits but these do not occur in a periarteriolar distribution. Pathogenesis of these lesions remains uncertain.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Zesheng Chen
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Alyscia Severance
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Ramiro Diaz
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Chuo Fang
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
- Brain Research Institute, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California-Irvine School of Medicine, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, California, USA
| |
Collapse
|
24
|
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P. Neurodegeneration cell per cell. Neuron 2023; 111:767-786. [PMID: 36787752 DOI: 10.1016/j.neuron.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The clinical definition of neurodegenerative diseases is based on symptoms that reflect terminal damage of specific brain regions. This is misleading as it tells little about the initial disease processes. Circuitry failures that underlie the clinical symptomatology are themselves preceded by clinically mostly silent, slowly progressing multicellular processes that trigger or are triggered by the accumulation of abnormally folded proteins such as Aβ, Tau, TDP-43, and α-synuclein, among others. Methodological advances in single-cell omics, combined with complex genetics and novel ways to model complex cellular interactions using induced pluripotent stem (iPS) cells, make it possible to analyze the early cellular phase of neurodegenerative disorders. This will revolutionize the way we study those diseases and will translate into novel diagnostics and cell-specific therapeutic targets, stopping these disorders in their early track before they cause difficult-to-reverse damage to the brain.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Roman Praschberger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elsa Lauwers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium; UK Dementia Research Institute, London, UK.
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
25
|
He Z, Wang L, Zhang Y, Yin C, Niu Y. Clinical features and pathogenicity assessment in patients with HTRA1-autosomal dominant disease. Neurol Sci 2023; 44:639-647. [PMID: 36253578 DOI: 10.1007/s10072-022-06454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Heterozygous mutations in HTRA1 were recently found to cause autosomal dominant cerebral small vessel disease (CSVD), and it was named HTRA1-autosomal dominant disease (AD-HTRA1) in the consensus recommendations of the European Academy of Neurology. This study aimed to investigate the clinical features of a mutation in HTRA1 and the effect of HTRA1 mutation on white matter hyperintensity (WMH). METHODS A proband's brain magnetic resonance imaging (MRI) showed multiple lacunar infarctions and multiple WMH in the lateral ventricle, external capsule, frontal lobe and corpus callosum. The proband and family members were tested for CSVD-related genes by next-generation sequencing and the clinical data of the patients were collected. The published literature on AD-HTRA1 was collected, and the clinical characteristics and pathogenicity of the patients were summarized. Combined Annotation Dependent Depletion (CADD) is a tool for scoring the deleteriousness of single-nucleotide variants and insertion/deletion variants in the human genome. The relationship between the degree of WMH and the pathogenicity of the mutation was further analyzed. RESULT It was found that the proband and her family members had a heterozygous missense mutation of c.854C > T (p.P285L) in the 4 exon of HTRA1 gene. A retrospective analysis of 5 families with c.854C > T mutation found that the patients had an early age of onset, cognitive impairment was more common, and alopecia and spondylosis could be combined at the same time. By univariate analysis, the severity of WMH was found to be significantly associated with the mutated CADD score (p < 0.05, Spearman's rho = 0.266). CONCLUSION The clinical manifestations of AD-HTRA1 with mutation site c.854C > T (p.P285L) are similar to CARASIL, and brain MRI are mainly moderate or severe WMH and lacunar infarction (LI). WMH are affected by mutation sites. Therefore, our pathogenicity score for mutations can predict the severity of WMH.
