1
|
Daniel Estrella L, Trease AJ, Sheldon L, Roland NJ, Fox HS, Stauch KL. Tau association with synaptic mitochondria coincides with energetic dysfunction and excitatory synapse loss in the P301S tauopathy mouse model. Neurobiol Aging 2025; 147:163-175. [PMID: 39778459 DOI: 10.1016/j.neurobiolaging.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Neurodegenerative Tauopathies are a part of several neurological disorders and aging-related diseases including, but not limited to, Alzheimer's Disease, Frontotemporal Dementia with Parkinsonism, and Chronic Traumatic Encephalopathy. The major hallmarks present in these conditions include Tau pathology (composed of hyperphosphorylated Tau tangles) and synaptic loss. in vivo studies linking Tau pathology and mitochondrial alterations at the synapse, an avenue that could lead to synaptic loss, remain predominantly scarce. For this reason, using 3-month-old wild-type and human mutant Tau P301S transgenic mice, we investigated the association of Tau with mitochondria, synaptosome bioenergetics, and characterized excitatory synaptic loss across hippocampal regions (Dentate Gyrus, perisomatic CA3, and perisomatic CA1) and in the parietal cortex. We found a significant loss of excitatory synapses in the parietal cortex and hippocampal Dentate Gyrus (DG) of Tau P301S mice. Furthermore, we found that Tau (total and disease-relevant phosphorylated Tau) associates with both the non-synaptic and synaptic mitochondria of Tau P301S mice and this coincided with synaptic mitochondrial dysfunction. The findings presented here suggest that Tau associates with mitochondria at the synapse, leading to synaptic mitochondrial dysfunction, and likely contributing to synaptic loss.
Collapse
Affiliation(s)
- L Daniel Estrella
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Andrew J Trease
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Lexi Sheldon
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Nashanthea J Roland
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Howard S Fox
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA
| | - Kelly L Stauch
- University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA.
| |
Collapse
|
2
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Aikio M, Odeh HM, Wobst HJ, Lee BL, Chan Ú, Mauna JC, Mack KL, Class B, Ollerhead TA, Ford AF, Barbieri EM, Cupo RR, Drake LE, Smalley JL, Lin YT, Lam S, Thomas R, Castello N, Baral A, Beyer JN, Najar MA, Dunlop J, Gitler AD, Javaherian A, Kaye JA, Burslem GM, Brown DG, Donnelly CJ, Finkbeiner S, Moss SJ, Brandon NJ, Shorter J. Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy. Cell Rep 2025; 44:115205. [PMID: 39817908 DOI: 10.1016/j.celrep.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we show that p38α MAPK inhibition reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. Remarkably, p38α MAPK inhibition mitigates aberrant TDP-43 phenotypes in diverse ALS patient-derived motor neurons. p38α MAPK phosphorylates TDP-43 at pathological S409/S410 and S292, which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we establish that PRMT1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. Notably, R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote PRMT1-mediated R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Mari Aikio
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Úna Chan
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Korrie L Mack
- Neumora Therapeutics, Watertown, MA 02472, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Class
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Thomas A Ollerhead
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L Smalley
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Yuan-Ta Lin
- Neumora Therapeutics, Watertown, MA 02472, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicholas Castello
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ashmita Baral
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jenna N Beyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohd A Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Dunlop
- Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Deparments of Neurology and Physiology, Neuroscience Graduate Program and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Graham NS, Blissitt G, Zimmerman K, Orton L, Friedland D, Coady E, Laban R, Veleva E, Heslegrave AJ, Zetterberg H, Schofield S, Fear NT, Boos CJ, Bull AMJ, Bennett A, Sharp DJ. Poor long-term outcomes and abnormal neurodegeneration biomarkers after military traumatic brain injury: the ADVANCE study. J Neurol Neurosurg Psychiatry 2025; 96:105-113. [PMID: 39393903 DOI: 10.1136/jnnp-2024-333777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is common in military campaigns and is a risk factor for dementia. ArmeD SerVices TrAuma and RehabilitatioN OutComE-TBI (ADVANCE-TBI) aims to ascertain neurological outcomes in UK military personnel with major battlefield trauma, leveraging advances in quantification of axonal breakdown markers like neurofilament light (NfL), and astroglial marker glial fibrillar acidic protein (GFAP) in blood. We aimed to describe the causes, prevalence and consequences of TBI, and its fluid biomarker associations. METHODS TBI history was ascertained in 1145 servicemen and veterans, of whom 579 had been exposed to major trauma. Functional and mental health assessments were administered, and blood samples were collected approximately 8 years postinjury, with plasma biomarkers quantified (n=1125) for NfL, GFAP, total tau, phospho-tau181, amyloid-β 42 and 40. Outcomes were related to neurotrauma exposure. RESULTS TBI was present in 16.9% (n=98) of exposed participants, with 46.9% classified as mild-probable and 53.1% classified as moderate to severe. Depression (β=1.65, 95% CI (1.33 to 2.03)), anxiety (β=1.65 (1.34 to 2.03)) and post-traumatic stress disorder (β=1.30 (1.19 to 1.41)) symptoms were more common after TBI, alongside poorer 6 minute walk distance (β=0.79 (0.74 to 0.84)) and quality of life (β=1.27 (1.19 to 1.36), all p<0.001). Plasma GFAP was 11% (95% CI 2 to 21) higher post-TBI (p=0.013), with greater concentrations in moderate-to-severe injuries (47% higher than mild-probable (95% CI 20% to 82%, p<0.001). Unemployment was more common among those with elevated GFAP levels post-TBI, showing a 1.14-fold increase (95% CI 1.03 to 1.27, p<0.001) for every doubling in GFAP concentration. CONCLUSIONS TBI affected nearly a fifth of trauma-exposed personnel, related to worse mental health, motor and functional outcomes, as well as elevated plasma GFAP levels 8 years post-injury. This was absent after extracranial trauma, and showed a dose-response relationship with the severity of the injury.
Collapse
Affiliation(s)
- Neil Sn Graham
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, London, UK
| | - Grace Blissitt
- Department of Brain Sciences, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, London, UK
| | - Lydia Orton
- Department of Brain Sciences, Imperial College London, London, UK
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
| | - Emma Coady
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Rhiannon Laban
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Elena Veleva
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Institute of Neuroscience and Physiology, Goteborgs Universitet, Goteborg, Sweden
| | - Susie Schofield
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicola T Fear
- King's Centre for Military Health Research, King's College London, London, UK
- Academic Department for Military Mental Health, King's College London, London, UK
| | - Christopher J Boos
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Faculty of Health & Social Sciences, Bournemouth University, Poole, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Alexander Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology, UK Dementia Research Institute, London, UK
| |
Collapse
|
5
|
Qi B, Guan L, Tan J, Li G, Sun Y, Zhang Q, Zou Y. Identification of novel tau positron emission tomography tracers for chronic traumatic encephalopathy by comprehensive in silico screening and molecular dynamics simulation. Phys Chem Chem Phys 2025; 27:754-767. [PMID: 39655528 DOI: 10.1039/d4cp03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive mild traumatic brain injury, is characterized neuropathologically by abnormal hyperphosphorylated tau accumulation. Early detection of tau deposition in the brain is crucial for the prevention and evaluation of CTE. Positron emission tomography (PET) tracers can image specific proteins, while the optimal PET tracer for CTE tau fibrils remains unidentified. In this study, structure-based virtual screening and CNS PET MPO algorithms were utilized to identify candidates for novel tau PET tracers from 23 000 compounds in the ChemDiv CNS BBB library. A total of 8 μs molecular dynamics simulations were then employed to evaluate their binding affinity and atomic-level interaction with CTE tau protofibrils. The results indicate that V017-7820 (CNS-4), S776-0061 (CNS-12), S567-0465 (CNS-18), and T828-0465 (CNS-25) exhibit higher docking scores and binding free energies with CTE tau protofibrils while also satisfying the fundamental physicochemical properties of PET tracers. Further simulation analyses reveal that CNS-4 has the strongest binding affinity to tau protofibrils among the four compounds. Hydrophobic, π-π stacking, and hydrogen bonding interactions are the primary driving forces for the binding of these compounds to CTE tau protofibrils. In particular, CNS-12 and CNS-25 exhibit more intense hydrophobic and π-π stacking interactions, whereas CNS-4 and CNS-25 exhibit stronger hydrogen bonding interactions. This study identifies promising lead compounds for tau PET tracers and highlights their mechanism of binding to CTE tau protofibrils, which provides new insights for further screening and development of novel PET tracers for CTE diagnosis.
