1
|
Chen S, Zhu J, Hua C, Feng C, Wu X, Zhou C, Chen X, Zhang B, Xu Y, Ma Z, He J, Jin N, Song Y, van der Veen S, Cheng H. Single-cell RNA Sequencing Reveals the Diversity of the Immunological Landscape Response to Genital Herpes. Virol Sin 2024:S1995-820X(24)00152-4. [PMID: 39426602 DOI: 10.1016/j.virs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Genital herpes (GH) is a common sexually transmitted disease, which is primarily caused by herpes simplex virus type 2 (HSV-2), and continues to be a global health concern. Although our understanding of the alterations in immune cell populations and immunomodulation in GH patients is still limited, it is evident that systemic intrinsic immunity, innate immunity, and adaptive immunity play crucial roles during HSV-2 infection and GH reactivation. To investigate the mechanisms underlying HSV-2 infection and recurrence, single-cell RNA sequencing (scRNA-seq) was performed on immune cells isolated from the peripheral blood of both healthy individuals and patients with recurrent GH. Furthermore, the systemic immune response in patients with recurrent GH showed activation of classical monocytes, CD4+ T cells, natural killer cells (NK cells), and plasmacytoid dendritic cells (pDCs), especially of genes associated with the Toll-like receptor signaling pathway and T cell activation. Circulating immune cells in GH patients show higher expression of genes associated with inflammation and antiviral responses both in the scRNA-Seq data set and in independent quantitative real-time polymerase chain reaction (qRT-PCR) analysis and ELISA experiments. This study demonstrated that localized genital herpes, resulting from HSV reactivation, may influence the functionality of circulating immune cells, suggesting a potential avenue for future research into the role of systemic immunity during HSV infection and recurrence.
Collapse
Affiliation(s)
- Siji Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Feng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Can Zhou
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Boya Zhang
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyu Ma
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianping He
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Na Jin
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Stijn van der Veen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
2
|
Bartos LM, Quach S, Zenatti V, Kirchleitner SV, Blobner J, Wind-Mark K, Kolabas ZI, Ulukaya S, Holzgreve A, Ruf VC, Kunze LH, Kunte ST, Hoermann L, Härtel M, Park HE, Groß M, Franzmeier N, Zatcepin A, Zounek A, Kaiser L, Riemenschneider MJ, Perneczky R, Rauchmann BS, Stöcklein S, Ziegler S, Herms J, Ertürk A, Tonn JC, Thon N, von Baumgarten L, Prestel M, Tahirovic S, Albert NL, Brendel M. Remote Neuroinflammation in Newly Diagnosed Glioblastoma Correlates with Unfavorable Clinical Outcome. Clin Cancer Res 2024; 30:4618-4634. [PMID: 39150564 PMCID: PMC11474166 DOI: 10.1158/1078-0432.ccr-24-1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Valerio Zenatti
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | | | - Jens Blobner
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Sebastian T. Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Leonie Hoermann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Marlies Härtel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Ha Eun Park
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Mattes Groß
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Adrian Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | | | - Robert Perneczky
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom.
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Jochen Herms
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Prestel
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Sabina Tahirovic
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Shi WQ, Chen DX, Du ZS, Liu CP, Zhai TT, Pan F, Chen HL, Liao WN, Wang SH, Fu JH, Qiu SQ, Wu ZY. CD74 is a potential biomarker predicting the response to immune checkpoint blockade. Cancer Cell Int 2024; 24:340. [PMID: 39402601 PMCID: PMC11476377 DOI: 10.1186/s12935-024-03524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has been improving the patient outcome in multiple cancer types. However, not all patients respond to ICB. Biomarkers are needed for selecting appropriate patients to receive ICB. CD74 is an important chaperone that regulates antigen presentation for immune response. However, the relationship between CD74 expression and ICB response remains elusive. METHODS The unified normalized pan-cancer dataset was downloaded from the UCSC database. Wilcoxon Rank Sum Rank Tests were used to analyze the expression differences between normal and tumor samples in each tumor type. Then, the prognostic value of CD74 was determined using univariable Cox proportional hazards regression analysis. The STRING database was utilized to construct the protein-protein interaction (PPI) network of CD74 and the signal pathways were analyzed as well. The correlation of CD74 expression with immune cells and immune regulating genes was investigated in the TIMER database. The TIDE framework was utilized to evaluate the relationship between CD74 expression and the response to immunotherapy. Moreover, the localization of CD74 in the tumor immune microenvironment was verified using multiplex immunohistochemistry. Clinically annotated samples from 38 patients with esophageal cancer treated with neoadjuvant chemotherapy combined with ICB were analyzed for CD74 expression using immunohistochemistry. RESULTS In this study, we investigated the prognostic and predictive value of CD74 in different types of cancer. Compared with normal tissue, the expression of CD74 was higher in tumor tissue in various cancers. High expression of CD74 was associated with improved patient prognosis in the majority of cancers. CD74 and its interacting proteins were mainly enriched in the immune-related pathways. The expression of CD74 was significantly positively correlated with B cells, CD4 T-cells, CD8 T-cells, neutrophils, macrophages and dendritic cells. TIDE analysis showed that tumors with high CD74 expression may have better responses to immunotherapy and improved patient survival. In patients with esophageal cancer who had received ICB, higher intratumoral CD74 expression was associated with improved response to ICB. CONCLUSIONS The findings of this study suggest that the high expression of CD74 may be a potential predictive biomarker of response to ICB.
Collapse
Affiliation(s)
- Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Dan-Xun Chen
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China
| | - Ze-Sen Du
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - Chun-Peng Liu
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Tian-Tian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, China
| | - Feng Pan
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Hai-Lu Chen
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China
| | - Wei-Nan Liao
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Jun-Hui Fu
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China.
| | - Si-Qi Qiu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| | - Zhi-Yong Wu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| |
Collapse
|
4
|
Haley MJ, Bere L, Minshull J, Georgaka S, Garcia-Martin N, Howell G, Coope DJ, Roncaroli F, King A, Wedge DC, Allan SM, Pathmanaban ON, Brough D, Couper KN. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. SCIENCE ADVANCES 2024; 10:eadj3301. [PMID: 38758780 PMCID: PMC11100569 DOI: 10.1126/sciadv.adj3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.
Collapse
Affiliation(s)
- Michael J. Haley
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - Leoma Bere
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| | - James Minshull
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Sokratia Georgaka
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | | | - Gareth Howell
- Flow Cytometry Core Research Facility, University of Manchester, Manchester, UK
| | - David J. Coope
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Andrew King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - David C. Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Omar N. Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Kevin N. Couper
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Inflammation and Immunology, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Li D, Zhang Q, Yang X, Zhang G, Wang J, Zhang R, Liu Y. Microglial AT1R Conditional Knockout Ameliorates Hypoperfusive Cognitive Impairment by Reducing Microglial Inflammatory Responses. Neuroscience 2024; 545:125-140. [PMID: 38484837 DOI: 10.1016/j.neuroscience.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) can cause vascular cognitive impairment and dementia. AT1R, angiotensin II type I receptor, plays a vital role in central nervous system pathologies, but its concrete function in vascular dementia is still unclear. Herein, we investigated the effects of AT1R during CCH by conditional knockout of the microglial AT1R and candesartan treatment. Using the bilateral carotid artery stenosis (BCAS) model, we found that the AT1R is crucial in exacerbating CCH-induced cognitive impairment via regulating microglial activation. The levels of AT1R were increased in the hippocampus and the hippocampal microglia after CCH induction. Microglial AT1R conditional knockout ameliorated cognitive impairment by reducing inflammatory responses and microglial activation, and so did candesartan treatment. However, we observed restoration of cerebral blood flow (CBF) but no significant neuronal loss in the hippocampus at 28 days after BCAS. Finally, we screened three hub genes (Ctss, Fcer1g, Tyrobp) associated with CCH. Our findings indicated that microglial expression of AT1R is critical for regulating neuroinflammation in CCH, and AT1R antagonism may be a feasible and promising method for ameliorating CCH-caused cognitive impairment.
Collapse
Affiliation(s)
- Deyue Li
- Department of Pharmacy, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Qiao Zhang
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, The Third Affiliated (Daping) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Guoqing Zhang
- Department of Neurology, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Jinping Wang
- Department of Neurology, The Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China.