Collapse
Affiliation(s)
- Zheng He
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichi Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunmao Yin
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanliang Niu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol 2023; 49:e12875. [PMID: 36564356 DOI: 10.1111/nan.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making 'cerebral angiomyopathy' an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA
| | - Shino D Magaki
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald C Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA.,Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
27
|
Sapsford TP, Johnson SR, Headrick JP, Branjerdporn G, Adhikary S, Sarfaraz M, Stapelberg NJC. Forgetful, sad and old: Do vascular cognitive impairment and depression share a common pre-disease network and how is it impacted by ageing? J Psychiatr Res 2022; 156:611-627. [PMID: 36372004 DOI: 10.1016/j.jpsychires.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
Vascular cognitive impairment (VCI) and depression frequently coexist in geriatric populations and reciprocally increase disease risks. We assert that a shared pre-disease state of the psycho-immune-neuroendocrine (PINE) network model mechanistically explains bidirectional associations between VCI and depression. Five pathophysiological sub-networks are identified that are shared by VCI and depression: neuroinflammation, kynurenine pathway imbalance, hypothalamic-pituitary-adrenal (HPA) axis overactivity, impaired neurotrophic support and cerebrovascular dysfunction. These do not act independently, and their complex interactions necessitate a systems biology approach to better define disease pathogenesis. The PINE network is already established in the context of non-communicable diseases (NCDs) such as depression, hypertension, atherosclerosis, coronary heart disease and type 2 diabetes mellitus. We build on previous literature to specifically explore mechanistic links between MDD and VCI in the context of PINE pathways and discuss key mechanistic commonalities linking these comorbid conditions and identify a common pre-disease state which precedes transition to VCI and MDD. We expand the model to incorporate bidirectional interactions with biological ageing. Diathesis factors for both VCI and depression feed into this network and the culmination of shared mechanisms (on an ageing substrate) lead to a critical network transition to one or both disease states. A common pre-disease state underlying VCI and depression can provide clinicians a unique opportunity for early risk assessment and intervention in disease development. Establishing the mechanistic elements and systems biology of this network can reveal early warning or predictive biomarkers together with novel therapeutic targets. Integrative studies are recommended to elucidate the dynamic networked biology of VCI and depression over time.
Collapse
Affiliation(s)
- Timothy P Sapsford
- Griffith University School of Medicine, Gold Coast, Queensland, Australia; Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Susannah R Johnson
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - John P Headrick
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, Queensland, Australia
| | - Muhammad Sarfaraz
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Nicolas J C Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
28
|
Yao T, Zhu J, Wu X, Li X, Fu Y, Wang Y, Wang Z, Xu F, Lai H, He A, Teng L, Wang C, Song H. Heterozygous HTRA1Mutations Cause Cerebral Small Vessel Diseases. Neurol Genet 2022; 8:e200044. [DOI: 10.1212/nxg.0000000000200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
Background and ObjectivesCerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a rare hereditary cerebrovascular disease caused by homozygous or compound heterozygous variations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene. However, several studies in recent years have found that some heterozygousHTRA1mutations also cause cerebral small vessel disease (CSVD). The current study aims to report the novel genotypes, phenotypes, and histopathologic results of 3 pedigrees of CSVD with heterozygousHTRA1mutation.MethodsThree pedigrees of familiar CSVD, including 11 symptomatic patients and 3 asymptomatic carriers, were enrolled. Whole-exome sequencing was conducted in the probands for identifying rare variants, which were then evaluated for pathogenicity according to the American College of Medical Genetics and Genomics guidelines. Sanger sequencing was performed for validation of mutations in the probands and other family members. The protease activity was assayed for the novel mutations. All the participants received detailed clinical and imaging examinations and the corresponding results were concluded. Hematoma evacuation was performed for an intracerebral hemorrhage patient with the p.Q318H mutation, and the postoperative pathology including hematoma and cerebral small vessels were examined.ResultsThree novel heterozygousHTRA1mutations (p.Q318H, p.V279M, and p.R274W) were detected in the 3 pedigrees. The protease activity was largely lost for all the mutations, confirming that they were loss-of-function mutations. The patients in each pedigree presented with typical clinical and imaging features of CVSD, and some of them displayed several new phenotypes including color blindness, hydrocephalus, and multiple arachnoid cysts. In addition, family 1 is the largest pedigree with heterozygousHTRA1mutation so far and includes homozygous twins, displaying some variation in clinical phenotypes. More importantly, pathologic study of a patient with p.Q318H mutation showed hyalinization, luminal stenosis, loss of smooth muscle cells, splitting of the internal elastic lamina, and intramural hemorrhage/dissection-like structures.DiscussionThese findings broaden the mutational and clinical spectrum of heterozygousHTRA1-related CSVD. Pathologic features were similar with the previous heterozygous and homozygous cases. Moreover, clinical heterogeneity was revealed within the largest single family, and the mechanisms of the phenotypic heterogenetic remain unclear. Overall, heterozygous HTRA1-related CSVD should not be simply taken as a mild type of CARASIL as previously considered.