Collapse
Affiliation(s)
- Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gengchen Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Dybing KM, Vetter CJ, Dempsey DA, Chaudhuri S, Saykin AJ, Risacher SL. Traumatic Brain Injury and Alzheimer's Disease Biomarkers: A Systematic Review of Findings from Amyloid and Tau Positron Emission Tomography. J Neurotrauma 2024. [PMID: 39639808 DOI: 10.1089/neu.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Traumatic brain injury (TBI) has been discussed as a risk factor for Alzheimer's disease (AD) due to its association with AD risk and earlier cognitive symptom onset. However, the mechanisms behind this relationship are unclear. Some studies have suggested TBI may increase pathological protein deposition in an AD-like pattern; others have failed to find such associations. This review covers literature that uses positron emission tomography (PET) of β-amyloid (Aβ) and/or tau to examine individuals with a history of TBI who are at increased risk for AD due to age. A comprehensive literature search was conducted on January 9, 2023, and 26 resulting citations met inclusion criteria. Common methodological concerns included small samples, limited clinical detail about participants' TBI, recall bias due to reliance on self-reported TBI, and an inability to establish causation. For both Aβ and tau, results were widespread but inconsistent. The regions that showed the most compelling evidence for increased Aβ deposition were the cingulate gyrus and cuneus/precuneus. Evidence for elevated tau was strongest in the medial temporal lobe, entorhinal cortex, precuneus, and frontal, temporal, parietal, and occipital lobes. However, conflicting findings across most regions in both Aβ- and tau-PET studies indicate the critical need for future work in expanded samples and with greater clinical detail to offer a clearer picture of the relationship between TBI and protein deposition in older individuals at risk for AD.
Collapse
Affiliation(s)
| | - Cecelia J Vetter
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, USA
| | - Desarae A Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
10
|
Nicks R, Shah A, Stathas SA, Kirsch D, Horowitz SM, Saltiel N, Calderazzo SM, Butler MLMD, Cormier KA, Aytan N, Tu-Zahra F, Mathias R, Faheem F, Marcus S, Spurlock E, Fishbein L, Esnault CD, Boden A, Rosen G, Xia W, Daley S, Meng G, Martin BR, Daneshvar DH, Nowinski CJ, Alosco ML, Mez J, Tripodis Y, Huber BR, Alvarez VE, Cherry JD, McKee AC, Stein TD. Neurodegeneration in the cortical sulcus is a feature of chronic traumatic encephalopathy and associated with repetitive head impacts. Acta Neuropathol 2024; 148:79. [PMID: 39643767 PMCID: PMC11624223 DOI: 10.1007/s00401-024-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Neurodegeneration is a seminal feature of many neurological disorders. Chronic traumatic encephalopathy (CTE) is caused by repetitive head impacts (RHI) and is characterized by sulcal tau pathology. However, quantitative assessments of regional neurodegeneration in CTE have not been described. In this study, we quantified three key neurodegenerative measures, including cortical thickness, neuronal density, and synaptic proteins, in contact sport athletes (n = 185) and non-athlete controls (n = 52) within the sulcal depth, middle, and gyral crest of the dorsolateral frontal cortex. Cortical thickness and neuronal density were decreased within the sulcus in CTE compared to controls (p's < 0.05). Measurements of synaptic proteins within the gyral crest showed a reduction of α-synuclein with CTE stage (p = 0.002) and variable changes in PSD-95 density. After adjusting for age, multiple linear regression models demonstrated a strong association between the duration of contact sports play and cortical thinning (p = 0.001) and neuronal loss (p = 0.032) within the sulcus. Additional regression models, adjusted for tau pathology, suggest that within the sulcus, the duration of play was associated with neuronal loss predominantly through tau pathology. In contrast, the association of duration of play with cortical thinning was minimally impacted by tau pathology. Overall, CTE is associated with cortical atrophy and a predominant sulcal neurodegeneration. Furthermore, the duration of contact sports play is associated with measures of neurodegeneration that are more severe in the cortical sulcus and may occur through tau-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Arsal Shah
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Spiro Anthony Stathas
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Daniel Kirsch
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah M Horowitz
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Samantha M Calderazzo
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Morgane L M D Butler
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tu-Zahra
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Farwa Faheem
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | | | - Elizabeth Spurlock
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Lucas Fishbein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Camille D Esnault
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Alexandra Boden
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
| | - Grace Rosen
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Weiming Xia
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Biological Sciences, Kennedy College of Science, University of Massachusetts, Lowell, MA, USA
| | - Sarah Daley
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | | | - Brett R Martin
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston Chobanian & Avedisian University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
de Sena Barbosa MG, Francisco GGDOA, de Souza RLV, de Souza JMA, Almeida Carneiro R, Rabelo NN, Chaurasia B. Chronic traumatic encephalopathy in athletes, players, boxers and military: systematic review. Ann Med Surg (Lond) 2024; 86:7238-7247. [PMID: 39649931 PMCID: PMC11623818 DOI: 10.1097/ms9.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
The objective of the study was to demonstrate whether athletes, players, boxers and military personnel can really be victims of Chronic traumatic encephalopathy (CTE), and to elucidate this pathology. In 53 articles, 14 were selected for qualitative synthesis in the results table that addresses CTE in football, soccer and rugby players, boxers and the military. Neuropathologically, CTE shows cerebral atrophy, a pelvic septum cavity with fenestrations, dense diffuse immunoreactive inclusions and a TDP-43 proteinopathy. Microscopically, there are extensive neurofibrillary tangles and spindle-shaped neurites throughout the brain. Thus, CTE is characterized by being a distinct tauopathy and with a clear environmental etiology. American football players, boxers and the military are more likely to trigger CET, due to the constant mechanical shocks from their heads. The most frequent clinical manifestations were: headache, aggressiveness, dementia, executive dysfunction and suicide. CET is definitely diagnosed only at autopsy, there is no specific treatment for it, but support and safety measures can help the patient. Advances to definitively diagnose CTE in living people and specific treatment for this disease are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birginj, Nepal
| |
Collapse
|
12
|
Rigo YR, Benvenutti R, Portela LV, Strogulski NR. Neurogenic potential of NG2 in neurotrauma: a systematic review. Neural Regen Res 2024; 19:2673-2683. [PMID: 38595286 PMCID: PMC11168526 DOI: 10.4103/nrr.nrr-d-23-01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024] Open
Abstract
Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.
Collapse
Affiliation(s)
- Yuri R. Rigo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Luis V. Portela
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nathan R. Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Arciniega H, Baucom ZH, Tuz-Zahra F, Tripodis Y, John O, Carrington H, Kim N, Knyazhanskaya EE, Jung LB, Breedlove K, Wiegand TLT, Daneshvar DH, Rushmore RJ, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Koerte IK, Lin AP, Cummings JL, Reiman EM, Stern RA, Shenton ME, Bouix S. Brain morphometry in former American football players: findings from the DIAGNOSE CTE research project. Brain 2024; 147:3596-3610. [PMID: 38533783 PMCID: PMC11449133 DOI: 10.1093/brain/awae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Exposure to repetitive head impacts in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE), which currently can be diagnosed only at post-mortem. American football players are at higher risk of developing CTE given their exposure to repetitive head impacts. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at post-mortem in living individuals using structural MRI. MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 54, age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each traumatic encephalopathy syndrome (TES) diagnosis, core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula, temporal pole and superior frontal gyrus. Post hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus, amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe Age × Group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggested that MRI morphometrics detect abnormalities in individuals with a history of repetitive head impact exposure that resemble the anatomic distribution of pathological findings from post-mortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggested that brain morphometry must be complemented by other types of measures to characterize individuals with repetitive head impacts.