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China.
| |
Collapse
|
6
|
Li RQ, Yan L, Zhang L, Zhao Y, Lian J. CD74 as a prognostic and M1 macrophage infiltration marker in a comprehensive pan-cancer analysis. Sci Rep 2024; 14:8125. [PMID: 38582956 PMCID: PMC10998849 DOI: 10.1038/s41598-024-58899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
CD74 is a type-II transmembrane glycoprotein that has been linked to tumorigenesis. However, this association was based only on phenotypic studies, and, to date, no in-depth mechanistic studies have been conducted. In this study, combined with a multi-omics study, CD74 levels were significantly upregulated in most cancers relative to normal tissues and were found to be predictive of prognosis. Elevated CD74 expression was associated with reduced levels of mismatch-repair genes and homologous repair gene signatures in over 10 tumor types. Multiple fluorescence staining and bulk, spatial, single-cell transcriptional analyses indicated its potential as a marker for M1 macrophage infiltration in pan-cancer. In addition, CD74 expression was higher in BRCA patients responsive to conventional chemotherapy and was able to predict the prognosis of these patients. Potential CD74-activating drugs (HNHA and BRD-K55186349) were identified through molecular docking to CD74. The findings indicate activation of CD74 may have potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhao
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Liu J, Liao X, Li N, Xu Z, Yang W, Zhou H, Liu Y, Zhang Z, Wang G, Hou S. Single‐cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis. MedComm (Beijing) 2024; 5:e534. [PMID: 38585235 PMCID: PMC10999176 DOI: 10.1002/mco2.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Autoimmune uveitis (AU) is a kind of immune-mediated disease resulting in irreversible ocular damage and even permanent vision loss. However, the precise mechanism underlying dynamic immune changes contributing to disease initiation and progression of AU remains unclear. Here, we induced an experimental AU (EAU) model with IRBP651-670 and found that day[D]14 was the inflammatory summit with remarking clinical and histopathological manifestations and the activation of retinal microglia exhibited a time-dependent pattern in the EAU course. We conducted single-cell RNA sequencing of retinal immune cells in EAU mice at four time points and found microglia constituting the largest proportion, especially on D14. A novel inflammatory subtype (Cd74high Ccl5high) of retinal microglia was identified at the disease peak that was closely associated with modulating immune responses. In vitro experiments indicated that inflammatory stimuli induced proinflammatory microglia with the upregulation of CD74 and CCL5, and CD74 overexpression in microglia elicited their proinflammatory phenotype via nuclear factor-kappa B signaling that could be attenuated by the treatment of neutralizing CCL5 antibody to a certain extent. In-vivo blockade of Cd74 and Ccl5 effectively alleviated retinal microglial activation and disease phenotype of EAU. Therefore, we propose targeting CD74 and CCL5 of retinal microglia as promising strategies for AU treatment.
Collapse
Affiliation(s)
- Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Wang Yang
- Department of KidneyFirst Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
| |
Collapse
|
8
|
Tordai C, Hathy E, Gyergyák H, Vincze K, Baradits M, Koller J, Póti Á, Jezsó B, Homolya L, Molnár MJ, Nagy L, Szüts D, Apáti Á, Réthelyi JM. Probing the biological consequences of a previously undescribed de novo mutation of ZMYND11 in a schizophrenia patient by CRISPR genome editing and induced pluripotent stem cell based in vitro disease-modeling. Schizophr Res 2024:S0920-9964(24)00024-0. [PMID: 38290943 DOI: 10.1016/j.schres.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.
Collapse
Affiliation(s)
- Csongor Tordai
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Edit Hathy
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Hella Gyergyák
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Katalin Vincze
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Máté Baradits
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Júlia Koller
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Ádám Póti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Bálint Jezsó
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/c, Budapest, Hungary
| | - László Homolya
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - Ágota Apáti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - János M Réthelyi
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary.
| |
Collapse
|
9
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
10
|
Zeng Y, Xue T, Zhang D, Lv M. Transcriptomic Analysis of lncRNAs and their mRNA Networks in Cerebral Ischemia in Young and Aged Mice. Comb Chem High Throughput Screen 2024; 27:823-833. [PMID: 37340753 DOI: 10.2174/1386207326666230619091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Ischemic stroke comprises 75% of all strokes and it is associated with a great frailty and casualty rate. Certain data suggest multiple long non-coding Ribonucleic Acids (lncRNAs) assist the transcriptional, post-transcriptional, and epigenetic regulation of genes expressed in the CNS (Central Nervous System). However, these studies generally focus on differences in the expression patterns of lncRNAs and Messenger Ribonucleic Acids (mRNAs) in tissue samples before and after cerebral ischemic injury, ignoring the effects of age. METHODS In this study, differentially expressed lncRNA analysis was performed based on RNAseq data from the transcriptomic analysis of murine brain microglia related to cerebral ischemia injury in mice at different ages (10 weeks and 18 months). RESULTS The results showed that the number of downregulate differentially expressed genes (DEGs) in aged mice was 37 less than in young mice. Among them, lncRNA Gm-15987, RP24- 80F7.5, XLOC_379730, XLOC_379726 were significantly down-regulated. Then, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these specific lncRNAs were mainly related to inflammation. Based on the lncRNA/mRNA coexpression network, the mRNA co-expressed with lncRNA was mainly enriched in pathways, such as immune system progression, immune response, cell adhesion, B cell activation, and T cell differentiation. Our results indicate that the downregulation of lncRNA, such as Gm-15987, RP24- 80F7.5, XLOC_379730, and XLOC_379726 in aged mice may attenuate microglial-induced inflammation via the progress of immune system progression immune response, cell adhesion, B cell activation, and T cell differentiation. CONCLUSION The reported lncRNAs and their target mRNA during this pathology have potentially key regulatory functions in the cerebral ischemia in aged mice while being important for diagnosing and treating cerebral ischemia in the elderly.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tengteng Xue
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Zhang
- Department of New Media and Arts, Harbin Institute of Technology, Harbin, 150001, China
| | - Manhua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
11
|
Blanco-Carmona E, Narayanan A, Hernandez I, Nieto JC, Elosua-Bayes M, Sun X, Schmidt C, Pamir N, Özduman K, Herold-Mende C, Pagani F, Cominelli M, Taranda J, Wick W, von Deimling A, Poliani PL, Rehli M, Schlesner M, Heyn H, Turcan Ş. Tumor heterogeneity and tumor-microglia interactions in primary and recurrent IDH1-mutant gliomas. Cell Rep Med 2023; 4:101249. [PMID: 37883975 PMCID: PMC10694621 DOI: 10.1016/j.xcrm.2023.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/06/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes. In addition to astrocyte-like, oligodendrocyte progenitor-like, and cycling tumor subpopulations, a tumor population enriched for ribosomal genes and translation elongation factors is primarily present in oligodendrogliomas. Longitudinal analysis of astrocytomas indicates that the proportion of tumor subpopulations remains stable in recurrent tumors. Analysis of tumor-associated microglia/macrophages (TAMs) reveals significant differences between oligodendrogliomas, with astrocytomas harboring inflammatory TAMs expressing phosphorylated STAT1, as confirmed by immunohistochemistry. Furthermore, inferred receptor-ligand interactions between tumor subpopulations and TAMs may contribute to TAM state diversity. Overall, our study sheds light on distinct tumor populations, TAM heterogeneity, TAM-tumor interactions in IDH-mutant glioma subtypes, and the relative stability of tumor subpopulations in recurrent astrocytomas.
Collapse
Affiliation(s)
- Enrique Blanco-Carmona
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ashwin Narayanan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Inmaculada Hernandez
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan C Nieto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marc Elosua-Bayes
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xueyuan Sun
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, DKFZ, Heidelberg, Germany
| | - Necmettin Pamir
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Koray Özduman
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Julian Taranda
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, and DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michael Rehli
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, University of Augsburg, Augsburg, Germany
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany.
| |
Collapse
|
12
|
Fermi V, Warta R, Wöllner A, Lotsch C, Jassowicz L, Rapp C, Knoll M, Jungwirth G, Jungk C, Dao Trong P, von Deimling A, Abdollahi A, Unterberg A, Herold-Mende C. Effective Reprogramming of Patient-Derived M2-Polarized Glioblastoma-Associated Microglia/Macrophages by Treatment with GW2580. Clin Cancer Res 2023; 29:4685-4697. [PMID: 37682326 DOI: 10.1158/1078-0432.ccr-23-0576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Targeting immunosuppressive and pro-tumorigenic glioblastoma (GBM)-associated macrophages and microglial cells (GAM) has great potential to improve patient outcomes. Colony-stimulating factor-1 receptor (CSF1R) has emerged as a promising target for reprograming anti-inflammatory M2-like GAMs. However, treatment data on patient-derived, tumor-educated GAMs and their influence on the adaptive immunity are lacking. EXPERIMENTAL DESIGN CD11b+-GAMs freshly isolated from patient tumors were treated with CSF1R-targeting drugs PLX3397, BLZ945, and GW2580. Phenotypical changes upon treatment were assessed using RNA sequencing, flow cytometry, and cytokine quantification. Functional analyses included inducible nitric oxide synthase activity, phagocytosis, transmigration, and autologous tumor cell killing assays. Antitumor effects and changes in GAM activation were confirmed in a complex patient-derived 3D tumor organoid model serving as a tumor avatar. RESULTS The most effective reprogramming of GAMs was observed upon GW2580 treatment, which led to the downregulation of M2-related markers, IL6, IL10, ERK1/2, and MAPK signaling pathways, while M1-like markers, gene set enrichment indicating activated MHC-II presentation, phagocytosis, and T-cell killing were substantially increased. Moreover, treatment of patient-derived GBM organoids with GW2580 confirmed successful reprogramming, resulting in impaired tumor cell proliferation. In line with its failure in clinical trials, PLX3397 was ineffective in our analysis. CONCLUSIONS This comparative analysis of CSF1R-targeting drugs on patient-derived GAMs and human GBM avatars identified GW2580 as the most powerful inhibitor with the ability to polarize immunosuppressive GAMs to a proinflammatory phenotype, supporting antitumor T-cell responses while also exerting a direct antitumor effect. These data indicate that GW2580 could be an important pillar in future therapies for GBM.
