1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Muhammad RN, Albahairy MA, Abd El Fattah MA, Ibrahim WW. Empagliflozin-activated AMPK elicits neuroprotective properties in reserpine-induced depression via regulating dynamics of hippocampal autophagy/inflammation and PKCζ-mediated neurogenesis. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06663-0. [PMID: 39158617 DOI: 10.1007/s00213-024-06663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE Major depression has been an area of extensive research during the last decades, for it represents a leading cause of disability and suicide. The stark rise of depression rates influenced by life stressors, economic threats, pandemic era, and resistance to classical treatments, has made the disorder rather challenging. Adult hippocampal neurogenesis and plasticity are particularly sensitive to the dynamic interplay between autophagy and inflammation. In fact, the intricate balance between the two processes contributes to neuronal homeostasis and survival. OBJECTIVES Having demonstrated promising potentials in AMPK activation, a major metabolic sensor and autophagy regulator, empagliflozin (Empa) was investigated for possible antidepressant properties in the reserpine rat model of depression. RESULTS While the reserpine protocol elicited behavioral, biochemical, and histopathological changes relevant to depression, Empa outstandingly hindered these pathological perturbations. Importantly, hippocampal autophagic response markedly declined with reserpine which disrupted the AMPK/mTOR/Beclin1/LC3B machinery and, conversely, neuro-inflammation prevailed under the influence of the NLRP3 inflammasome together with oxidative/nitrative stress. Consequently, AMPK-mediated neurotrophins secretion obviously deteriorated through PKCζ/NF-κB/BDNF/CREB signal restriction. Empa restored hippocampal monoamines and autophagy/inflammation balance, driven by AMPK activation. By promoting the atypical PKCζ phosphorylation (Thr403) which subsequently phosphorylates NF-κB at Ser311, AMPK successfully reinforced BDNF/CREB signal and hippocampal neuroplasticity. The latter finding was supported by hippocampal CA3 toluidine blue staining to reveal intact neurons. CONCLUSION The current study highlights an interesting role for Empa as a regulator of autophagic and inflammatory responses in the pathology of depression. The study also pinpoints an unusual contribution for NF-κB in neurotrophins secretion via AMPK/PKCζ/NF-κB/BDNF/CREB signal transduction. Accordingly, Empa can have special benefits in diabetic patients with depressive symptoms. LIMITATIONS The influence of p-NF-κB (Ser311) on NLRP3 inflammasome assembly and activation has not been investigated, which can represent an interesting point for further research.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohammed A Albahairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
4
|
Miguel Telega L, Berti R, Blazhenets G, Domogalla LC, Steinacker N, Omrane MA, Meyer PT, Coenen VA, Eder AC, Döbrössy MD. Reserpine-induced rat model for depression: Behavioral, physiological and PET-based dopamine receptor availability validation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111013. [PMID: 38636702 DOI: 10.1016/j.pnpbp.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Raissa Berti
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - M Aymen Omrane
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Máté D Döbrössy
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Lopes-Silva LB, Cunha DMG, Lima AC, Bioni VS, Gonçalves N, Kurita JPF, Wuo-Silva R, Silva RH. Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism. Exp Brain Res 2024; 242:1175-1190. [PMID: 38499659 DOI: 10.1007/s00221-024-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.
Collapse
Affiliation(s)
- L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - D M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - A C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - V S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - N Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - J P F Kurita
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R Wuo-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil.