Collapse
Affiliation(s)
- Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Zachary H Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Omar John
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Nicholas Kim
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Evdokiya E Knyazhanskaya
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Katherine Breedlove
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02115, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
| | - R Jarrett Rushmore
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Laura J Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10017, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, 82152 Munich, Bavaria, Germany
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Eric M Reiman
- Banner Alzheimer’s Institute and Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ 85004, USA
- Department of Psychiatry, Arizona State University, Phoenix, AZ 85008, USA
- Neurogenomics Division, Translational Genomics Research Institute and Alzheimer’s Consortium, Phoenix, AZ 85004, USA
| | - Robert A Stern
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada
| |
Collapse
|
16
|
McGlennon TW, Roberts A, Buchwald JN, Pories WJ, Ahnfeldt EP, Perryman S, Greimel S, Buchwald H. Metabolic Surgery and Chronic Traumatic Encephalopathy: Perceptions of Former NFL Players. Obes Surg 2024; 34:3703-3716. [PMID: 39292334 DOI: 10.1007/s11695-024-07475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Chronic traumatic encephalopathy (CTE) has been diagnosed in 91.7% of retired United States National Football League (NFL) players at postmortem. There is no treatment or cure for CTE. Most living former NFL athletes with probable CTE suffer from obesity and its comorbidities. Our previous reviews document the improvement in cognition following metabolic/bariatric surgery (MBS) (e.g., gastric bypass, sleeve gastrectomy). These operations might reduce microglial maladaptive states, thereby attenuating neurodegeneration and CTE-like neurocognitive impairment. The study evaluated former NFL players' views on metabolic surgery in relation to reduction of obesity and CTE risk. MATERIALS AND METHODS An online multiple-choice questionnaire (30 items, 125 response options, 10-min completion) developed in the Research Electronic Data Capture (REDCap) system was sent to 1,014 athletes screened in 2017-2022 by the Living Heart Foundation. RESULTS From 2/2022 to 7/2023, of 700 surveys opened, 72 (10.3%) of the retired players responded. Mean age was 61.6 ± 12.6 years; 45.0% had the disease of obesity with a mean BMI 35.5 ± 4.6 kg/m2. Thirty-three percent reported ≥ 2 obesity-related comorbidities; 40.3% memory-related TBI symptoms; 66.7% ≥ 1 cognitive symptom; 85.0% believed MBS was safe and effective but were unlikely to elect MBS for weight management. Yet, 57.0% of the entire cohort, and 68.8% of players with obesity were more likely to elect MBS if it could also reduce CTE risk. CONCLUSIONS Results of the study bode well for future research recruitment. Most surveyed retired NFL players with obesity believed MBS to be effective and would be more likely to undergo MBS if it also reduced CTE risk.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, Psychometric Research Analyst, McGlennon MotiMetrics, w4457 120th, Avenue, Maiden Rock, WI, USA.
| | | | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | | | - Sue Greimel
- Aerobic Exercise/Alzheimer's Disease Study, University of Minnesota, Minneapolis, MN, USA
| | - Henry Buchwald
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
17
|
Arciniega H, Jung LB, Tuz-Zahra F, Tripodis Y, John O, Kim N, Carrington HW, Knyazhanskaya EE, Chamaria A, Breedlove K, Wiegand TLT, Daneshvar D, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Lin AP, Koerte IK, Cummings JL, Reiman EM, Stern RA, Bouix S, Shenton ME. Cavum Septum Pellucidum in Former American Football Players: Findings From the DIAGNOSE CTE Research Project. Neurol Clin Pract 2024; 14:e200324. [PMID: 39161749 PMCID: PMC11332980 DOI: 10.1212/cpj.0000000000200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 08/21/2024]
Abstract
Background and Objectives Exposure to repetitive head impacts (RHI) is linked to the development of chronic traumatic encephalopathy (CTE), which can only be diagnosed at post-mortem. The presence of a cavum septum pellucidum (CSP) is a common finding in post-mortem studies of confirmed CTE and in neuroimaging studies of individuals exposed to RHI. This study examines CSP in living former American football players, investigating its association with RHI exposure, traumatic encephalopathy syndrome (TES) diagnosis, and provisional levels of certainty for CTE pathology. Methods Data from the DIAGNOSE CTE Research Project were used to compare the presence and ratio of CSP in former American football players (n = 175), consisting of former college (n = 58) and former professional players (n = 117), and asymptomatic unexposed controls without RHI exposure (n = 55). We further evaluated potential associations between CSP measures and cumulative head impact index (CHII) measures (frequency, linear acceleration, and rotational force), a TES diagnosis (yes/no), and a provisional level of certainty for CTE pathology (suggestive, possible, and probable). Results Former American football players exhibited a higher CSP presence and ratio than unexposed asymptomatic controls. Among player subgroups, professional players showed a greater CSP ratio than former college players and unexposed asymptomatic controls. Among all football players, CHII rotational forces correlated with an increased CSP ratio. No significant associations were found between CSP measures and diagnosis of TES or provisional levels of certainty for CTE pathology. Discussion This study confirms previous findings, highlighting a greater prevalence of CSP and a greater CSP ratio in former American football players compared with unexposed asymptomatic controls. In addition, former professional players showed a greater CSP ratio than college players. Moreover, the relationship between estimates of CHII rotational forces and CSP measures suggests that cumulative frequency and strength of rotational forces experienced in football are associated with CSP. However, CSP does not directly correlate with TES diagnosis or provisional levels of certainty for CTE, indicating that it may be a consequence of RHI associated with rotational forces. Further research, especially longitudinal studies, is needed for confirmation and to explore changes over time.