Collapse
Affiliation(s)
- Valentina Fermi
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Rolf Warta
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Amélie Wöllner
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Catharina Lotsch
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Lena Jassowicz
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 522, Heidelberg, Germany
| | - Carmen Rapp
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Gerhard Jungwirth
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas von Deimling
- Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgical Research, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| |
Collapse
|
13
|
Finotto L, Cole B, Giese W, Baumann E, Claeys A, Vanmechelen M, Decraene B, Derweduwe M, Dubroja Lakic N, Shankar G, Nagathihalli Kantharaju M, Albrecht JP, Geudens I, Stanchi F, Ligon KL, Boeckx B, Lambrechts D, Harrington K, Van Den Bosch L, De Vleeschouwer S, De Smet F, Gerhardt H. Single-cell profiling and zebrafish avatars reveal LGALS1 as immunomodulating target in glioblastoma. EMBO Mol Med 2023; 15:e18144. [PMID: 37791581 PMCID: PMC10630887 DOI: 10.15252/emmm.202318144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.
Collapse
Affiliation(s)
- Lise Finotto
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Basiel Cole
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Maxime Vanmechelen
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Department of Medical OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Brecht Decraene
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Nikolina Dubroja Lakic
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Gautam Shankar
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Madhu Nagathihalli Kantharaju
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Jan Philipp Albrecht
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Ilse Geudens
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Fabio Stanchi
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Keith L Ligon
- Center for Neuro‐oncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of PathologyBrigham and Women's HospitalBostonMAUSA
- Department of PathologyHarvard Medical SchoolBostonMAUSA
| | - Bram Boeckx
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Diether Lambrechts
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Kyle Harrington
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Chan Zuckerberg InitiativeRedwood CityCAUSA
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- VIB ‐ KU Leuven Center for Brain & Disease Research, Laboratory of NeurobiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Steven De Vleeschouwer
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
14
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
16
|
Wen Y, Huang J, Guo S, Elyahu Y, Monsonego A, Zhang H, Ding Y, Zhu H. Applying causal discovery to single-cell analyses using CausalCell. eLife 2023; 12:e81464. [PMID: 37129360 PMCID: PMC10229139 DOI: 10.7554/elife.81464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Correlation between objects is prone to occur coincidentally, and exploring correlation or association in most situations does not answer scientific questions rich in causality. Causal discovery (also called causal inference) infers causal interactions between objects from observational data. Reported causal discovery methods and single-cell datasets make applying causal discovery to single cells a promising direction. However, evaluating and choosing causal discovery methods and developing and performing proper workflow remain challenges. We report the workflow and platform CausalCell (http://www.gaemons.net/causalcell/causalDiscovery/) for performing single-cell causal discovery. The workflow/platform is developed upon benchmarking four kinds of causal discovery methods and is examined by analyzing multiple single-cell RNA-sequencing (scRNA-seq) datasets. Our results suggest that different situations need different methods and the constraint-based PC algorithm with kernel-based conditional independence tests work best in most situations. Related issues are discussed and tips for best practices are given. Inferred causal interactions in single cells provide valuable clues for investigating molecular interactions and gene regulations, identifying critical diagnostic and therapeutic targets, and designing experimental and clinical interventions.
Collapse
Affiliation(s)
- Yujian Wen
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jielong Huang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuhui Guo
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Hai Zhang
- Network Center, Southern Medical UniversityGuangzhouChina
| | - Yanqing Ding
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Shu N, Zhang Z, Wang X, Li R, Li W, Liu X, Zhang Q, Jiang Z, Tao L, Zhang L, Hou S. Apigenin Alleviates Autoimmune Uveitis by Inhibiting Microglia M1 Pro-Inflammatory Polarization. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 37219511 PMCID: PMC10210511 DOI: 10.1167/iovs.64.5.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose Apigenin is a natural small molecule compound widely present in various vegetables and fruits. Recently, Apigenin was reported to inhibit lipopolysaccharide (LPS)-simulated microglial proinflammatory activation. Considering the important role of microglia in retinal disorders, we wonder whether Apigenin could exert a therapeutic effect on experimental autoimmune uveitis (EAU) through reprogramming retinal microglia to a beneficial subtype. Methods EAU was induced in C57BL/6J mice by immunization with interphotoreceptor retinoid-binding protein (IRBP)651-670, followed by intraperitoneal administration of Apigenin. Disease severity was assessed based on clinical and pathological scores. In vivo, Western blotting was used to quantify protein levels of classical inflammatory factors, microglial M1/M2 markers and the tight junction protein of the blood-retinal-barrier (BRB). Immunofluorescence was used to determine the Apigenin's efficacy on microglial phenotype. In vitro, Apigenin was added in LPS and IFN-γ stimulated human microglial cell line. Western blotting and Transwell assays were used to analyze the phenotype of microglia. Results In vivo, we found that Apigenin significantly reduced the clinical and pathological scores of EAU. The protein levels of inflammatory cytokines were significantly decreased in retina, and BRB disruption was ameliorated after Apigenin treatment. Meanwhile, Apigenin inhibited microglia M1 transition in EAU mice retina. In vitro functional studies showed that Apigenin decreased LPS and IFN-γ-induced microglial inflammatory factor production and M1-activation via the TLR4/MyD88 pathway. Conclusions Apigenin can ameliorate retinal inflammation in IRBP induced autoimmune uveitis through inhibiting microglia M1 pro-inflammatory polarization via TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Nan Shu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qi Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxuan Jiang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liming Tao
- The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
18
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
19
|
Zhao L, Xu DG, Hu YH. The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma-A Review. Cell Mol Neurobiol 2023; 43:193-204. [PMID: 35137327 DOI: 10.1007/s10571-022-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system and normally should be treated by synthetic therapy, mainly with surgical operation assisted by radiotherapy and chemotherapy; however, the therapeutic effect has not been satisfactory, and the 5-year survival rates of anaplastic glioma and glioblastoma are 29.7% and 5.5%, respectively. To identify a more efficient strategy to treat glioma, in recent years, the influence of the inflammatory microenvironment on the progression of glioma has been studied. Various immunophenotypes exist in microglial cells, each of which has a different functional property. In this review, references about the phenotypic conversion of microglial cell polarity in the microenvironment were briefly summarized, and the differences in polarized state and function, their influences on glioma progression under different physiological and pathological conditions, and the interactive effects between the two were mainly discussed. Certain signaling molecules and regulatory pathways involved in the microglial cell polarization process were investigated, and the feasibility of targeted regulation of microglial cell conversion to an antitumor phenotype was analyzed to provide new clues for the efficient auxiliary treatment of neural glioma.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dong-Gang Xu
- Institute of Military Cognition and Brain Science, Research Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Yu-Hua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
20
|
Ding X, An Q, Zhao W, Song Y, Tang X, Wang J, Chang CC, Zhao G, Hsiai T, Fan G, Fan Y, Li S. Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury. JCI Insight 2022; 7:153769. [DOI: 10.1172/jci.insight.153769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
|
21
|
Wang G, Wang W. Advanced Cell Therapies for Glioblastoma. Front Immunol 2022; 13:904133. [PMID: 36052072 PMCID: PMC9425637 DOI: 10.3389/fimmu.2022.904133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The sheer ubiquity of Gioblastoma (GBM) cases would lead you to believe that there should have been many opportunities for the discovery of treatments to successfully render it into remission. Unfortunately, its persistent commonality is due in large part to the fact that it is the most treatment-resistant tumors in adults. That completely changes the treatment plan of attack. Long established and accepted treatment therapies such as surgical resection, radiation, and aggressive chemotherapy, (and any combination thereof) have only confirmed that the disease lives up to its treatment-resistant reputation. To add to the seemingly insurmountable task of finding a cure, GBM has also proven to be a very stubborn and formidable opponent to newer immunotherapies. Across the board, regardless of the therapy combination, the five-year survival rate of GBM patients is still very poor at a heartbreaking 5.6%. Obviously, the present situation cannot be tolerated or deemed acceptable. The grave situation calls for researchers to be more innovative and find more efficient strategies to discover new and successful strategies to treat GBM. Inspired by researchers worldwide attempting to control GBM, we provide in this review a comprehensive overview of the many diverse cell therapies currently being used to treat GBM. An overview of the treatments include: CAR T cells, CAR NK cells, gamma-delta T cells, NKT cells, dendritic cells, macrophages, as well stem cell-based strategies. To give you the complete picture, we will discuss the efficacy, safety, and developmental stages, the mechanisms of action and the challenges of each of these therapies and detail their potential to be the next-generation immunotherapeutic to eliminate this dreadful disease.