Collapse
|
29
|
Li J, Luo T, Wang X, Wang M, Zheng T, Dang X, Deng A, Zhang Y, Ding S, Jing P, Zhu L. A heterozygous mutation in NOTCH3 in a Chinese family with CADASIL. Front Genet 2022; 13:943117. [PMID: 36531228 PMCID: PMC9756437 DOI: 10.3389/fgene.2022.943117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 09/02/2023] Open
Abstract
Introduction: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal-dominant systemic vascular disease that primarily involves small arteries. Patients with CADASIL experience migraines, recurrent ischemic strokes, cognitive decline, and dementia. The NOTCH3 gene, which is located on chromosome 19p13.12, is one of the disease-causing genes in CADASIL. Herein, we investigate the genetic and phenotypic features in a Chinese CADASIL family with heterozygous NOTCH3 mutation. Methods and Results: In the family, the proband suffered from dizziness, stroke, and cognitive deficits. Brain magnetic resonance imaging (MRI) demonstrated symmetrical white matter lesions in the temporal lobe, outer capsule, lateral ventricle, and deep brain. Whole-exome sequencing identified a known missense mutation in the proband, c.397C>T (p.Arg133Cys), which was identified in his son and granddaughter using Sanger sequencing. The proband's younger brother and younger sister also have a history of cognitive impairment or cerebral infarction, but do not have this genetic mutation, which may highlight the impact of lifestyle on this neurological disease. Conclusion: We identified a known CADASIL-causing mutation NOTCH3 (c.397C>T, p.Arg133Cys) in a Chinese family. The clinical manifestations of mutation carriers in this family are highly heterogeneous, which is likely a common feature for the etiology of different mutations in CADASIL. Molecular genetic analyses are critical for accurate diagnosis, as well as the provision of genetic counselling for CADASIL.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Luo
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjie Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Zheng
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao Dang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Sheng Ding
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jing
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Zhu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
31
|
Chen MJ, Zhang Y, Luo WJ, Dong HL, Wei Q, Zhang J, Ruan QQ, Ni W, Li HF. Identified novel heterozygous HTRA1 pathogenic variants in Chinese patients with HTRA1-associated dominant cerebral small vessel disease. Front Genet 2022; 13:909131. [PMID: 36035189 PMCID: PMC9399615 DOI: 10.3389/fgene.2022.909131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Homozygous and compound heterozygous mutations in HTRA1 cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recently, heterozygous pathogenic variants in HTRA1 were described in patients with autosomal dominant cerebral small vessel disease (CSVD). Here, we investigated the genetic variants in a cohort of Chinese patients with CSVD.Methods: A total of 95 Chinese index patients with typical characteristics of CSVD were collected. Whole exome sequencing was performed in the probands, followed by Sanger sequencing. Pathogenicity prediction software was applied to evaluate the pathogenicity of the identified variants.Results: We detected five heterozygous HTRA1 pathogenic variants in five index patients. These pathogenic variants included four known variants (c.543delT, c.854C>T, c.889G>A, and c.824C>T) and one novel variant (c.472 + 1G>A). Among them, c.854C>T, c.824C>T, and c.472 + 1G>A have never been reported in China and c.889G>A was once reported in homozygous but never in heterozygous. Three of them were distributed in exon 4, one in exon 2, and another splicing variant in intron 1. Four out of five probands presented typical features of CARASIL but less severe. The common clinical features included lacunar infarction, cognitive decline, alopecia, and spondylosis. All of them showed leukoencephalopathy, and the main involved cerebral area include periventricular and frontal area, centrum semiovale, thalamus, and corpus callosum. Anterior temporal lobes and external capsule involvement were also observed. Three probands had intracranial microbleeds.Conclusion: Our study expanded the mutation spectrum of HTRA1, especially in Chinese populations, and provided further evidence for “hot regions” in exon 1–4, especially in exon 4, in heterozygous HTRA1 pathogenic variants. Our work further supported that patients with heterozygous HTRA1 pathogenic variants presented with similar but less-severe features than CARASIL but in an autosomal dominantly inherited pattern.