Collapse
Affiliation(s)
- Hector Arciniega
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Leonard B Jung
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Fatima Tuz-Zahra
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Yorghos Tripodis
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Omar John
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Nicholas Kim
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Holly W Carrington
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Evdokiya E Knyazhanskaya
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Arushi Chamaria
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Katherine Breedlove
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Tim L T Wiegand
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Daniel Daneshvar
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Tashrif Billah
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Ofer Pasternak
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Michael J Coleman
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Charles H Adler
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Charles Bernick
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Laura J Balcer
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Michael L Alosco
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Alexander P Lin
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Inga K Koerte
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Jeffrey L Cummings
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Eric M Reiman
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Robert A Stern
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Sylvain Bouix
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Martha E Shenton
- Department of Rehabilitation Medicine (HA, OJ), New York University Grossman School of Medicine, New York, NY; NYU Concussion Center (HA), NYU Langone Health, New York, NY; Psychiatry Neuroimaging Laboratory (HA, LBJ, OJ, NK, HWC, EK, AC, TLTW, TB, OP, MJC, IKK, SB, MES), Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; cBRAIN (LBJ, TLTW, IKK), Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universit¨at, Munich, Germany; Department of Biostatistics (FT-Z, YT), Boston University School of Public Health Boston, MA; Center for Clinical Spectroscopy (KB, APL), Department of Radiology, Brigham and Women's Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Harvard Medical School Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Massachusetts General Hospital Boston, MA; Department of Physical Medicine and Rehabilitation (DD), Spaulding Rehabilitation Hospital, Cambridge, MA; Department of Radiology (OP, APL, MES), Brigham and Women's Hospital, Harvard Medical School Boston, MA; Department of Psychiatry (OP, IKK, MES), Massachusetts General Hospital Boston, MA; Department of Neurology (CHA), Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV (CB); Department of Neurology (CB), University of Washington, Seattle, WA; Department of Neurology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Population Health (LJB), New York University Grossman School of Medicine, New York, NY; Department of Ophthalmology (LJB), New York University Grossman School of Medicine, New York, NY; Department of Neurology (MLA, RAS), Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA; Graduate School of Systemic Neurosciences (IKK), Ludwig-Maximilians-Universität, Munich, Germany; Chambers-Grundy Center for Transformative Neuroscience (JLC), Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV; Banner Alzheimer's Institute and Arizona Alzheimer's Consortium (EMR), Phoenix, AZ; Department of Psychiatry (EMR), University of Arizona, Tucson, AZ; Department of Psychiatry (EMR), Arizona State University, Phoenix, AZ; Neurogenomics Division (EMR), Translational Genomics Research Institute and Alzheimer's Consortium, Phoenix, AZ; Department of Anatomy and Neurobiology (RAS); Department of Neurosurgery (RAS), Boston University Chobanian & Avedisian School of Medicine, Boston, MA; and Department of Software Engineering and Information Technology (SB), École de technologie supérieure, Université du Québec, Montreal, Canada
| |
Collapse
|
18
|
Justin GA, Winslow L, Kundu A, Robbins CB, Pant P, Hsu ST, Boisvert CJ, Tagg NT, Stinnett SS, Agrawal R, Grewal DS, Fekrat S. Macular, Choroidal, and Peripapillary Perfusion Changes in Mild and Moderate Traumatic Brain Injury Using Optical Coherence Tomography and Angiography. JOURNAL OF VITREORETINAL DISEASES 2024:24741264241275272. [PMID: 39539844 PMCID: PMC11556387 DOI: 10.1177/24741264241275272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Introduction: To compare the retinal and choroidal architecture and microvasculature between patients with mild or moderate traumatic brain injury (TBI) and controls with normal cognition using optical coherence tomography (OCT) and OCT angiography (OCTA). Methods: Patients with a documented history of TBI, and age-matched and sex-matched controls were recruited. The primary outcome measures were differences between OCT parameters, including the choroidal vascularity index, and between OCTA superficial capillary plexus metrics, including foveal avascular zone (FAZ) circularity, 3.0 mm × 3.0 mm and 6.0 mm × 6.0 mm macular vessel density and perfusion density, and 4.5 mm × 4.5 mm peripapillary capillary perfusion density and capillary flux index. Results: Sixty-seven eyes of 36 patients with TBI and 72 eyes of 36 control patients met the inclusion criteria. Twelve patients (33.3%) had a diagnosis of mild TBI without loss of consciousness (LOC), 21 (58.3%) had mild TBI with LOC, and 3 (8.3%) had moderate TBI. There was a significant reduction in FAZ circularity and in 3.0 mm × 3.0 mm macular OCTA vessel density and perfusion density in patients with TBI. In cases with TBI associated with posttraumatic stress disorder, all macular OCTA parameters were significantly reduced. There was an increase in the choroidal vascularity index across the severity of TBI; however, it was reduced in those with more than 1 TBI (P = .03). Conclusions: There was a reduction in macular perfusion in eyes of patients with mild or moderate TBI. The choroidal vascularity index helps differentiate subtle effects of more severe or mild repeated TBI. Further prospective investigation will evaluate OCT imaging and OCTA imaging as a noninvasive screening modalities to assess changes in retinal and choroidal microvasculature.
Collapse
Affiliation(s)
- Grant A. Justin
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lauren Winslow
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - Anita Kundu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - Cason B. Robbins
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - Praruj Pant
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - S. Tammy Hsu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - Chantal J. Boisvert
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nathan T. Tagg
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rupesh Agrawal
- Department of Ophthalmology, Tan Tock Seng Hospital, Singapore
- Singapore Eye Research Institute, Singapore
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore
| | - Dilraj S. Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Study Group, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
19
|
Munce TA, Fickling SD, Nijjer SR, Poel DN, D'Arcy RCN. Mixed martial arts athletes demonstrate different brain vital sign profiles compared to matched controls at baseline. Front Neurol 2024; 15:1438368. [PMID: 39364418 PMCID: PMC11448351 DOI: 10.3389/fneur.2024.1438368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
We investigated objective brain vital signs derived from event-related potentials (ERPs) for mixed martial arts (MMA) athletes and matched controls (N = 24). Brain vital sign scans were acquired from 9 MMA athletes and 15 age-and sex-matched controls. Our analysis specifically compared differences in brain vital signs between MMA athletes and controls at baseline. We predicted that MMA athletes would show significant differences relative to controls due to their ongoing exposure to repetitive head impacts. Participants were scanned to extract three well-established ERPs: N100 for auditory sensation; P300 for basic attention; and N400 for cognitive processing. Scans were verified using automated reports, with N100, P300, and N400 amplitudes and latencies manually identified by a blinded reviewer. Brain vital signs were compared across groups with a Kruskal-Wallis H-test for independent samples, with FDR correction for multiple comparisons. We identified significant differences between MMA athletes and controls. Specifically, there were significant N400 amplitude reductions, indicating that exposure to repetitive head impacts in MMA may be associated with changes in brain function.
Collapse
Affiliation(s)
- Thayne A Munce
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Shaun D Fickling
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
| | | | - Daniel N Poel
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Ryan C N D'Arcy
- Centre for Neurology Studies, HealthTech Connex, Surrey, BC, Canada
- BrainNET, Health and Technology District, Surrey, BC, Canada
- DM Centre for Brain Health, Faculty of Medicine (Radiology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Majeed A, Naz N, Namal F, Tahir S, Karmani VK. Chronic Traumatic Encephalopathy: A Comprehensive Narrative Review of Its Biomarkers. Cureus 2024; 16:e69510. [PMID: 39421082 PMCID: PMC11485022 DOI: 10.7759/cureus.69510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive and fatal neurological disorder linked to repeated traumatic brain injuries (TBIs), including concussions and blows to the head. This condition is characterized by the accumulation of abnormally structured hyperphosphorylated tau proteins (p-tau), forming neurofibrillary tangles, astrocytic tangles, and neurites in the brain. CTE is often diagnosed post-mortem, making it challenging to diagnose and predict its progression in living individuals. Despite recent advancements, no definitive pathological, radiological, or neurobiological marker consistently shows promise in diagnosing and predicting the disease. This review aims to summarize the available techniques and advancements in imaging-based, genetic, neuropsychological, and fluid biomarkers for CTE, evaluating their specificity and sensitivity. It will also highlight the limitations of each marker in diagnosing CTE and provide future research directions to enhance the accuracy of CTE diagnosis in living individuals.