Collapse
Affiliation(s)
- Guangwen Wang
- BlueRock Therapeutics, Department of Process Development, Cambridge, MA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| | - Wenshi Wang
- Metagenomi Inc., Department of Cell Therapy, Emeryville, CA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| |
Collapse
|
22
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Menna G, Mattogno PP, Donzelli CM, Lisi L, Olivi A, Della Pepa GM. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a 'Seed-and Soil' Approach: A Systematic Review. Brain Sci 2022; 12:718. [PMID: 35741603 PMCID: PMC9220868 DOI: 10.3390/brainsci12060718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background and aim: Ever since the discovery of tumor-associated immune cells, there has been growing interest in the understanding of the mechanisms underlying the crosstalk between these cells and tumor cells. A "seed and soil" approach has been recently introduced to describe the glioblastoma (GBM) landscape: tumor microenvironments act as fertile "soil" and interact with the "seed" (glial and stem cells compartment). In the following article, we provide a systematic review of the current evidence pertaining to the characterization of glioma-associated macrophages and microglia (GAMs) and microglia and macrophage cells in the glioma tumor microenvironment (TME). Methods: An online literature search was launched on PubMed Medline and Scopus using the following research string: "((Glioma associated macrophages OR GAM OR Microglia) AND (glioblastoma tumor microenvironment OR TME))". The last search for articles pertinent to the topic was conducted in February 2022. Results: The search of the literature yielded a total of 349 results. A total of 235 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 58 articles were included in the review. The reviewed papers were further divided into three categories based on their focus: (1) Microglia maintenance of immunological homeostasis and protection against autoimmunity; (2) Microglia crosstalk with dedifferentiated and stem-like glioblastoma cells; (3) Microglia migratory behavior and its activation pattern. Conclusions: Aggressive growth, inevitable recurrence, and scarce response to immunotherapies are driving the necessity to focus on the GBM TME from a different perspective to possibly disentangle its role as a fertile 'soil' for tumor progression and identify within it feasible therapeutic targets. Against this background, our systematic review confirmed microglia to play a paramount role in promoting GBM progression and relapse after treatments. The correct and extensive understanding of microglia-glioma crosstalk could help in understanding the physiopathology of this complex disease, possibly opening scenarios for improvement of treatments.
Collapse
Affiliation(s)
- Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Pier Paolo Mattogno
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Carlo Maria Donzelli
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University of Rome, 00168 Rome, Italy;
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.M.); (P.P.M.); (C.M.D.); (A.O.)
| |
Collapse
|
24
|
Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-сell sequencing in cancer research. Signal Transduct Target Ther 2022; 7:145. [PMID: 35504878 PMCID: PMC9065032 DOI: 10.1038/s41392-022-00990-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
With advances in sequencing and instrument technology, bioinformatics analysis is being applied to batches of massive cells at single-cell resolution. High-throughput single-cell sequencing can be utilized for multi-omics characterization of tumor cells, stromal cells or infiltrated immune cells to evaluate tumor progression, responses to environmental perturbations, heterogeneous composition of the tumor microenvironment, and complex intercellular interactions between these factors. Particularly, single-cell sequencing of T cell receptors, alone or in combination with single-cell RNA sequencing, is useful in the fields of tumor immunology and immunotherapy. Clinical insights obtained from single-cell analysis are critically important for exploring the biomarkers of disease progression or antitumor treatment, as well as for guiding precise clinical decision-making for patients with malignant tumors. In this review, we summarize the clinical applications of single-cell sequencing in the fields of tumor cell evolution, tumor immunology, and tumor immunotherapy. Additionally, we analyze the tumor cell response to antitumor treatment, heterogeneity of the tumor microenvironment, and response or resistance to immune checkpoint immunotherapy. The limitations of single-cell analysis in cancer research are also discussed.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Han Chu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd, Shanghai, 201318, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
25
|
Bianconi A, Aruta G, Rizzo F, Salvati LF, Zeppa P, Garbossa D, Cofano F. Systematic Review on Tumor Microenvironment in Glial Neoplasm: From Understanding Pathogenesis to Future Therapeutic Perspectives. Int J Mol Sci 2022; 23:4166. [PMID: 35456984 PMCID: PMC9029619 DOI: 10.3390/ijms23084166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.
Collapse
Affiliation(s)
- Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Gelsomina Aruta
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | | | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
- Spine Surgery Unit, Humanitas Gradeningo, 10100 Turin, Italy
| |
Collapse
|
26
|
The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8903482. [PMID: 35419058 PMCID: PMC9001141 DOI: 10.1155/2022/8903482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules, particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated with glioma invasiveness, immunosuppression, and patients' poor outcome, making these cells a suitable target for immunotherapeutic schemes.
Collapse
|
27
|
IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain. Mol Neurobiol 2022; 59:3337-3352. [DOI: 10.1007/s12035-022-02791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
|
28
|
Whole Blood Transcriptional Fingerprints of High-Grade Glioma and Longitudinal Tumor Evolution under Carbon Ion Radiotherapy. Cancers (Basel) 2022; 14:cancers14030684. [PMID: 35158950 PMCID: PMC8833402 DOI: 10.3390/cancers14030684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Particle therapy with carbon ions is a promising novel option for the treatment of recurrent high-grade glioma (rHGG). Lack of initial and sequential biopsies limits the investigation of rHGG evolution under therapy. We hypothesized that peripheral blood transcriptome derived from liquid biopsies (lbx) as a minimal invasive method may provide a useful decision support for identification of glioma grade and provide novel means for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). We demonstrate feasibility and report patient, tumor and treatment fingerprints in whole blood transcriptomes of rHGG patients with pre-CIR and three post-CIR time points. Abstract Purpose: To assess the value of whole blood transcriptome data from liquid biopsy (lbx) in recurrent high-grade glioma (rHGG) patients for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). Methods: Whole blood transcriptome (WBT) analysis (Illumina HumanHT-12 Expression BeadChips) was performed in 14 patients with rHGG pre re-irradiation (reRT) with CIR and 3, 6 and 9 weeks post-CIR (reRT grade III:5, 36%, IV:9, 64%). Patients were irradiated with 30, 33, 36 GyRBE (n = 5, 6, 3) in 3GyRBE per fraction. Results: WTB analysis showed stable correlation with treatment characteristics and patients tumor grade, indicating a preserved tumor origin specific as well as dynamic transcriptional fingerprints of peripheral blood cells. Initial histopathologic tumor grade was indirectly associated with TMEM173 (STING), DNA-repair (ATM, POLD4) and hypoxia related genes. DNA-repair, chromatin remodeling (LIG1, SMARCD1) and immune response (FLT3LG) pathways were affected post-CIR. Longitudinal WTB fingerprints identified two distinct trajectories of rHGG evolution, characterized by differential and prognostic CRISPLD2 expression pre-CIR. Conclusions: Lbx based WTB analysis holds the potential for molecular stratification of rHGG patients and therapy monitoring. We demonstrate the feasibility of the peripheral blood transcriptome as a sentinel organ for identification of patient, tumor characteristics and CIR specific fingerprints in rHGG.
Collapse
|
29
|
Wang Z, Dai Z, Zheng L, Xu B, Zhang H, Fan F, Zhang X, Liang X, Liu Z, Yang K, Cheng Q. Ferroptosis Activation Scoring Model Assists in Chemotherapeutic Agents’ Selection and Mediates Cross-Talk With Immunocytes in Malignant Glioblastoma. Front Immunol 2022; 12:747408. [PMID: 35126346 PMCID: PMC8807564 DOI: 10.3389/fimmu.2021.747408] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Gliomas are aggressive tumors in the central nervous system and glioblastoma is the most malignant type. Ferroptosis is a programmed cell death that can modulate tumor resistance to therapy and the components of tumor microenvironment. However, the relationship between ferroptosis, tumor immune landscape, and glioblastoma progression is still elusive. In this work, data from bulk RNA-seq analysis, single cell RNA-seq analysis, and our own data (the Xiangya cohort) are integrated to reveal their relationships. A scoring system is constructed according to ferroptosis related gene expression, and high scoring samples resistant to ferroptosis and show worse survival outcome than low scoring samples. Notably, most of the high scoring samples are aggressive glioblastoma subtype, mesenchymal, and classical, by calculating RNA velocity. Cross-talk between high scoring glioblastoma cells and immunocytes are explored by R package ‘celltalker’. Ligand–receptor pairs like the TRAIL or TWEAK signaling pathway are identified as novel bridges implying how ferroptosis modulate immunocytes’ function and shape tumor microenvironment. Critically, potential drugs target to high scoring samples are predicted, namely, SNX2112, AZ628, and bortezomib and five compounds from the CellMiner database. Taken together, ferroptosis associates with glioblastoma aggressiveness, cross-talk with immunocytes and offer novel chemotherapy strategy.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifu Zheng
- Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Binyuan Xu
- Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Kui Yang,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Kui Yang,
| |
Collapse
|
30
|
Hernández A, Domènech M, Muñoz-Mármol AM, Carrato C, Balana C. Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment. Cells 2021; 10:cells10123529. [PMID: 34944036 PMCID: PMC8700075 DOI: 10.3390/cells10123529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment (TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and metabolism pathways are two main elements that influence tumor immune cells and TME. In this manuscript, we review how both factors can contribute to an immunosuppressive state and overview the strategies being tested.