Collapse
Affiliation(s)
- Mei-Jiao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Wen-Jiao Luo
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Juan Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Qi Ruan
- Department of Neurology, Shangyu People’s Hospital, Shaoxing, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
- *Correspondence: Wang Ni, ; Hong-Fu Li,
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
- *Correspondence: Wang Ni, ; Hong-Fu Li,
| |
Collapse
|
32
|
Ni W, Zhang Y, Zhang L, Xie JJ, Li HF, Wu ZY. Genetic spectrum of NOTCH3 and clinical phenotype of CADASIL patients in different populations. CNS Neurosci Ther 2022; 28:1779-1789. [PMID: 35822697 PMCID: PMC9532899 DOI: 10.1111/cns.13917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Cerebral autosomal‐dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a relatively common cerebral small vessel disease. NOTCH3 has been identified as the causative gene of CADASIL. Clinical variability and genetic heterogeneity were observed in CADASIL patients and need to be further clarified. Aims The aim of the study was to clarify genetic spectrum of NOTCH3 and clinical phenotype of CADASIL patients. Methods Suspected CADASIL patients were collected by our center between 2016 and 2021. Whole exome sequencing was performed to screen NOTCH3 mutations of these patients. Genetic and clinical data of CADASIL patients from previous studies were also analyzed. Studies between 1998 and 2021 that reported more than 9 pedigrees with detailed genetic data or clinical data were included. After excluding patients carrying cysteine‐sparing mutations, genetic data of 855 Asian pedigrees (433 Chinese; 226 Japanese, and 196 Korean) and 546 Caucasian pedigrees, in a total of 1401 CADASIL pedigrees were involved in mapping mutation spectrum. Clinical data of 901 Asian patients (476 Chinese patients, 217 Japanese patients, and 208 Korean patients) and 720 Caucasian patients, in a total of 1621 patients were analyzed and compared between different populations. Results Two novel mutations (c.400T>C, p.Cys134Arg; c.1511G>A, p.Cys504Tyr) and 24 known cysteine‐affecting variants were identified in 36 pedigrees. Genetic spectrums of Asians (Chinese, Japanese, and Korean) and Caucasians were clarified, p.R544C and p.R607C were the most common mutations in Asians while p.R1006C and p.R141C in Caucasians. For clinical features, Asians were more likely to develop symptoms of TIA or ischemic stroke (p < 0.0001) and cognitive impairment (p < 0.0001). Nevertheless, Caucasians had a higher tendency to present migraine (p < 0.0001) and psychiatric disturbance (p < 0.0001). The involvement of temporal pole was more likely to happen in Caucasians (p < 0.0001). Conclusion The findings help to better understand the clinical variability and genetic heterogeneity of CADASIL.
Collapse
Affiliation(s)
- Wang Ni
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhang
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhang
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
34
|
Interplay between HTRA1 and classical signalling pathways in organogenesis and diseases. Saudi J Biol Sci 2022; 29:1919-1927. [PMID: 35531175 PMCID: PMC9072889 DOI: 10.1016/j.sjbs.2021.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
The high temperature requirement factor A1 (HTRA1) is a serine protease which modulates an array of signalling pathways driving basal biological processes. HTRA1 plays a significant role in cell proliferation, migration and fate determination, in addition to controlling protein aggregates through refolding, translocation or degradation. The mutation of HTRA1 has been implicated in a plethora of disorders and this has also led to its growing interest as drug therapy target. This review details the involvement of HTRA1 in certain signalling pathways, namely the transforming growth factor beta (TGF-β), canonical Wingless/Integrated (WNT) and NOTCH signalling pathways during organogenesis and various disease pathogenesis such as preeclampsia, age-related macular degeneration (AMD), small vessel disease and cancer. We have also explored possible avenues of exploiting the serine proteases for therapeutic management of these disorders.
Collapse
|
35
|
Stellingwerff MD, Nulton C, Helman G, Roosendaal SD, Benko WS, Pizzino A, Bugiani M, Vanderver A, Simons C, van der Knaap MS. Early-Onset Vascular Leukoencephalopathy Caused by Bi-Allelic NOTCH3 Variants. Neuropediatrics 2022; 53:115-121. [PMID: 35026854 PMCID: PMC9270846 DOI: 10.1055/a-1739-2722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Heterozygous NOTCH3 variants are known to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with patients typically presenting in adulthood. We describe three patients presenting at an early age with a vascular leukoencephalopathy. Genome sequencing revealed bi-allelic variants in the NOTCH3 gene. METHODS Clinical records and available MRI and CT scans of three patients from two unrelated families were retrospectively reviewed. RESULTS The patients presented at 9 to 14 months of age with developmental delay, seizures, or both. The disease course was characterized by cognitive impairment and variably recurrent strokes, migraine attacks, and seizures. MRI findings pointed at a small vessel disease, with extensive cerebral white matter abnormalities, atrophy, lacunes in the basal ganglia, microbleeds, and microcalcifications. The anterior temporal lobes were spared. Bi-allelic cysteine-sparing NOTCH3 variants in exons 1, 32, and 33 were found. INTERPRETATION This study indicates that bi-allelic loss-of-function NOTCH3 variants may cause a vascular leukoencephalopathy, distinct from CADASIL.