| |
Collapse
|
6
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
7
|
Custódio-Silva AC, Beserra-Filho JIA, Soares-Silva B, Maria-Macêdo A, Silva-Martins S, Silva SP, Santos JR, Silva RH, Ribeiro DA, Ribeiro AM. Purple Carrot Extract Exhibits a Neuroprotective Profile in th e Nigrostriatal Pathway in the Reserpine-induced Model of Parkinson 's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:196-205. [PMID: 38279716 DOI: 10.2174/0118715249260445231226112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Even with scientific and technological advances, the therapeutic approaches used for the treatment of PD have shown to be largely ineffective in controlling the progression of symptoms in the long term. There is a growing demand for the development of novel therapeutic strategies for PD treatment. Different herbs and supplements have been considered as adjuvant to treat the symptoms of Parkinsonism. The carrot is one of the most consumed vegetable species worldwide, and its root is known for its content of anthocyanins, which possess antioxidant and antiinflammatory properties. This study evaluated the neuroprotective effect of purple carrot extract (CAR) in rats on the reserpine (RES)-induced progressive parkinsonism model. METHODS Male rats (6-month-old) received orally the CAR (400 mg/kg) or vehicle and subcutaneously RES (0.01 mg/kg) or vehicle for 28 days (Preventive Phase). From the 29th day, rats received CAR or vehicle daily and RES (0.1 mg/kg) or vehicle every other day (for 23 days, Protective phase). Behavioral tests were conducted throughout the treatment. Upon completion, the animals' brain were processed for tyrosine hydroxylase (TH) immunohistochemical assessment. RESULTS Our results showed that the chronic treatment of CAR protected against motor disabilities, reducing the time of catalepsy behavior and decreasing the frequency of oral movements, possibly by preserving TH levels in the Ventral Tegmental Area (VTA) and SNpc. CONCLUSION CAR extract is effective to attenuate motor symptoms in rats associated with increased TH+ levels in the Ventral Tegmental Area (VTA) and SNpc, indicating the potential nutraceutical benefits of CAR extract in a progressive parkinsonism model induced by RES.
Collapse
Affiliation(s)
| | | | - Beatriz Soares-Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Amanda Maria-Macêdo
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | | | - Sara Pereira Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal of Sergipe, Itabaiana, SE, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal of São Paulo, São Paulo, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | | |
Collapse
|
8
|
Qian X, Zhong Z, Lu S, Zhang Y. Repeated reserpine treatment induces depressive-like behaviors accompanied with hippocampal impairment and synapse deficit in mice. Brain Res 2023; 1819:148541. [PMID: 37619854 DOI: 10.1016/j.brainres.2023.148541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Depression remains a significant public health concern, and current animal models of depression are limited in their ability to accurately mimic human depression. However, studying the new development of antidepressants requires the use of progressive animal models. In this study, the mice were exposed to a low dose of reserpine (0.5 mg/kg) once daily for 14 days, followed by a 14-day period to allow for the development of spontaneous depression. We have successfully established a repeated reserpine-induced depressive animal model, which was characterized by emotional symptoms (anhedonia), cognitive symptoms, and psychomotor agitation or retardation. Our study demonstrated that repeated treatment with low-dose reserpine increased immobility time in the TST and FST. It also decreased the sucrose consumption ratio and induced anxiety-like behaviors. These anxiety-like behaviors were evidenced by decreased time spent in the center zone, longer first latency to center zone, and fewer entries into the center zone in the open field test. These findings support the utility of the low-dose reserpine repeated injection animal model for studying the pathogenesis of depression and the development of novel antidepressant treatments. Additionally, this study provides valuable insights into the potential of low-dose reserpine as a tool for modeling chronic depression in animals. Furthermore, our findings suggest that prolonged low-dose reserpine treatment could result in chronic depression. These findings have significant implications for the use of reserpine as a therapeutic agent for various conditions and emphasize the importance of closely monitoring patients' mental health.
Collapse
Affiliation(s)
- Xu Qian
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zuodong Zhong
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510275, China
| | - Sitong Lu
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510275, China
| | - Yao Zhang
- Department of Respiratory and Critical Medicine, General Hospital of Eastern Theater Command, Nanjing 210016, China.