Collapse
Affiliation(s)
- Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Ana M. Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Carmen Balana
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
- Correspondence: ; Tel.: +34-4978925
| |
Collapse
|
31
|
Jin C, Shao Y, Zhang X, Xiang J, Zhang R, Sun Z, Mei S, Zhou J, Zhang J, Shi L. A Unique Type of Highly-Activated Microglia Evoking Brain Inflammation via Mif/Cd74 Signaling Axis in Aged Mice. Aging Dis 2021; 12:2125-2139. [PMID: 34881090 PMCID: PMC8612608 DOI: 10.14336/ad.2021.0520] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Senescence-associated alterations of microglia have only recently been appreciated in the aged brain. Although our previous study has reported chronic inflammation in aged microglia, the mechanism remains poorly understood. Here, we performed morphological detection and transcriptomic analysis of aged microglia at the single cell level. Aged mice showed a large quantity and a large body volume of microglia in the brain. Six subgroups of microglia with unique function were identified by single cell RNA sequencing. Three out of six subgroups showed dramatic variations in microglia between aged and young mice. A unique type of highly-activated microglia (HAM) was observed in aged mice only, with specific expression of several markers, including Lpl, Lgals3, Cst7, and Cd74. Gene clusters with functional implications in cell survival, energy metabolism, and immuno-inflammatory responses were markedly activated in HAM. Mechanistically, neuron-released Mif, acting through Cd74 receptor in HAM, promoted the immunochemotactic activity of microglia, which then triggered immuno-inflammatory responses in aged brains. These findings may reveal new targets for reducing age-related brain inflammation to maintain brain health.
Collapse
Affiliation(s)
- Chenghao Jin
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijie Shao
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaotao Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Xiang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruize Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,2Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,3Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ligen Shi
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett 2021; 527:66-79. [PMID: 34902524 DOI: 10.1016/j.canlet.2021.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most invasive and deadliest brain cancer in adults. Its inherent heterogeneity has been designated as the main cause of treatment failure. Thus, a deeper understanding of the diversity that shapes GBM pathobiology is of utmost importance. Single-cell RNA sequencing (scRNA-seq) technologies have begun to uncover the hidden composition of complex tumor ecosystems. Herein, a semi-systematic search of reference literature databases provided all existing publications using scRNA-seq for the investigation of human GBM. We compared and discussed findings from these works to build a more robust and unified knowledge base. All aspects ranging from inter-patient heterogeneity to intra-tumoral organization, cancer stem cell diversity, clonal mosaicism, and the tumor microenvironment (TME) are comprehensively covered in this report. Tumor composition not only differs across patients but also involves a great extent of heterogeneity within itself. Spatial and cellular heterogeneity can reveal tumor evolution dynamics. In addition, the discovery of distinct cell phenotypes might lead to the development of targeted treatment approaches. In conclusion, scRNA-seq expands our knowledge of GBM heterogeneity and helps to unravel putative therapeutic targets.
Collapse
|
33
|
Wei B, Liu Z, Fan Y, Wang S, Dong C, Rao W, Yang F, Cheng G, Zhang J. Analysis of Cellular Heterogeneity in Immune Microenvironment of Primary Central Nervous System Lymphoma by Single-Cell Sequencing. Front Oncol 2021; 11:683007. [PMID: 34671548 PMCID: PMC8523033 DOI: 10.3389/fonc.2021.683007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is characterized by a lack of specificity and poor prognosis. Further understanding of the tumor heterogeneity and molecular phenotype of PCNSL is of great significance for improving the diagnosis and treatment of this disease. Methods To explore the distinct phenotypic states of PCNSL, transcriptome-wide single-cell RNA sequencing was performed on 34,851 PCNSL cells from patients. The cell types, heterogeneity, and gene subset enrichment of PCNSL were identified. A comparison of the PCNSL cells with 21,250 normal human fetal brain (nHFB) cells was further analyzed to reveal the differences between PCNSL and normal sample. Results Six cell populations were mainly identified in the PCNSL tissue, including four types of immune cells—B cell, T cell, macrophage and dendritic cell—and two types of stromal cells: oligodendrocyte and meningeal cell. There are significant cellular interactions between B cells and several other cells. Three subpopulations of B cells indicating diffident functions were identified, as well as a small number of plasma cells. Different subtypes of T cells and dendritic cells also showed significant heterogeneity. It should be noted that, compared with normal, the gene expression and immune function of macrophages in PCNSL were significantly downregulated, which may be another important feature of PCNSL in addition to B cell lesions and may be a potential target for PCNSL therapy.
Collapse
Affiliation(s)
- Boyuan Wei
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yue Fan
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, China
| | - Shuwei Wang
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Chao Dong
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Wei Rao
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Gang Cheng
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, The First Medical Center of People's Liberation Army General (PLA) Hospital, Beijing, China
| |
Collapse
|
34
|
Zeiner PS, Mann L, Filipski K, Starzetz T, Forster MT, Ronellenfitsch MW, Steinbach JP, Mittelbronn M, Wagner M, Harter PN. Immune profile and radiological characteristics of progressive multifocal leukoencephalopathy. Eur J Neurol 2021; 29:543-554. [PMID: 34644450 DOI: 10.1111/ene.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Progressive multifocal leukoencephalopathy (PML) constitutes a severe disease with increasing incidence, mostly in the context of immunosuppressive therapies. A detailed understanding of immune response in PML appears critical for the treatment strategy. The aim was a comprehensive immunoprofiling and radiological characterization of magnetic resonance imaging (MRI) defined PML variants. METHODS All biopsy-confirmed PML patients (n = 15) treated in our department between January 2004 and July 2019 were retrospectively analysed. Data from MRI, histology as well as detailed clinical and outcome data were collected. The MRI-defined variants of classical (cPML) and inflammatory (iPML) PML were discriminated based on the intensity of gadolinium enhancement. In these PML variants, intensity and localization (perivascular vs. parenchymal) of inflammation in MRI and histology as well as the cellular composition by immunohistochemistry were assessed. The size of the demyelinating lesions was correlated with immune cell infiltration. RESULTS Patients with MRI-defined iPML showed a stronger intensity of inflammation with an increased lymphocyte infiltration on histological level. Also, iPML was characterized by a predominantly perivascular inflammation. However, cPML patients also demonstrated certain inflammatory tissue alterations. Infiltration of CD163-positive microglia and macrophage (M/M) subtypes correlated with PML lesion size. CONCLUSIONS The non-invasive MRI-based discrimination of PML variants allows for an estimation of inflammatory tissue alterations, although exhibiting limitations in MRI-defined cPML. The association of a distinct phagocytic M/M subtype with the extent of demyelination might reflect disease progression.
Collapse
Affiliation(s)
- Pia S Zeiner
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Department of Neurology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leonhard Mann
- Department of Neurology, University Hospital, Frankfurt am Main, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany.,Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Katharina Filipski
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| | - Tatjana Starzetz
- Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| | | | - Michael W Ronellenfitsch
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joachim P Steinbach
- Dr Senckenberg Institute of Neurooncology, University Hospital, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marlies Wagner
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Bander ED, Rivera M, Cisse B. The Benedict Arnold of the Central Nervous System Tumor Microenvironment? The Role of Microglia/Macrophages in Glioma. World Neurosurg 2021; 154:214-221. [PMID: 34583498 DOI: 10.1016/j.wneu.2021.06.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
The glioma microenvironment is heavily infiltrated by non-neoplastic myeloid cells, including bone marrow-derived macrophages and central nervous system-resident microglia. As opposed to executing the antitumor functions of immune surveillance, antigen presentation, and phagocytosis, these tumor-associated myeloid cells are co-opted to promote an immunosuppressive milieu and support tumor invasion and angiogenesis. This review explores evolving evidence and the research paradigms used to determine the interplay of tumor genetics, immune cell composition, and immune function in gliomas. Understanding these cells and how they are reprogrammed will be instrumental in finding new and effective treatments for these lethal tumors.