Collapse
Affiliation(s)
- Menno D. Stellingwerff
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Corinne Nulton
- Department of Neurology, University of Pittsburgh Medical Center, Pennsylvania, United States
| | - Guy Helman
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Victoria, Australia,Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Stefan D. Roosendaal
- Department of Radiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - William S. Benko
- Department of Neurology, University of California Davis, Sacramento, California, United States
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, United States
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, location VUmc, The Netherlands
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, United States,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Cas Simons
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Victoria, Australia,Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Olszewska DA, Rawal S, Fearon C, Alcaide‐Leon P, Stell R, Paramanandan V, Lynch T, Jawad T, Vittal P, Barton B, Miyajima H, Kono S, Kandadai RM, Borgohain R, Lang AE. Neuroimaging Pearls from the MDS Congress Video Challenge. Part 1: Genetic Disorders. Mov Disord Clin Pract 2022; 9:297-310. [PMID: 35402643 PMCID: PMC8974871 DOI: 10.1002/mdc3.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
We selected several "imaging pearls" presented during the Movement Disorder Society (MDS) Video Challenge for this review. While the event, as implicated by its name, was video-centered, we would like to emphasize the important role of imaging in making the correct diagnosis. We divided this anthology into two parts: genetic and acquired disorders. Genetic cases described herein were organized by the inheritance pattern and the focus was put on the imaging findings and differential diagnoses. Despite the overlapping phenotypes, certain described disorders have pathognomonic MRI brain findings that would provide either the "spot" diagnosis or result in further investigations leading to the diagnosis. Despite this, the diagnosis is often challenging with a broad differential diagnosis, and hallmark findings may be present for only a limited time.
Collapse
Affiliation(s)
- Diana A. Olszewska
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Sapna Rawal
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Paula Alcaide‐Leon
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Rick Stell
- Movement Disorders Unit, Perron Institute of Neurological Translational ScienceSir Charles Gairdner HospitalPerthWestern AustraliaAustralia
| | | | - Tim Lynch
- Centre for Brain HealthDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- School of Medicine and Medical ScienceUniversity College DublinDublinIreland
| | - Tania Jawad
- Department of NeurologyThe Royal Free HospitalLondonUnited Kingdom
| | - Padmaja Vittal
- Northwestern Medicine Central Dupage HospitalNeurodegenerative Diseases CenterWinfieldIllinoisUSA
| | - Brandon Barton
- Rush University Medical CenterChicagoIllinoisUSA
- Parkinson's Disease Research, Education, and Clinical Care ConsortiumJesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Hiroaki Miyajima
- First Department of MedicineHamamatsu University School of MedicineHamamatsuJapan
| | | | | | - Rupam Borgohain
- Department of NeurologyNizam's Institute of Medical SciencesHyderabadIndia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital—UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
37
|
Wang Y, Shi C, Li Y, Yu W, Wei S, Fan Y, Mao C, Yang Z, Yu L, Zhao Z, Li S, Gao Y, Xu Y. Genetic Study of Cerebral Small Vessel Disease in Chinese Han Population. Front Neurol 2022; 13:829438. [PMID: 35401403 PMCID: PMC8990910 DOI: 10.3389/fneur.2022.829438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a syndrome of clinical, neuroimaging, and neuropathological manifestations caused by disorders that affect small cerebral vessels. Although the pathogenesis of the disease remains unclear, some studies have demonstrated that genetic variants contribute to the development of CSVD. Our study aimed to explore the genetic characteristics of CSVD in the Chinese Han population. We enrolled 182 sporadic CSVD Chinese Han patients whose magnetic resonance imaging results showed grade 2-3 white matter lesions. Target region sequencing of seven monogenic CSVD-related genes, including NOTCH3, HTRA1, COL4A1, COL4A2, GLA, TREX1, and CTSA, was performed, and we identified pathogenic variants by screening the sequencing results and functional predictive analysis. All variants were predicted to be pathogenic by the SIFT Score, Polymorphism Phenotyping-2 score, Mutation Taster, Splice site score calculation, and MaxEntScan. All variants were validated in 300 healthy controls. In total, eight variants were identified in patients with CSVD, including five novel variants, c.1774C>T (NOTCH3), c.3784C>T (NOTCH3), c. 1207C>T (HTRA1), and c. 1274+1G> A (HTRA1), c.1937G>C (COL4A1) and three reported mutations. None of these variants were present in 300 healthy controls. No pathogenic variants in COL4A2, GLA, TREX1, and CTSA were detected. This study identified five novel variants in CSVD-related genes in Chinese Han patients with sporadic CSVD. Our results expand the genetic profile of CSVD.