Collapse
Affiliation(s)
- Aleena Majeed
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Nageen Naz
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Fnu Namal
- Internal Medicine, Social Security Hospital, Faisalabad, PAK
| | - Sohaira Tahir
- Internal Medicine, Avicenna Medical College, Lahore, PAK
| | | |
Collapse
|
21
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
22
|
Potnuru LR, DuBose A, Nowotarski MS, Vigers M, Zhang B, Han CT, Han S. Phosphoryl group wires stabilize pathological tau fibrils as revealed by multiple quantum spin counting NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.606685. [PMID: 39185239 PMCID: PMC11343107 DOI: 10.1101/2024.08.14.606685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hyperphosphorylation of the protein tau is one of the biomarkers of neurodegenerative diseases in the category of tauopathies. However, the molecular level, mechanistic, role of this common post-translational modification (PTM) in enhancing or reducing the aggregation propensity of tau is unclear, especially considering that combinatorial phosphorylation of multiple sites can have complex, non-additive, effects on tau protein aggregation. Since tau proteins stack in register and parallel to elongate into pathological fibrils, phosphoryl groups from adjacent tau strands with 4.8 Å separation must find an energetically favorable spatial arrangement. At first glance, this appears to be an unfavorable configuration due to the proximity of negative charges between phosphate groups from adjacent neighboring tau fibrils. However, this study tests a counterhypothesis that phosphoryl groups within the fibril core-forming segments favorably assemble into highly ordered, hydrogen-bonded, one-dimensionally extended wires under biologically relevant conditions. We selected two phosphorylation sites associated with neurodegeneration, serine 305 (S305p) and tyrosine 310 (Y310p), on a model tau peptide jR2R3-P301L (tau295-313) spanning the R2/R3 splice junction of tau, that readily aggregate into a fibril with characteristics of a seed-competent mini prion. Using multiple quantum spin counting (MQ-SC) by 31P solid-state NMR of phosphorylated jR2R3-P301L tau peptide fibrils, enhanced by dynamic nuclear polarization, we find that at least six phosphorous spins must neatly arrange in 1D within fibrils or in 2D within a protofibril to yield the experimentally observed MQ-coherence orders of four. We found that S305p stabilizes the tau fibrils and leads to more seeding-competent fibrils compared to jR2R3 P301L or Y310p. This study introduces a new concept that phosphorylation of residues within a core forming tau segment can mechanically facilitate fibril registry and stability due a hitherto unrecognized role of phosphoryl groups to form highly ordered, extended, 1D wires that stabilize pathological tau fibrils.
Collapse
Affiliation(s)
- Lokeswara Rao Potnuru
- Department of Chemistry, Northwestern University, Evanston 60208 Illinois, United States of America
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 United States of America
| | - Mesopotamia S Nowotarski
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 United States of America
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 United States of America
| | - Boqin Zhang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 United States of America
| | - Chung-Ta Han
- Department of Chemistry, Northwestern University, Evanston 60208 Illinois, United States of America
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston 60208 Illinois, United States of America
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 United States of America
- Department of Chemical Engineering, University of California Santa Barbara, 93106, United States of America
| |
Collapse
|
23
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
24
|
El-Gazar AA, Soubh AA, Abdallah DM, Ragab GM, El-Abhar HS. Elucidating PAR1 as a therapeutic target for delayed traumatic brain injury: Unveiling the PPAR-γ/Nrf2/HO-1/GPX4 axis to suppress ferroptosis and alleviate NLRP3 inflammasome activation in rats. Int Immunopharmacol 2024; 139:112774. [PMID: 39067398 DOI: 10.1016/j.intimp.2024.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Repetitive traumatic brain injury (RTBI) is acknowledged as a silent overlooked public health crisis, with an incomplete understanding of its pathomechanistic signaling pathways. Mounting evidence suggests the involvement of thrombin and its receptor, the protease-activated receptor (PAR)1, in the development of secondary injury in TBI; however, the consequences of PAR1 modulation and its impact on ferroptosis-redox signaling, and NLRP3 inflammasome activation in RTBI, remain unclear. Further, the utilitarian function of PAR1 as a therapeutic target in RTBI has not been elucidated. To study this crosstalk, RTBI was induced in Wistar rats by daily weight drops on the right frontal region for five days. Three groups were included: normal control, untreated RTBI, and RTBI+SCH79797 (a PAR1 inhibitor administered post-trauma at 25 μg/kg/day). The concomitant treatment of PAR1 antagonism improved altered behavior function, cortical histoarchitecture, and neuronal cell survival. Moreover, the receptor blockade downregulated mRNA expression of PAR1 but upregulatedthat of the neuroprotective receptor PPAR-γ. The anti-inflammatory impact of SCH79797 was signified by the low immune expression/levels of NF-κB p65,TNF-α, IL-1β, and IL-18. Consequently, the PAR1 blocker hindered the formation of inflammasome components NLRP3, ASC, and activated caspase-1. Ultimately, SCH79797 treatment abated ferroptosis-dependent iron redox signaling through the activation of the antioxidant Nrf2/HO-1 axis and its subsequent antioxidant machinery (GPX4, SOD) to limit lipid peroxidation, iron accumulation, and transferrin serum increment. Collectively, SCH79797 offered putative preventive mechanisms against secondary RTBI consequences in rats by impeding ferroptosis and NLRP3 inflammasome through activating the PPAR-γ/Nrf2 antioxidant cue.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Department of Pharmacology & Toxicology, October 6 University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt.
| | - Ghada M Ragab
- Department of Pharmacology & Toxicology, Misr University for Science and Technology, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology & Biochemistry, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
25
|
Finan JD, Vogt TE, Samei Y. Cavitation in blunt impact traumatic brain injury. EXPERIMENTS IN FLUIDS 2024; 65:114. [PMID: 39036013 PMCID: PMC11255084 DOI: 10.1007/s00348-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Traumatic brain injury (TBI) poses a major public health challenge. No proven therapies for the condition exist so protective equipment that prevents or mitigates these injuries plays a critical role in minimizing the societal burden of this condition. Our ability to optimize protective equipment depends on our capacity to relate the mechanics of head impact events to morbidity and mortality. This capacity, in turn, depends on correctly identifying the mechanisms of injury. For several decades, a controversial theory of TBI biomechanics has attributed important classes of injury to cavitation inside the cranial vault during blunt impact. This theory explains counter-intuitive clinical observations, including the coup-contre-coup pattern of injury. However, it is also difficult to validate experimentally in living subjects. Also, blunt impact TBI is a broad term that covers a range of different head impact events, some of which may be better described by cavitation theory than others. This review surveys what has been learned about cavitation through mathematical modeling, physical modeling, and experimentation with living tissues and places it in context with competing theories of blunt injury biomechanics and recent research activity in the field in an attempt to understand what the theory has to offer the next generation of innovators in TBI biomechanics.
Collapse
Affiliation(s)
- John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Thea E. Vogt
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Yasaman Samei
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| |
Collapse
|
26
|
Lau JS, Lust CAC, Lecques JD, Hillyer LM, Mountjoy M, Kang JX, Robinson LE, Ma DWL. n-3 PUFA ameliorate functional outcomes following repetitive mTBI in the fat-1 mouse model. Front Nutr 2024; 11:1410884. [PMID: 39070251 PMCID: PMC11272621 DOI: 10.3389/fnut.2024.1410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Repeated mild traumatic brain injuries (mTBI) are a continuing healthcare concern worldwide, given its potential for enduring adverse neurodegenerative conditions. Past research suggests a potential protective effect of n-3 polyunsaturated fatty acids (PUFA) in experimental models of mTBI. The aim of this study was to investigate whether the neuroprotective benefits of n-3 PUFA persist following repetitive weight drop injury (WDI). Methods Male fat-1 mice (n = 12), able to endogenously convert n-6 PUFA to n-3 PUFA, and their wild type (WT) counterparts (n = 12) were maintained on a 10% w/w safflower diet. At 9-10 weeks of age, both groups received one mild low-impact WDI on the closed cranium daily, for three consecutive days. Following each WDI, time to righting reflex and seeking behaviour were measured. Neurological recovery, cognitive, motor, and neurobehavioural outcomes were assessed using the Neurological Severity Score (NSS) over 7 days (168 h) post-last WDI. Brains were assessed for cerebral microhemorrhages by Prussian blue and cellular damage by glial fibrillary acidic protein (GFAP) staining. Results Fat-1 mice exhibited significantly faster righting reflex and seeking behaviour time, and lower mean NSS scores and at all post-WDI time points (p ≤ 0.05) compared to WT mice. Immunohistochemistry showed no significant difference in presence of cerebral microhemorrhage however, fat-1 mice had significantly lower GFAP staining in comparison to WT mice (p ≤ 0.05). Conclusion n-3 PUFA is effective in restoring cognitive, motor, and behavioural function after repetitive WDI, which may be mediated through reduced cellular damage of the brain.