Collapse
Affiliation(s)
- Evan D Bander
- Department of Neurosurgery, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York, USA
| | - Maricruz Rivera
- Department of Neurosurgery, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York, USA
| | - Babacar Cisse
- Department of Neurosurgery, NewYork-Presbyterian/Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
36
|
Xu S, Li X, Tang L, Liu Z, Yang K, Cheng Q. CD74 Correlated With Malignancies and Immune Microenvironment in Gliomas. Front Mol Biosci 2021; 8:706949. [PMID: 34540893 PMCID: PMC8440887 DOI: 10.3389/fmolb.2021.706949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cluster of differentiation 74 (CD74) is found to be highly involved in the development of various types of cancers and could affect the activities of infiltrated cells in the tumor microenvironment. However, these studies only focus on a few types of immune cells. Our study aims to comprehensively explore the role of CD74 in glioma prognosis and immune microenvironment. Methods: A total of 40 glioma specimens were collected in this study. We extracted data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene-Expression Omnibus (GEO) databases to explore the expression pattern of CD74 in gliomas. gene sets enrichment analysis and gene set variation analysis analyses were conducted to characterize the immune features of CD74. ESTIMATE, ssGSEA, Tumor IMmune Estimation Resource, and CIBERSORT algorithms were applied to assess the immune infiltration. Kaplan-Meier analysis was used for survival analysis. Receiver operating characteristic analysis was used to evaluate the predictive accuracy of CD74 in glioma diagnosis and prognosis. Results: A total of 2,399 glioma patients were included in our study. CD74 was highly expressed in glioma tissue compared to normal brain tissue and its expression was significantly higher in the high-grade glioma compared to the lower grade glioma at transcriptional and translational levels. Besides, CD74 was positively associated with immune checkpoints and inflammatory cytokines as well as immune processes including cytokine secretion and leukocyte activation. The high expression of CD74 indicated a high infiltration of immune cells such as macrophages, dendritic cells, and neutrophils. Moreover, patients with high expression of CD74 had poor prognoses. CD74 had moderate predictive accuracy in the diagnosis of glioblastoma and prediction of survival. Conclusions: In conclusion, our study revealed that the high expression of CD74 was associated with poor prognosis and high immune infiltration. CD74 could be used as a potential target for glioma treatment and as a biomarker to predict the prognosis of glioma patients.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
37
|
Lier J, Streit WJ, Bechmann I. Beyond Activation: Characterizing Microglial Functional Phenotypes. Cells 2021; 10:cells10092236. [PMID: 34571885 PMCID: PMC8464670 DOI: 10.3390/cells10092236] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Classically, the following three morphological states of microglia have been defined: ramified, amoeboid and phagocytic. While ramified cells were long regarded as “resting”, amoeboid and phagocytic microglia were viewed as “activated”. In aged human brains, a fourth, morphologically novel state has been described, i.e., dystrophic microglia, which are thought to be senescent cells. Since microglia are not replenished by blood-borne mononuclear cells under physiological circumstances, they seem to have an “expiration date” limiting their capacity to phagocytose and support neurons. Identifying factors that drive microglial aging may thus be helpful to delay the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). Recent progress in single-cell deep sequencing methods allowed for more refined differentiation and revealed regional-, age- and sex-dependent differences of the microglial population, and a growing number of studies demonstrate various expression profiles defining microglial subpopulations. Given the heterogeneity of pathologic states in the central nervous system, the need for accurately describing microglial morphology and expression patterns becomes increasingly important. Here, we review commonly used microglial markers and their fluctuations in expression in health and disease, with a focus on IBA1 low/negative microglia, which can be found in individuals with liver disease.
Collapse
Affiliation(s)
- Julia Lier
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
- Department of Neurology, University of Leipzig, 04109 Leipzig, Germany
- Correspondence:
| | - Wolfgang J. Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA;
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
| |
Collapse
|
38
|
Emechebe U, Nelson JW, Alkayed NJ, Kaul S, Adey AC, Barnes AP. Age-dependent transcriptional alterations in cardiac endothelial cells. Physiol Genomics 2021; 53:295-308. [PMID: 34097533 PMCID: PMC8321782 DOI: 10.1152/physiolgenomics.00037.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
Aging is a significant risk factor for cardiovascular disease. Despite the fact that endothelial cells play critical roles in cardiovascular function and disease, the molecular impact of aging on this cell population in many organ systems remains unknown. In this study, we sought to determine age-associated transcriptional alterations in cardiac endothelial cells. Highly enriched populations of endothelial cells (ECs) isolated from the heart, brain, and kidney of young (3 mo) and aged (24 mo) C57/BL6 mice were profiled for RNA expression via bulk RNA sequencing. Approximately 700 cardiac endothelial transcripts significantly differ by age. Gene set enrichment analysis indicated similar patterns for cellular pathway perturbations. Receptor-ligand comparisons indicated parallel alterations in age-affected circulating factors and cardiac endothelial-expressed receptors. Gene and pathway enrichment analyses show that age-related transcriptional response of cardiac endothelial cells is distinct from that of endothelial cells derived from the brain or kidney vascular bed. Furthermore, single-cell analysis identified nine distinct EC subtypes and shows that the Apelin Receptor-enriched subtype is reduced with age in mouse heart. Finally, we identify age-dysregulated genes in specific aged cardiac endothelial subtypes.
Collapse
Affiliation(s)
- Uchenna Emechebe
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W Nelson
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Andrew C Adey
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Anthony P Barnes
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
39
|
Loreth D, Schuette M, Zinke J, Mohme M, Piffko A, Schneegans S, Stadler J, Janning M, Loges S, Joosse SA, Lamszus K, Westphal M, Müller V, Glatzel M, Matschke J, Gebhardt C, Schneider SW, Belczacka I, Volkmer B, Greinert R, Yaspo ML, Harter PN, Pantel K, Wikman H. CD74 and CD44 Expression on CTCs in Cancer Patients with Brain Metastasis. Int J Mol Sci 2021; 22:ijms22136993. [PMID: 34209696 PMCID: PMC8268634 DOI: 10.3390/ijms22136993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.
Collapse
Affiliation(s)
- Desiree Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (S.S.); (S.A.J.); (K.P.)
| | - Moritz Schuette
- Alacris Theranostics GmbH, Max-Planck-Straße 3, 12489 Berlin, Germany;
| | - Jenny Zinke
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany; (J.Z.); (P.N.H.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60528 Frankfurt am Main, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.M.); (A.P.); (K.L.); (M.W.)
| | - Andras Piffko
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.M.); (A.P.); (K.L.); (M.W.)
| | - Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (S.S.); (S.A.J.); (K.P.)
| | - Julia Stadler
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.S.); (C.G.); (S.W.S.)
| | - Melanie Janning
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.); (S.L.)
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sonja Loges
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.); (S.L.)
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (S.S.); (S.A.J.); (K.P.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.M.); (A.P.); (K.L.); (M.W.)
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.M.); (A.P.); (K.L.); (M.W.)
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Markus Glatzel
- Department of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (J.M.)
| | - Jakob Matschke
- Department of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (J.M.)
| | - Christoffer Gebhardt
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.S.); (C.G.); (S.W.S.)
| | - Stefan W. Schneider
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.S.); (C.G.); (S.W.S.)
| | - Iwona Belczacka
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (I.B.); (M.-L.Y.)
| | - Beate Volkmer
- Association of Dermatological Prevention, Germany & Centre of Dermatology, Elbe Clinics, 21614 Buxtehude, Germany; (B.V.); (R.G.)
| | - Rüdiger Greinert
- Association of Dermatological Prevention, Germany & Centre of Dermatology, Elbe Clinics, 21614 Buxtehude, Germany; (B.V.); (R.G.)
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (I.B.); (M.-L.Y.)
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany; (J.Z.); (P.N.H.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60528 Frankfurt am Main, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (S.S.); (S.A.J.); (K.P.)
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (S.S.); (S.A.J.); (K.P.)