Collapse
|
38
|
Zarekiani P, Nogueira Pinto H, Hol EM, Bugiani M, de Vries HE. The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids Barriers CNS 2022; 19:18. [PMID: 35227276 PMCID: PMC8887016 DOI: 10.1186/s12987-022-00316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Henrique Nogueira Pinto
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Cao H, Liu J, Tian W, Ji X, Wang Q, Luan S, Dong X, Dong H. A novel heterozygous HTRA1 mutation in an Asian family with CADASIL-like disease. J Clin Lab Anal 2022; 36:e24174. [PMID: 34951056 PMCID: PMC8841136 DOI: 10.1002/jcla.24174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HTRA1 gene mutations are related to the pathogenesis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). However, heterozygous HTRA1 mutations at specific sites can also lead to rare autosomal dominant cerebral artery disease (CADASIL-like disease). To date, 28 heterozygous mutations in the HTRA1 gene have been reported to be related to CADASIL-like diseases. Only one case of this disease was caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. METHODS In this case, we report on an Asian family with CADASIL-like disease caused by a heterozygous mutation of c.497G>T in exon 2 of the HTRA1 gene. The clinical and imaging characteristics of the proband were summarized, and gene mutations were verified by whole-exome sequencing (WES) and direct Sanger sequencing. RESULTS The result of the gene sequencing showed a heterozygous missense mutation at the c.497G>T locus of the HTRA1 gene in the proband of one sick family member, resulting in a change in amino acid (p.arg166leu). CONCLUSION This is the first reported pathogenic mutation at the c.497G>T locus of the HTRA1 gene in an Asian population. It provides an important theoretical basis for the specific gene-based diagnosis and treatment of CADASIL-like diseases.
Collapse
Affiliation(s)
- Hua Cao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiahui Liu
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wen Tian
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiaofei Ji
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Qi Wang
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Siyu Luan
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xiang Dong
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huijie Dong
- Department of CardiologySecond Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
40
|
Stone JR. Diseases of small and medium-sized blood vessels. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Mossanen Parsi M, Duval C, Ariëns RAS. Vascular Dementia and Crosstalk Between the Complement and Coagulation Systems. Front Cardiovasc Med 2021; 8:803169. [PMID: 35004913 PMCID: PMC8733168 DOI: 10.3389/fcvm.2021.803169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to the brain tissue, resulting in infarction, and is the second most common type of dementia. The complement and coagulation systems are evolutionary host defence mechanisms activated by acute tissue injury to induce inflammation, clot formation and lysis; recent studies have revealed that these systems are closely interlinked. Overactivation of these systems has been recognised to play a key role in the pathogenesis of neurological disorders such as Alzheimer's disease and multiple sclerosis, however their role in VaD has not yet been extensively reviewed. This review aims to bridge the gap in knowledge by collating current understanding of VaD to enable identification of complement and coagulation components involved in the pathogenesis of this disorder that may have their effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil novel therapeutic targets or biomarkers that would improve current treatment strategies for VaD.