Collapse
Affiliation(s)
- Jessi S. Lau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Cody A. C. Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Lyn M. Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Margo Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Jing X. Kang
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
27
|
van Hameren G, Aboghazleh R, Parker E, Dreier JP, Kaufer D, Friedman A. From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy. Nat Rev Neurol 2024; 20:408-425. [PMID: 38886512 DOI: 10.1038/s41582-024-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.
Collapse
Affiliation(s)
- Gerben van Hameren
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ellen Parker
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Neurosurgery, Dalhousie University QEII Health Sciences Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Cell Biology, Cognitive and Brain Sciences, Zelman Inter-Disciplinary Center of Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
28
|
López-Carbonero JI, García-Toledo I, Fernández-Hernández L, Bascuñana P, Gil-Moreno MJ, Matías-Guiu JA, Corrochano S. In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use. Transl Neurodegener 2024; 13:29. [PMID: 38831349 PMCID: PMC11149336 DOI: 10.1186/s40035-024-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
Collapse
Affiliation(s)
- Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Laura Fernández-Hernández
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pablo Bascuñana
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - María J Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jordi A Matías-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
29
|
O’Brien WT, Spitz G, Xie B, Major BP, Mutimer S, Giesler LP, Bain J, Evans LJ, Duarte Martins B, Piantella S, Alhassan A, Brady S, Cappellari D, Somma V, McColl T, Symons GF, Gore T, Sun M, Kuek T, Horan S, Bei M, Ponsford JL, Willmott C, Reyes J, Ashton NJ, Zetterberg H, Mitra B, O’Brien TJ, Shultz SR, McDonald SJ. Biomarkers of Neurobiologic Recovery in Adults With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2415983. [PMID: 38848061 PMCID: PMC11161851 DOI: 10.1001/jamanetworkopen.2024.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 06/10/2024] Open
Abstract
Importance Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.
Collapse
Affiliation(s)
- William T. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Gershon Spitz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Becca Xie
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Brendan P. Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren P. Giesler
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren J. Evans
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | | | - Stefan Piantella
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Afizu Alhassan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Shelby Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David Cappellari
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Vincenzo Somma
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Thomas McColl
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Georgia F. Symons
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Tenae Gore
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Matthew Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Timothy Kuek
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Seamus Horan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Michael Bei
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Catherine Willmott
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Jonathan Reyes
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison
| | - Biswadev Mitra
- Emergency & Trauma Centre, The Alfred Hospital, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Roberts M, Popovich M, Almeida A. The Evaluation and Management of Concussion to Optimize Safe Recovery. Prim Care 2024; 51:269-282. [PMID: 38692774 DOI: 10.1016/j.pop.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Concussion is a mild traumatic brain injury causing temporary neurologic dysfunction. Symptoms following concussion are variable and generally are expected to resolve within about 1 month, but some patients experience persistent and prolonged symptoms. An early return to safe, symptom-limited activity is now favored, using targeted rehabilitation and treatments. Accommodations may be needed to facilitate return-to-school and work following concussion. Athletes should not be cleared for a full return to sport until they have recovered from a concussion and completed a return-to-play progression, in addition to returning to work/school fully.
Collapse
Affiliation(s)
- Mark Roberts
- Department of Neurology, University of Michigan, 2901 Hubbard Road, Suite 2723, Ann Arbor, MI 48109, USA
| | - Michael Popovich
- Department of Neurology, University of Michigan, 2901 Hubbard Road, Suite 2723, Ann Arbor, MI 48109, USA.
| | - Andrea Almeida
- Department of Neurology, University of Michigan, 2901 Hubbard Road, Suite 2723, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Ye Z, Li Z, Zhong S, Xing Q, Li K, Sheng W, Shi X, Bao Y. The recent two decades of traumatic brain injury: a bibliometric analysis and systematic review. Int J Surg 2024; 110:3745-3759. [PMID: 38608040 PMCID: PMC11175772 DOI: 10.1097/js9.0000000000001367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a serious public health burden worldwide, with a mortality rate of 20-30%; however, reducing the incidence and mortality rates of TBI remains a major challenge. This study provides a multidimensional analysis to explore the potential breakthroughs in TBI over the past two decades. MATERIALS AND METHODS The authors used bibliometric and Latent Dirichlet Allocation (LDA) analyses to analyze publications focusing on TBI published between 2003 and 2022 from the Web of Science Core Collection (WOSCC) database to identify core journals and collaborations among countries/regions, institutions, authors, and research trends. RESULTS Over the past 20 years, 41 545 articles on TBI from 3043 journals were included, with 12 916 authors from 20 449 institutions across 145 countries/regions. The annual number of publications has increased 10-fold compared to previous publications. This study revealed that high-income countries, especially the United States, have a significant influence. Collaboration was limited to several countries/regions. The LDA results indicated that the hotspots included four main areas: 'Clinical finding', 'Molecular mechanism', 'Epidemiology', and 'Prognosis'. Epidemiological research has consistently increased in recent years. Through epidemiological topic analysis, the main etiology of TBI has shifted from traffic accidents to falls in a demographically aging society. CONCLUSION Over the past two decades, TBI research has developed rapidly, and its epidemiology has received increasing attention. Reducing the incidence of TBI from a preventive perspective is emerging as a trend to alleviate the future social burden; therefore, epidemiological research might bring breakthroughs in TBI.
Collapse
Affiliation(s)
- Ziyin Ye
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Zhi Li
- Department of Oncology, The First Hospital of China Medical University, Heping
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Qichen Xing
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Weichen Sheng
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| | - Xin Shi
- School of Health Management, China Medical University, Shenyang, People’s Republic of China
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Huanggu
| |
Collapse
|
32
|
Kim DD, Sharma AK, Anazodo U, Kertesz A, Borrie M, Lawrence KS, Singhsnaeh A, Ang LC, Finger E. Longitudinal clinicoradiological findings in pathologically confirmed chronic traumatic encephalopathy. J Neurol 2024; 271:3660-3671. [PMID: 38514471 DOI: 10.1007/s00415-024-12275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Affiliation(s)
- David Dongkyung Kim
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Amit Kumar Sharma
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Udunna Anazodo
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Andrew Kertesz
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | | | - Keith St Lawrence
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Arunee Singhsnaeh
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Canada
| | - Lee Cyn Ang
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
33
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
34
|
Chen C. TDP-43 is a key molecule accelerating development of Alzheimer's disease following traumatic brain injury. Neural Regen Res 2024; 19:955-956. [PMID: 37862186 PMCID: PMC10749594 DOI: 10.4103/1673-5374.385301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
35
|
Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D, Leszek J. Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease. Int J Mol Sci 2024; 25:4639. [PMID: 38731858 PMCID: PMC11083609 DOI: 10.3390/ijms25094639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.
Collapse
Affiliation(s)
- Magdalena Pszczołowska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Kamil Walczak
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Weronika Miśków
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Katarzyna Antosz
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Joanna Batko
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Donata Kurpas
- Faculty of Health Sciences, Wroclaw Medical University, Ul. Kazimierza Bartla 5, 51-618 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Wroclaw Medical University, Ludwika Pasteura 10, 50-367 Wrocław, Poland
| |
Collapse
|
36
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
37
|
Miyata M, Takahata K, Sano Y, Yamamoto Y, Kurose S, Kubota M, Endo H, Matsuoka K, Tagai K, Oya M, Hirata K, Saito F, Mimura M, Kamagata K, Aoki S, Higuchi M. Association between mammillary body atrophy and memory impairment in retired athletes with a history of repetitive mild traumatic brain injury. Sci Rep 2024; 14:7129. [PMID: 38531908 DOI: 10.1038/s41598-024-57383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.