- Correspondence: ; Tel.: +49-(407)-510-51913
| |
Collapse
|
40
|
Fan D, Yue Q, Chen J, Wang C, Yu R, Jin Z, Yin S, Wang Q, Chen L, Liao X, Peng C, Zhang J, Cao Z, Mao Y, Huang R, Chen L, Li C. Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology 2021; 10:1932061. [PMID: 34123575 PMCID: PMC8183516 DOI: 10.1080/2162402x.2021.1932061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vast majority (>90%) of glioblastoma (GBM) patients belong to the isocitrate dehydrogenase 1 wild type (IDH1WT) group which exhibits a poor prognosis with a median survival of less than 15 months. This study demonstrated numerous immunosuppressive genes as well as β-catenin gene, pivotal for Wnt/β-catenin signaling, were upregulated in 206 IDH1WT glioma patients using the Chinese Glioma Genome Atlas (CGGA) database. The increase in microglia with an immunosuppressive phenotype and the overexpression of β-catenin protein were further verified in IDH1WT GBM patients and IDH1WT GL261 glioma allografts. Subsequently, we found that IDH1WT GL261 cell-derived conditioned medium activated Wnt/β-catenin signaling in primary microglia and triggered their transition to an immunosuppressive phenotype. Blocking Wnt/β-catenin signaling not only attenuated microglial polarization to the immunosuppressive subtype but also reactivated immune responses in IDH1WT GBM allografts by simultaneously enhancing cytotoxic CD8+ T cell infiltration and downregulating regulatory T cells. Positron emission tomography imaging demonstrated enhanced proinflammatory activities in IDH1WT GBM allografts after the blockade of Wnt signaling. Finally, gavage administration of a Wnt signaling inhibitor significantly restrained tumor proliferation and improved the survival of model mice bearing IDH1WT GBM allografts. Depletion of CD8+ T cells remarkably abrogated the therapeutic efficacy induced by the Wnt signaling inhibitor. Overall, the present work indicates that the crosstalk between IDH1WT glioma cells and immunosuppressive microglia is important in maintaining the immunosuppressive glioma microenvironment. Blocking Wnt/β-catenin signaling is a promising complement for IDH1WT GBM treatment by improving the hostile immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shujie Yin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xueling Liao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Chengyuan Peng
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianpin Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruimin Huang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Yang T, Hao L, Cui R, Liu H, Chen J, An J, Qi S, Li Z. Identification of an immune prognostic 11-gene signature for lung adenocarcinoma. PeerJ 2021; 9:e10749. [PMID: 33552736 PMCID: PMC7825366 DOI: 10.7717/peerj.10749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background The immunological tumour microenvironment (TME) has occupied a very important position in the beginning and progression of non-small cell lung cancer (NSCLC). Prognosis of lung adenocarcinoma (LUAD) remains poor for the local progression and widely metastases at the time of clinical diagnosis. Our objective is to identify a potential signature model to improve prognosis of LUAD. Methods With the aim to identify a novel immune prognostic signature associated with overall survival (OS), we analysed LUADs extracted from The Cancer Genome Atlas (TCGA). Immune scores and stromal scores of TCGA-LUAD were downloaded from Estimation of STromal and Immune cells in MAlignant Tumour tissues Expression using data (ESTIMATE). LASSO COX regression was applied to build the prediction model. Then, the prognostic gene signature was validated in the GSE68465 dataset. Results The data from TCGA datasets showed patients in stage I and stage II had higher stromal scores than patients in stage IV (P < 0.05), and for immune score patients in stage I were higher than patients in stage III and stage IV (P < 0.05). The improved overall survivals were observed in high stromal score and immune score groups. Patients in the high-risk group exhibited the inferior OS (P = 2.501e − 05). By validating the 397 LUAD patients from GSE68465, we observed a better OS in the low-risk group compared to the high-risk group, which is consistent with the results from the TCGA cohort. Nomogram results showed that practical and predicted survival coincided very well, especially for 3-year survival. Conclusion We obtained an 11 immune score related gene signature model as an independent element to effectively classify LUADs into different risk groups, which might provide a support for precision treatments. Moreover, immune score may play a potential valuable sole for estimating OS in LUADs.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Lizheng Hao
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Renyun Cui
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Huanyu Liu
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Jian Chen
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Jiongjun An
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Qi
- Department of Thyroid, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Li
- Department of Hematology and Oncology, Dongzhimen Hospital, the First Clinical Medical College of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, Friedman GK, Hjelmeland AB. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021; 11:665-683. [PMID: 33391498 PMCID: PMC7738846 DOI: 10.7150/thno.41692] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironments are the result of cellular alterations in cancer that support unrestricted growth and proliferation and result in further modifications in cell behavior, which are critical for tumor progression. Angiogenesis and therapeutic resistance are known to be modulated by hypoxia and other tumor microenvironments, such as acidic stress, both of which are core features of the glioblastoma microenvironment. Hypoxia has also been shown to promote a stem-like state in both non-neoplastic and tumor cells. In glial tumors, glioma stem cells (GSCs) are central in tumor growth, angiogenesis, and therapeutic resistance, and further investigation of the interplay between tumor microenvironments and GSCs is critical to the search for better treatment options for glioblastoma. Accordingly, we summarize the impact of hypoxia and acidic stress on GSC signaling and biologic phenotypes, and potential methods to inhibit these pathways.
Collapse
|
43
|
Shi L, Rocha M, Zhang W, Jiang M, Li S, Ye Q, Hassan SH, Liu L, Adair MN, Xu J, Luo J, Hu X, Wechsler LR, Chen J, Shi Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:S49-S66. [PMID: 32438860 PMCID: PMC7687039 DOI: 10.1177/0271678x20925655] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
Senescence-associated alterations in microglia may have profound impact on cerebral homeostasis and stroke outcomes. However, the lack of a transcriptome-wide comparison between young and aged microglia in the context of ischemia limits our understanding of aging-related mechanisms. Herein, we performed RNA sequencing analysis of microglia purified from cerebral hemispheres of young adult (10-week-old) and aged (18-month-old) mice five days after distal middle cerebral artery occlusion or after sham operation. Considerable transcriptional differences were observed between young and aged microglia in healthy brains, indicating heightened chronic inflammation in aged microglia. Following stroke, the overall transcriptional activation was more robust (>13-fold in the number of genes upregulated) in young microglia than in aged microglia. Gene clusters with functional implications in immune inflammatory responses, immune cell chemotaxis, tissue remodeling, and cell-cell interactions were markedly activated in microglia of young but not aged stroke mice. Consistent with the genomic profiling predictions, post-stroke cerebral infiltration of peripheral immune cells was markedly decreased in aged mice compared to young mice. Moreover, post-ischemic aged microglia demonstrated reduced interaction with neighboring neurons and diminished polarity toward the infarct lesion. These alterations in microglial gene response and behavior may contribute to aging-driven vulnerability and poorer recovery after ischemic stroke.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Rocha
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenting Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sicheng Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Ye
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sulaiman H Hassan
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqiang Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maya N Adair
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Lei X, Chen X, Quan Y, Tao Y, Li J. Targeting CYP2J2 to Enhance the Anti-Glioma Efficacy of Cannabinoid Receptor 2 Stimulation by Inhibiting the Pro-Angiogenesis Function of M2 Microglia. Front Oncol 2020; 10:574277. [PMID: 33330047 PMCID: PMC7729163 DOI: 10.3389/fonc.2020.574277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancing the therapeutic efficacy of anti-tumor drugs is essential for cancer management. Although cannabinoid receptor 2 (CB2R) stimulation exerts anti-tumor action in glioma cells by regulating cellular proliferation, differentiation, or apoptosis, selective CB2R agonist alone does not achieve a satisfactory therapeutic outcome. Herein, we aimed to evaluate the possible strategy for enhancing the anti-glioma efficacy of JWH133, a selective CB2R agonist. In this study, immunofluorescence and qRT-PCR were used to investigate microglia polarization. Tumor growth was monitored via bioluminescent imaging using the IVIS Spectrum System. The angiogenesis of human brain microvascular endothelial cells (HBMECs) was detected by the tube formation assay. qRT-PCR was used to investigate cytochrome P450 2J2 (CYP2J2) and 11,12-epoxyeicosatrienoic acid (11,12-EET) expression. Our results showed that administration of JWH133 significantly promoted microglial M2 polarization both in vitro and in vivo. The medium supernatant of M2 microglia induced by JWH133 treatment facilitated angiogenesis of HBMECs. CYP2J2 expression and 11,12-EET release in the supernatant of JWH133-induced M2 microglia were significantly upregulated. Treatment with 11,12-EET prompted HBMEC angiogenesis and glioma growth. CYP2J2 knockdown restrained the release of 11,12-EET and significantly enhanced the anti-tumor effect of JWH133 on glioma. This study showed that targeting CYP2J2 might be a beneficial strategy to enhance the anti-glioma efficacy of JWH133 by inhibiting the pro-angiogenesis function of M2 microglia.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulian Quan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junlong Li
- Office of Scientific Research Administration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
45
|
Caruso FP, Garofano L, D'Angelo F, Yu K, Tang F, Yuan J, Zhang J, Cerulo L, Pagnotta SM, Bedognetti D, Sims PA, Suvà M, Su XD, Lasorella A, Iavarone A, Ceccarelli M. A map of tumor-host interactions in glioma at single-cell resolution. Gigascience 2020; 9:giaa109. [PMID: 33155039 PMCID: PMC7645027 DOI: 10.1093/gigascience/giaa109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. RESULTS We present a novel method, single-cell Tumor-Host Interaction tool (scTHI), to identify significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand-receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. CONCLUSIONS Our results provide a complete map of the active tumor-host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.