Collapse
Affiliation(s)
| | | | - Robert A. S. Ariëns
- Discovery and Translational Science Department, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Abstract
INTRODUCTION Individuals with the inherited progressive microangiopathy Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts (CADASIL) most classically develop migraine with aura and recurrent subcortical ischemic infarcts with progressive cognitive decline, gait dysfunction, psychiatric disturbances culminating in early death. However, clinically important venous pathologies may not be anticipated by treating neurologists such as branch retinal vein occlusions (BRVOs). Herein we describe a case of CADASIL with a BRVO and a brief review of venous pathology in CADASIL. CASE REPORT A 66-year-old man with CADASIL and clinical symptoms of chronic migraine with aura, episodic "CADASIL coma," recurrent subcortical ischemic infarcts and normal cognition presented with an asymptomatic superior BRVO. Retinal analysis by wide-field fluorescein angiography revealed dye extravasation and optical coherence tomography identified macular edema prompting a monthly regimen of intravitreal bevacizumab. Systemic investigations for provoking etiologies was unfruitful tentatively attributing the BRVO to his underlying CADASIL. CONCLUSIONS Within CADASIL, the venous circulation undergoes similar pathologic changes as compared with the arterial circulation. The retinal veins of CADASIL exhibit increased venous compliance, vessel wall diameter and wall thickness which may represent a structurally causative factor for retinal venous disease. However, these findings are not isolated to the retina as lower extremity varicose veins have associated with a family pedigree of CADASIL. Although presently it is uncertain whether those with CADASIL should undergo routine retinal screening, neurologists, and ophthalmologists, need to be cognizant of the extra-arterial manifestations of CADASIL to provide comprehensive clinical care.
Collapse
|
43
|
Hsu CL, Iwanowski P, Hsu CH, Kozubski W. Genetic diseases mimicking multiple sclerosis. Postgrad Med 2021; 133:728-749. [PMID: 34152933 DOI: 10.1080/00325481.2021.1945898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
44
|
Yu X, Yin X, Hong H, Wang S, Jiaerken Y, Zhang F, Pasternak O, Zhang R, Yang L, Lou M, Zhang M, Huang P. Increased extracellular fluid is associated with white matter fiber degeneration in CADASIL: in vivo evidence from diffusion magnetic resonance imaging. Fluids Barriers CNS 2021; 18:29. [PMID: 34193191 PMCID: PMC8247253 DOI: 10.1186/s12987-021-00264-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00264-1.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xinzhen Yin
- Department of Neurology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Linglin Yang
- Department of Psychiatry, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
45
|
Stellingwerff MD, Al-Saady ML, van de Brug T, Barkhof F, Pouwels PJW, van der Knaap MS. MRI Natural History of the Leukodystrophy Vanishing White Matter. Radiology 2021; 300:671-680. [PMID: 34184934 DOI: 10.1148/radiol.2021210110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. Purpose To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. Materials and Methods Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. Results A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3-18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = -1.6, t(109) = -3.9; P < .001] and VSRs [b = -0.05, t (109) = -3.7; P < .001] were lower with later onset. Conclusion A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate. © RSNA, 2021.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Murtadha L Al-Saady
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Tim van de Brug
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Frederik Barkhof
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Petra J W Pouwels
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Marjo S van der Knaap
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| |
Collapse
|
46
|
Craniosynostosis of the Metopic Suture in a Patient With CADASIL/Lehman Syndrome. J Craniofac Surg 2021; 32:e737-e739. [PMID: 34172679 DOI: 10.1097/scs.0000000000007713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT A 3-month-old patient presented for evaluation by plastic surgery with marked trigonocephaly and was subsequently diagnosed with metopic craniosynostosis. During presurgical evaluation, the patient was found to have two variants of the NOTCH3 gene, resulting in the diagnosis of lateral meningocele (Lehman) syndrome. Due to the increased possibility of stroke associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the patient underwent only anterior calvarial vault remodeling without fronto-orbital advancement for correction of her craniosynostosis. This unique constellation of symptoms, and its impact on operative management, has not been previously described in the literature.