Collapse
Affiliation(s)
- Mari Miyata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| | - Yasunori Sano
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Manabu Kubota
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masaki Oya
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Fumie Saito
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
38
|
Katchur NJ, Notterman DA. Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 2024; 15:1378620. [PMID: 38566857 PMCID: PMC10985199 DOI: 10.3389/fneur.2024.1378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) is a major global health concern and is increasingly recognized as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Repetitive TBIs (rTBIs), commonly observed in contact sports, military service, and intimate partner violence (IPV), pose a significant risk for long-term sequelae. To study the long-term consequences of TBI and rTBI, researchers have typically used mammalian models to recapitulate brain injury and neurodegenerative phenotypes. However, there are several limitations to these models, including: (1) lengthy observation periods, (2) high cost, (3) difficult genetic manipulations, and (4) ethical concerns regarding prolonged and repeated injury of a large number of mammals. Aquatic vertebrate model organisms, including Petromyzon marinus (sea lampreys), zebrafish (Danio rerio), and invertebrates, Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (Drosophila), are emerging as valuable tools for investigating the mechanisms of rTBI and tauopathy. These non-mammalian models offer unique advantages, including genetic tractability, simpler nervous systems, cost-effectiveness, and quick discovery-based approaches and high-throughput screens for therapeutics, which facilitate the study of rTBI-induced neurodegeneration and tau-related pathology. Here, we explore the use of non-vertebrate and aquatic vertebrate models to study TBI and neurodegeneration. Drosophila, in particular, provides an opportunity to explore the longitudinal effects of mild rTBI and its impact on endogenous tau, thereby offering valuable insights into the complex interplay between rTBI, tauopathy, and neurodegeneration. These models provide a platform for mechanistic studies and therapeutic interventions, ultimately advancing our understanding of the long-term consequences associated with rTBI and potential avenues for intervention.
Collapse
Affiliation(s)
- Nicole J. Katchur
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
39
|
Bastgen T, Evers J, Oedekoven C, Weide C, Herzog L, Ashton N, Zetterberg H, Blennow K, Albus A, Vidovic N, Kraff O, Deuschl C, Dodel R, Ross JA. Repetitive head injuries in German American football players do not change blood-based biomarker candidates for CTE during a single season. Neurol Res Pract 2024; 6:13. [PMID: 38419110 PMCID: PMC10903054 DOI: 10.1186/s42466-024-00307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Repetitive traumatic brain injuries in American football players (AFPs) can lead to the neurodegenerative disease chronic traumatic encephalopathy (CTE). Clinical symptoms of CTE range from mood and behavioral changes to cognitive impairment, depression, and suicidality. So far, CTE cannot be diagnosed in vivo and thus specific diagnostic parameters for CTE need to be found, to observe and treat exposed athletes as early as possible. Promising blood-based biomarkers for CTE include total tau (tTau), hyperphosphorylated tau (pTau), neurofilament light protein (NF-L), glial fibrillary acidic protein (GFAP), amyloid-β40 (Aβ40), amyloid-β42 (Aβ42) and calcium-binding protein B (S100-B). Previous studies have found elevated levels of these biomarkers in subjects exposed to TBIs, whereas cerebrospinal fluid (CSF) levels of Aβ40 and Aβ42 were decreased in CTE subjects. Here, we investigated whether young AFPs already exhibit changes of these biomarker candidates during the course of a single active season. METHODS Blood samples were drawn from n = 18 American Football Players before and after a full season and n = 18 male age-matched control subjects. The plasma titers of tTau, pTau, NF-L, GFAP, Aβ40, Aβ42 and S100-B were determined. Additionally, Apathy, Depression, and Health status as well as the concussion history and medical care were assessed and analyzed for correlations. RESULTS Here we show, that the selected biomarker candidates for CTE do not change significantly during the seven-month period of a single active season of American Football in blood samples of AFPs compared to healthy controls. But interestingly, they exhibit generally elevated pTau titers. Furthermore, we found correlations of depression, quality-of-life, career length, training participation and training continuation with headache after concussion with various titers. CONCLUSION Our data indicates, that changes of CTE marker candidates either occur slowly over several active seasons of American Football or are exclusively found in CSF. Nevertheless, our results underline the importance of a long-term assessment of these biomarker candidates, which might be possible through repeated blood biomarker monitoring in exposed athletes in the future.
Collapse
Affiliation(s)
- Theres Bastgen
- Department of Geriatric Medicine and Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Janis Evers
- Department of Geriatric Medicine and Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
- Institute for Health Services Research and Clinical Epidemiology (IVE), Philipps-University, Marburg, Germany
| | - Christiane Oedekoven
- Department of Geriatric Medicine and Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Caroline Weide
- Department of Radiology, University Hospital Essen, Essen, Germany
| | - Lars Herzog
- Department of Radiology, University Hospital Essen, Essen, Germany
| | - Nicholas Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexandra Albus
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Virchowstrasse 171, 45174, Essen, Germany
| | - Natasha Vidovic
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Virchowstrasse 171, 45174, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | | | - Richard Dodel
- Department of Geriatric Medicine and Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany.
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Virchowstrasse 171, 45174, Essen, Germany.
| | - J Alexander Ross
- Department of Geriatric Medicine and Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Virchowstrasse 171, 45174, Essen, Germany
| |
Collapse
|
40
|
Alexander A, Alvarez VE, Huber BR, Alosco ML, Mez J, Tripodis Y, Nicks R, Katz DI, Dwyer B, Daneshvar DH, Martin B, Palmisano J, Goldstein LE, Crary JF, Nowinski C, Cantu RC, Kowall NW, Stern RA, Delalle I, McKee AC, Stein TD. Cortical-sparing chronic traumatic encephalopathy (CSCTE): a distinct subtype of CTE. Acta Neuropathol 2024; 147:45. [PMID: 38407651 PMCID: PMC11348287 DOI: 10.1007/s00401-024-02690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Collapse
Affiliation(s)
- Abigail Alexander
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Nowinski
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA.
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- , 150 S. Huntington Avenue, Boston, MA, 02130, USA.
| |
Collapse
|
41
|
Ali HT, Sula I, AbuHamdia A, Elejla SA, Elrefaey A, Hamdar H, Elfil M. Nervous System Response to Neurotrauma: A Narrative Review of Cerebrovascular and Cellular Changes After Neurotrauma. J Mol Neurosci 2024; 74:22. [PMID: 38367075 PMCID: PMC10874332 DOI: 10.1007/s12031-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024]
Abstract
Neurotrauma is a significant cause of morbidity and mortality worldwide. For instance, traumatic brain injury (TBI) causes more than 30% of all injury-related deaths in the USA annually. The underlying cause and clinical sequela vary among cases. Patients are liable to both acute and chronic changes in the nervous system after such a type of injury. Cerebrovascular disruption has the most common and serious effect in such cases because cerebrovascular autoregulation, which is one of the main determinants of cerebral perfusion pressure, can be effaced in brain injuries even in the absence of evident vascular injury. Disruption of the blood-brain barrier regulatory function may also ensue whether due to direct injury to its structure or metabolic changes. Furthermore, the autonomic nervous system (ANS) can be affected leading to sympathetic hyperactivity in many patients. On a cellular scale, the neuroinflammatory cascade medicated by the glial cells gets triggered in response to TBI. Nevertheless, cellular and molecular reactions involved in cerebrovascular repair are not fully understood yet. Most studies were done on animals with many drawbacks in interpreting results. Therefore, future studies including human subjects are necessarily needed. This review will be of relevance to clinicians and researchers interested in understanding the underlying mechanisms in neurotrauma cases and the development of proper therapies as well as those with a general interest in the neurotrauma field.