Collapse
Affiliation(s)
- Francesca Pia Caruso
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80128 Naples, Italy
- Bioinformatics Lab, BIOGEM, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Luciano Garofano
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80128 Naples, Italy
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Fulvio D'Angelo
- Bioinformatics Lab, BIOGEM, Via Camporeale, 83031 Ariano Irpino, Italy
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Kai Yu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, 100871 Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, 100871 Beijing, China
| | - Jinzhou Yuan
- Department of Science and Technologies, Università degli Studi del Sannio, Via de Sanctis, 82100 Benevento, Italy
- Cancer Program, Sidra Medicine, Al Luqta Street, Zone 52, Education City, 26999, Doha Qatar
| | - Jing Zhang
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Luigi Cerulo
- Bioinformatics Lab, BIOGEM, Via Camporeale, 83031 Ariano Irpino, Italy
- Department of Science and Technologies, Università degli Studi del Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Stefano M Pagnotta
- Department of Science and Technologies, Università degli Studi del Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Al Luqta Street, Zone 52, Education City, 26999, Doha Qatar
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Viale Benedetto XV 10, 16132 Genoa, Italy
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York , NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Mario Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
| | - Xiao-Dong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, 100871 Beijing, China
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Ave, New York , NY 10032 USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Ave, New York , NY 10032 USA
- Department of Neurology, Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80128 Naples, Italy
- Bioinformatics Lab, BIOGEM, Via Camporeale, 83031 Ariano Irpino, Italy
| |
Collapse
|
46
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, Vom Berg J, Hutter G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front Immunol 2020; 11:571951. [PMID: 33117364 PMCID: PMC7552736 DOI: 10.3389/fimmu.2020.571951] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.
Collapse
Affiliation(s)
- Tomás A Martins
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Steven Zanganeh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
47
|
Immunotherapy for Glioblastoma: Current State, Challenges, and Future Perspectives. Cancers (Basel) 2020; 12:cancers12092334. [PMID: 32824974 PMCID: PMC7565291 DOI: 10.3390/cancers12092334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most lethal intracranial primary malignancy by no optimal treatment option. Cancer immunotherapy has achieved remarkable survival benefits against various advanced tumors, such as melanoma and non-small-cell lung cancer, thus triggering great interest as a new therapeutic strategy for glioblastoma. Moreover, the central nervous system has been rediscovered recently as a region for active immunosurveillance. There are vibrant investigations for successful glioblastoma immunotherapy despite the fact that initial clinical trial results are somewhat disappointing with unique challenges including T-cell dysfunction in the patients. This review will explore the potential of current immunotherapy modalities for glioblastoma treatment, especially focusing on major immune checkpoint inhibitors and the future strategies with novel targets and combo therapies. Immune-related adverse events and clinical challenges in glioblastoma immunotherapy are also summarized. Glioblastoma provides persistent difficulties for immunotherapy with a complex state of patients’ immune dysfunction and a variety of constraints in drug delivery to the central nervous system. However, rational design of combinational regimens and new focuses on myeloid cells and novel targets to circumvent current limitations hold promise to advent truly viable immunotherapy for glioblastoma.
Collapse
|
48
|
Chai X, Zhang W, Li L, Wu Y, Zhu X, Zhao S. Profile of MIF in Developing Hippocampus: Association With Cell Proliferation and Neurite Outgrowth. Front Mol Neurosci 2020; 13:147. [PMID: 32903462 PMCID: PMC7434973 DOI: 10.3389/fnmol.2020.00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and has been found involved in many neurological diseases such as Alzheimer disease (AD), epilepsy, and multiple sclerosis. Previous studies have shown that MIF is expressed in neocortex, hippocampus, hypothalamus, cerebellum, and spinal cord in adult mice. It is expressed by astrocytes and activates microglias in neuroinflammation. Further studies have shown that MIF is detected in moss fibers of dentate granule cells and in apical dendrites of pyramidal neurons in adult hippocampus. Only NeuroD-positive immature granule neurons but not NeuN-positive mature neurons express MIF. These findings led us eager to know the exact role of MIF in the development of hippocampus. Therefore, we systematically checked the spatial and temporal expression pattern of MIF and characterized MIF-positive cells in hippocampus from mice aged from postnatal day 0 (P0) to 3 months. Our results showed that the lowest level of MIF protein occurred at P7 and mif mRNA increased from P0, reached a peak at P7, and stably expressed until P30 before declining dramatically at 3 months. MIF was localized in fibers of GFAP- and BLBP-positive radial glial precursor cells in dentate gyrus (DG). DCX-expressing newly generated neurons were MIF-negative. Inhibition of MIF by MIF antagonist S, R-3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) reduced BrdU-positive cells. Interestingly, MIF was expressed by NeuN-positive GABAergic interneurons including parvalbumin-and Reelin-expressing cells in the DG. Neither NeuN-positive granule cells nor NeuN-positive pyramidal neurons expressed MIF. In transgenic mice, POMC-EGFP–positive immature dentate granule cells and Thy1-EGFP–positive mature granule cells were MIF-negative. Treatment of neuronal cultures with ISO-1 inhibited neurite outgrowth. Therefore, we conclude that MIF might be important for feature maintenance of neural stem cells and neurite outgrowth during hippocampal development.
Collapse
Affiliation(s)
- Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Cellular Plasticity and Tumor Microenvironment in Gliomas: The Struggle to Hit a Moving Target. Cancers (Basel) 2020; 12:cancers12061622. [PMID: 32570988 PMCID: PMC7352204 DOI: 10.3390/cancers12061622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Brain tumors encompass a diverse group of neoplasias arising from different cell lineages. Tumors of glial origin have been the subject of intense research because of their rapid and fatal progression. From a clinical point of view, complete surgical resection of gliomas is highly difficult. Moreover, the remaining tumor cells are resistant to traditional therapies such as radio- or chemotherapy and tumors always recur. Here we have revised the new genetic and epigenetic classification of gliomas and the description of the different transcriptional subtypes. In order to understand the progression of the different gliomas we have focused on the interaction of the plastic tumor cells with their vasculature-rich microenvironment and with their distinct immune system. We believe that a comprehensive characterization of the glioma microenvironment will shed some light into why these tumors behave differently from other cancers. Furthermore, a novel classification of gliomas that could integrate the genetic background and the cellular ecosystems could have profound implications in the efficiency of current therapies as well as in the development of new treatments.
Collapse
|
50
|
Cai Y, Dai Y, Wang Y, Yang Q, Guo J, Wei C, Chen W, Huang H, Zhu J, Zhang C, Zheng W, Wen Z, Liu H, Zhang M, Xing S, Jin Q, Feng CG, Chen X. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine 2020; 53:102686. [PMID: 32114394 PMCID: PMC7047188 DOI: 10.1016/j.ebiom.2020.102686] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Tuberculosis (TB) continues to be a critical global health problem, which killed millions of lives each year. Certain circulating cell subsets are thought to differentially modulate the host immune response towards Mycobacterium tuberculosis (Mtb) infection, but the nature and function of these subsets is unclear. Methods Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls (HC), latent tuberculosis infection (LTBI) and active tuberculosis (TB) and then subjected to single-cell RNA sequencing (scRNA-seq) using 10 × Genomics platform. Unsupervised clustering of the cells based on the gene expression profiles using the Seurat package and passed to tSNE for clustering visualization. Flow cytometry was used to validate the subsets identified by scRNA-Seq. Findings Cluster analysis based on differential gene expression revealed both known and novel markers for all main PBMC cell types and delineated 29 cell subsets. By comparing the scRNA-seq datasets from HC, LTBI and TB, we found that infection changes the frequency of immune-cell subsets in TB. Specifically, we observed gradual depletion of a natural killer (NK) cell subset (CD3-CD7+GZMB+) from HC, to LTBI and TB. We further verified that the depletion of CD3-CD7+GZMB+ subset in TB and found an increase in this subset frequency after anti-TB treatment. Finally, we confirmed that changes in this subset frequency can distinguish patients with TB from LTBI and HC. Interpretation We propose that the frequency of CD3-CD7+GZMB+ in peripheral blood could be used as a novel biomarker for distinguishing TB from LTBI and HC. Fund The study was supported by Natural Science Foundation of China (81770013, 81525016, 81772145, 81871255 and 91942315), National Science and Technology Major Project (2017ZX10201301), Science and Technology Project of Shenzhen (JCYJ20170412101048337) and Guangdong Provincial Key Laboratory of Regional Immunity and Diseases (2019B030301009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Youchao Dai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China; Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Yejun Wang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Qianqing Yang
- Guangdong Key Lab for Diagnosis &Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518000, China
| | - Jiubiao Guo
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Cailing Wei
- Guangdong Key Lab for Diagnosis &Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518000, China
| | - Weixin Chen
- Guangdong Key Lab for Diagnosis &Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518000, China
| | - Huanping Huang
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Jialou Zhu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Chi Zhang
- Shenzhen University General Hospital, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Weidong Zheng
- Shenzhen University General Hospital, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Zhihua Wen
- Yuebei Second People's Hospital, Shaoguan 512000, China
| | - Haiying Liu
- The MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Mingxia Zhang
- Guangdong Key Lab for Diagnosis &Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518000, China
| | - Shaojun Xing
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| | - Qi Jin
- The MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Carl G Feng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China; Department of Infectious Diseases and Immunology, Sydney Medical School, the University of Sydney, Sydney, NSW 2006, Australia
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China.
| |
Collapse
|