| |
Collapse
|
9
|
Tian Y, Yi S, Guo W, Feng C, Zhang X, Dong H, Wang K, Li R, Tian Y, Gan M, Wu T, Xie H, Gao X. SYNJ1 rescues motor functions in hereditary and sporadic Parkinson's disease mice by upregulating TSP-1 expression. Behav Brain Res 2023; 452:114569. [PMID: 37419331 DOI: 10.1016/j.bbr.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Wanyun Guo
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Xiufen Zhang
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Huateng Dong
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Gan
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
10
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
11
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
12
|
Mirzac D, Kreis SL, Luhmann HJ, Gonzalez-Escamilla G, Groppa S. Translating Pathological Brain Activity Primers in Parkinson's Disease Research. RESEARCH (WASHINGTON, D.C.) 2023; 6:0183. [PMID: 37383218 PMCID: PMC10298229 DOI: 10.34133/research.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Translational experimental approaches that help us better trace Parkinson's disease (PD) pathophysiological mechanisms leading to new therapeutic targets are urgently needed. In this article, we review recent experimental and clinical studies addressing abnormal neuronal activity and pathological network oscillations, as well as their underlying mechanisms and modulation. Our aim is to enhance our knowledge about the progression of Parkinson's disease pathology and the timing of its symptom's manifestation. Here, we present mechanistic insights relevant for the generation of aberrant oscillatory activity within the cortico-basal ganglia circuits. We summarize recent achievements extrapolated from available PD animal models, discuss their advantages and limitations, debate on their differential applicability, and suggest approaches for transferring knowledge on disease pathology into future research and clinical applications.
Collapse
Affiliation(s)
- Daniela Mirzac
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Svenja L. Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
13
|
Jampolska M, Andrzejewski K, Boguszewski PM, Kaczyńska K. L-DOPA Improves Ventilation but Not the Ventilatory Response to Hypercapnia in a Reserpine Model of Parkinson's Disease. Brain Sci 2023; 13:brainsci13050775. [PMID: 37239247 DOI: 10.3390/brainsci13050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by progressive degeneration of the substantia nigra that affects mainly movement control. However, pathological changes associated with the development of PD may also alter respiration and can lead to chronic episodes of hypoxia and hypercapnia. The mechanism behind impaired ventilation in PD is unclear. Therefore, in this study, we explore the hypercapnic ventilatory response in a reproducible reserpine-induced (RES) model of PD and parkinsonism. We also investigated how dopamine supplementation with L-DOPA, a classic drug used to treat PD, would affect the breathing and respiratory response to hypercapnia. Reserpine treatment resulted in decreased normocapnic ventilation and behavioral changes manifested as low physical activity and exploratory behavior. The respiratory rate and the minute ventilation response to hypercapnia were significantly higher in sham rats compared to the RES group, while the tidal volume response was lower. All of this appears to be due to reduced baseline ventilation values produced by reserpine. L-DOPA reversed reduced ventilation, indicating a stimulatory effect of DA on breathing, and showed the potency of DA supplementation in restoring normal respiratory activity.
Collapse
Affiliation(s)
- Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Ludwika Pasteura 3 St., 02-093 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Fadanni GP, Leão AHFF, Granzotto N, Pereira AG, de Gois AM, Anjos PAR, Linder ÁE, Santos JR, Silva RH, Izídio GS. Genetic effects in a progressive model of parkinsonism induced by reserpine. Psychopharmacology (Berl) 2023; 240:1131-1142. [PMID: 36964320 DOI: 10.1007/s00213-023-06350-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE AND METHODS We investigated the locomotor, emotional, physiological, and neurobiological effects induced by low-dose reserpine repeated treatment (0.1 mg/kg; 14 injections) in males from the Lewis (LEW), Spontaneously Hypertensive Rats (SHR), and SHR.LEW-(D4Rat76-D4Mgh11) (SLA16) isogenic rat strains, which have different genetic backgrounds on chromosome 4. Behavioral responses in the catalepsy, open-field, and oral movements' tests were coupled with blood pressure, body weight, and striatal tyrosine hydroxylase (TH) level assessments to establish neurobiological comparisons between reserpine-induced impairments and genetic backgrounds RESULTS: Results revealed the SHR strain was more sensitive in the catalepsy test and exhibited higher TH immunoreactivity in the dorsal striatum. The SLA16 strain presented more oral movements, suggesting increased susceptibility to develop oral dyskinesia. CONCLUSIONS Our results showed the efficacy of repeated treatment with a low dose of reserpine and demonstrated, for the first time, the genetic influence of a specific region of chromosome 4 on the expression of these effects.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Natalli Granzotto