Collapse
Affiliation(s)
| | - Idris Sula
- College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Al Qassim, Saudi Arabia
| | - Abrar AbuHamdia
- Department of Medical Laboratory Science, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | | - Hiba Hamdar
- Medical Learning Skills Academy, Beirut, Lebanon
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
42
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Tsuji K, Nakayama Y, Taruya J, Ito H. Persistence of Kii amyotrophic lateral sclerosis after the 2000s and its characteristic aging-related tau astrogliopathy. J Neuropathol Exp Neurol 2024; 83:79-93. [PMID: 38193356 DOI: 10.1093/jnen/nlad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Kii amyotrophic lateral sclerosis (ALS) is a unique disease that occurs in the southern portion of the Kii Peninsula and exhibits a dual pathology of TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy and tauopathy. The incidence of ALS in this region was very high in the 1960s, briefly decreased through the 1980s, but began increasing again after 2000 with a change of high-concentration geographic foci. It is unclear, however, whether the unique pathological features have changed along with the incidence changes. This study analyzed postmortem specimens from neuropathologically confirmed Kii ALS cases from the 1970s (n = 4) and those after 1999 (n = 12) from the southern Kii Peninsula or outside of the area. Our results confirm the continued occurrence of Kii ALS after 2000 in the southern Kii Peninsula and the preservation of disease-specific neuronal tau pathology, including the widespread occurrence throughout the brain and spinal cord, sparse neuropil threads, and predominance in superficial layers. Furthermore, we assessed the glial tau pathology of Kii and non-Kii ALS in accordance with the aging-related tau astrogliopathy classification method for the first time and detected a unique brainstem predominant appearance of gray matter aging-related tau astrogliopathy in Kii ALS cases, which may provide clues to pathogenetic mechanisms.
Collapse
Affiliation(s)
- Kazumi Tsuji
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Yoshiaki Nakayama
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Junko Taruya
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
44
|
Gentleman SM, Liu AKL. Neuropathological Assessment as an Endpoint in Clinical Trial Design. Methods Mol Biol 2024; 2785:261-270. [PMID: 38427198 DOI: 10.1007/978-1-0716-3774-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Different neurodegenerative conditions can have complex, overlapping clinical presentations that make accurate diagnosis during life very challenging. For this reason, confirmation of the clinical diagnosis still requires postmortem verification. This is particularly relevant for clinical trials of novel therapeutics where it is important to ascertain what disease- and/or pathology-modifying effects the therapeutics have had. Furthermore, it is important to confirm that patients in the trial had the correct clinical diagnosis as this will have a major bearing on the interpretation of trial results. Here we present a simple protocol for pathological assessment of neurodegenerative changes.
Collapse
Affiliation(s)
| | - Alan King Lun Liu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Walsh M, Uretsky M, Tripodis Y, Nowinski CJ, Rasch A, Bruce H, Ryder M, Martin BM, Palmisano JN, Katz DI, Dwyer B, Daneshvar DH, Walley AY, Kim TW, Goldstein LE, Stern RA, Alvarez VE, Huber BR, McKee AC, Stein TD, Mez J, Alosco ML. Clinical and Neuropathological Correlates of Substance Use in American Football Players. J Alzheimers Dis 2024; 101:971-986. [PMID: 39269838 DOI: 10.3233/jad-240300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy more frequently found in deceased former football players. CTE has heterogeneous clinical presentations with multifactorial causes. Previous literature has shown substance use (alcohol/drug) can contribute to Alzheimer's disease and related tauopathies pathologically and clinically. Objective To examine the association between substance use and clinical and neuropathological endpoints of CTE. Methods Our sample included 429 deceased male football players. CTE was neuropathologically diagnosed. Informant interviews assessed features of substance use and history of treatment for substance use to define indicators: history of substance use treatment (yes vs no, primary variable), alcohol severity, and drug severity. Outcomes included scales that were completed by informants to assess cognition (Cognitive Difficulties Scale, BRIEF-A Metacognition Index), mood (Geriatric Depression Scale-15), behavioral regulation (BRIEF-A Behavioral Regulation Index, Barratt Impulsiveness Scale-11), functional ability (Functional Activities Questionnaire), as well as CTE status and cumulative p-tau burden. Regression models tested associations between substance use indicators and outcomes. Results Of the 429 football players (mean age = 62.07), 313 (73%) had autopsy confirmed CTE and 100 (23%) had substance use treatment history. Substance use treatment and alcohol/drug severity were associated with measures of behavioral regulation (FDR-p-values<0.05, ΔR2 = 0.04-0.18) and depression (FDR-p-values<0.05, ΔR2 = 0.02-0.05). Substance use indicators had minimal associations with cognitive scales, whereas p-tau burden was associated with all cognitive scales (p-values <0.05). Substance use treatment had no associations with neuropathological endpoints (FDR-p-values>0.05). Conclusions Among deceased football players, substance use was common and associated with clinical symptoms.
Collapse
Affiliation(s)
- Michael Walsh
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher J Nowinski
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Abigail Rasch
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hannah Bruce
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Megan Ryder
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brett M Martin
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Alexander Y Walley
- Grayken Center for Addiction, Clinical Addiction Research and Education Unit, Section of General Internal Medicine, Boston Medical Center, and Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Theresa W Kim
- Grayken Center for Addiction, Clinical Addiction Research and Education Unit, Section of General Internal Medicine, Boston Medical Center, and Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertrand Russell Huber
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Ann C McKee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
46
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
47
|
Walkiewicz G, Ronisz A, Van Ginderdeuren R, Lemmens S, Bouwman FH, Hoozemans JJM, Morrema THJ, Rozemuller AJ, Hart de Ruyter FJ, De Groef L, Stalmans I, Thal DR. Primary retinal tauopathy: A tauopathy with a distinct molecular pattern. Alzheimers Dement 2024; 20:330-340. [PMID: 37615275 PMCID: PMC10916964 DOI: 10.1002/alz.13424] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Phosphorylated tau (p-tau) accumulation, a hallmark of Alzheimer's disease (AD), can also be found in the retina. However, it is uncertain whether it is linked to AD or another tauopathy. METHODS Retinas from 164 individuals, with and without AD, were analyzed for p-tau accumulation and its relationship with age, dementia, and vision impairment. RESULTS Retinal p-tau pathology showed a consistent pattern with four stages and a molecular composition distinct from that of cerebral tauopathies. The stage of retinal p-tau pathology correlated with age (r = 0.176, P = 0.024) and was associated with AD (odds ratio [OR] 3.193; P = 0.001), and inflammation (OR = 2.605; P = 0.001). Vision impairment was associated with underlying eye diseases (β = 0.292; P = 0.001) and the stage of retinal p-tau pathology (β = 0.192; P = 0.030) in a linear regression model. CONCLUSIONS The results show the presence of a primary retinal tauopathy that is distinct from cerebral tauopathies.
Collapse
Affiliation(s)
- Grzegorz Walkiewicz
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Alicja Ronisz
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Rita Van Ginderdeuren
- Department of PathologyUZ LeuvenLeuvenBelgium
- Department of OphthalmologyUZ LeuvenLeuvenBelgium
| | | | | | | | - Tjado H. J. Morrema
- Amsterdam UMCDepartment of PathologyAmsterdam NeuroscienceAmsterdamthe Netherlands
| | | | - Frederique J. Hart de Ruyter
- Amsterdam UMCAlzheimer CenterNeurologyAmsterdamthe Netherlands
- Amsterdam UMCDepartment of PathologyAmsterdam NeuroscienceAmsterdamthe Netherlands
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research GroupDepartment of BiologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Ingeborg Stalmans
- Department of OphthalmologyUZ LeuvenLeuvenBelgium
- Research Group OphthalmologyDepartment of NeuroscienceLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory of NeuropathologyDepartment of Imaging and PathologyLeuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUZ LeuvenLeuvenBelgium
| |
Collapse
|
48
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
50
|
Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, Moriguchi S, Boileau I, Chao T, Nasser Z, Ishrat Husain M, Faiz K, Braga J, Meyer JH. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain 2023; 146:4469-4475. [PMID: 37602426 PMCID: PMC10629767 DOI: 10.1093/brain/awad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.
Collapse
Affiliation(s)
- Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Michael D Cusimano
- Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Erica L Vieira
- Molecular Neurobiology and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Sho Moriguchi
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|