Collapse
|
47
|
Liu Y, Huang S, Yu L, Li T, Diao S, Chen Z, Zhou G, Sheng X, Xu Y, Fang Q. A Chinese CADASIL Family with a Novel Mutation on Exon 10 of Notch3 Gene. J Stroke Cerebrovasc Dis 2021; 30:105674. [PMID: 34119749 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), which is caused by the Notch3 gene mutation, has its unique clinical and imaging characteristics. Here we present a Chinese family with a novel mutation on exon 10 of Notch3 gene. METHODS Clinical and MRI data of the three patients in the family during the 7-year follow-up were collected. The CADASIL Scale Score was calculated to evaluate the disease risk of the three patients at their first admission or clinic visit. Five family members underwent genetic test. RESULTS Genetic test confirmed the diagnosis of CADASIL in this family. A novel mutation of p.C533S on exon 10 of Notch3 gene was detected. The CADASIL score of the proband and her sister was both 17 and that of her brother was 14. CONCLUSIONS Our report not only expands the mutation spectrum of Notch3 gene in CADASIL, but also shows the distinct heterogeneity of CADASIL patients in the same family with the same mutation.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - Shicun Huang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tan Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shanshan Diao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhiguo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guoqing Zhou
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xihua Sheng
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215200, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
48
|
Manini A, Pantoni L. CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Mol Neurobiol 2021; 58:2558-2573. [PMID: 33464533 PMCID: PMC8128844 DOI: 10.1007/s12035-021-02282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic disease caused by NOTCH3 mutations and characterized by typical clinical, neuroradiological, and pathological features. NOTCH3 belongs to a family of highly conserved transmembrane receptors rich of epidermal growth factor repeats, mostly expressed in vascular smooth muscle cells and pericytes, which perform essential developmental functions and are involved in tissues maintenance and renewal. To date, no therapeutic option for CADASIL is available except for few symptomatic treatments. Novel in vitro and in vivo models are continuously explored with the aim to investigate underlying pathogenic mechanisms and to test novel therapeutic approaches. In this scenario, knock-out, knock-in, and transgenic mice studies have generated a large amount of information on molecular and biological aspects of CADASIL, despite that they incompletely reproduce the human phenotype. Moreover, the field of in vitro models has been revolutionized in the last two decades by the introduction of induced pluripotent stem cells (iPSCs) technology. As a consequence, novel therapeutic approaches, including immunotherapy, growth factors administration, and antisense oligonucleotides, are currently under investigation. While waiting that further studies confirm the promising results obtained, the data reviewed suggest that our therapeutic approach to the disease could be transformed, generating new hope for the future.
Collapse
Affiliation(s)
- Arianna Manini
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy
| | - Leonardo Pantoni
- Stroke and Dementia Lab, "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157, Milano, Italy.
| |
Collapse
|
49
|
Yu Z, Cao S, Wu A, Yue H, Zhang C, Wang J, Xia M, Wu J. Genetically Confirmed CARASIL: Case Report with Novel HTRA1 Mutation and Literature Review. World Neurosurg 2020; 143:121-128. [PMID: 32445900 DOI: 10.1016/j.wneu.2020.05.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an extremely rare monogenic autosomal disease associated with the HtrA serine protease 1 (HTRA 1) gene mutation. Recently, a few genetically confirmed CARASIL cases with novel HTRA1 mutations have been reported in countries other than Japan. CASE DESCRIPTION Here, we report a case of a patient presenting with worsening right hemiplegia and hemiparesthesia. Physical examination revealed that the patient had typical clinical features of CARASIL including thinning hair, cognitive impairment, emotional changes, lumbago, and gait disorder. Brain magnetic resonance imaging showed abnormal diffuse symmetric changes in white matter and hypertensive diffusion-weighted imaging signals in the left centrum ovale and right splenium of the corpus callosum, and susceptibility-weighted imaging showed multiple cerebral microbleeds. Lumbar magnetic resonance imaging showed herniated disks with degenerative changes. A genetic test showed a novel homozygous nucleotide variation of c.847G>T in the HTRA1 gene, thereby resulting in p.Gly283Ter. Thus the patient met the diagnostic criteria for CARASIL. We provide a literature review of genetically confirmed CARASIL cases reported to date. CONCLUSIONS CARASIL is a rare autosomal recessive disease with an HTRA1 mutation. Familiarity with the early clinical and imaging features of CARASIL combined with a genetic test is key for its early diagnosis.
Collapse
Affiliation(s)
- Zhaoping Yu
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Shugang Cao
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Aimei Wu
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hong Yue
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chi Zhang
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Juan Wang
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Mingwu Xia
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Juncang Wu
- Department of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, Anhui, P.R. China.
| |
Collapse
|
50
|
Panahi M, Rodriguez PR, Fereshtehnejad SM, Arafa D, Bogdanovic N, Winblad B, Cedazo-Minguez A, Rinne J, Darreh-Shori T, Hase Y, Kalaria RN, Viitanen M, Behbahani H. Insulin-Independent and Dependent Glucose Transporters in Brain Mural Cells in CADASIL. Front Genet 2020; 11:1022. [PMID: 33101365 PMCID: PMC7522350 DOI: 10.3389/fgene.2020.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez Rodriguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed-Mohammad Fereshtehnejad
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Donia Arafa
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Neurogeriatric Clinic, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Juha Rinne
- University of Turku, Turku University Hospital Kiinanmyllynkatu, Turku, Finland
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku,Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|