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Guimarães Pereira
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Auderlan Mendonça de Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Pâmela Andressa Ramborger Anjos
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Áurea Elizabeth Linder
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José Ronaldo Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Geison Souza Izídio
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Biological Sciences Center, Cellular Biology, Embryology and Genetics Department, Behavioral Genetics Laboratory, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
15
|
Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin 2023:10.1038/s41401-023-01058-x. [PMID: 36765267 DOI: 10.1038/s41401-023-01058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Depression is one of the common non-motor symptoms of Parkinson's disease (PD). In the clinic, botulinum neurotoxin A (BoNT/A) has been used to treat depression. In this study, we investigated the mechanisms underlying the anti-depressive effect of BoNT/A in a PD mouse model. Mice were administered reserpine (3 μg/mL in the drinking water) for 10 weeks. From the 10th week, BoNT/A (10 U·kg-1·d-1) was injected into the cheek for 3 consecutive days. We showed that chronic administration of reserpine produced the behavioral phenotypes of depression and neurochemical changes in the substantia nigra pars compacta (SNpc) and striatum. BoNT/A treatment significantly ameliorated the depressive-like behaviors, but did not improve TH activity in SNpc of reserpine-treated mice. We demonstrated that BoNT/A treatment reversed reserpine-induced complement and microglia activation in the hippocampal CA1 region. Furthermore, BoNT/A treatment significantly attenuated the microglial engulfment of presynaptic synapses, thus ameliorating the apparent synapse and spine loss in the hippocampus in the reserpine-treated mice. Moreover, BoNT/A treatment suppressed microglia-mediated expression of pro-inflammatory cytokines TNF-α and IL-1β in reserpine-treated mice. In addition, we showed that BoNT/A (0.1 U/mL) ameliorated reserpine-induced complement and microglia activation in mouse BV2 microglial cells in vitro. We conclude that BoNT/A ameliorates depressive-like behavior in a reserpine-induced PD mouse model through reversing the synapse loss mediated by classical complement induced-microglial engulfment as well as alleviating microglia-mediated proinflammatory responses. BoNT/A ameliorates depressive-like behavior, and reverses synapse loss mediated by classical complement pathway-initiated microglia engulfment as well as alleviates microglia-mediated proinflammatory response in the reserpine-induced Parkinson's disease mouse model.
Collapse
|
16
|
Song J, Liu L, Li Z, Mao T, Zhang J, Zhou L, Chen X, Shang Y, Sun T, Luo Y, Jiang Y, Tan D, Tong X, Dai F. Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson's disease. BMC Med 2022; 20:412. [PMID: 36303171 PMCID: PMC9615188 DOI: 10.1186/s12916-022-02621-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in middle-aged and elderly populations, whereas there is no cure for PD so far. Novel animal models and medications await development to elucidate the aetiology of PD and attenuate the symptoms, respectively. METHODS A neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was used in the current study to establish a PD pathologic model in silkworms. The time required to complete specific behaviours was recorded. Dopamine content was detected by ultra-performance liquid chromatography (UPLC). The activity of insect tyrosine hydroxylase (TH) was determined using a double-antibody sandwich method. Oxidative stress was assessed by changes in antioxidant enzyme activity and the content of oxidative products. RESULTS MPTP-treated silkworms were characterized by impaired motor ability, reduced dopamine content, and elevated oxidative stress level. The expression of TH, a dopamine biosynthetic enzyme within dopaminergic neurons in the brain, was significantly reduced, indicating that dopaminergic neurons were damaged. Moreover, MPTP-induced motility impairment and reduced dopamine level in the silkworm PD model could be rescued after feeding a combination of levodopa (L-dopa [LD]) and carbidopa (CD). MPTP-induced oxidative damage was also alleviated, in ways consistent with other PD animal models. Interestingly, administration of Lycium barbarum polysaccharide (LBP) improved the motor ability, dopamine level, and TH activity, and the oxidative damage was concomitantly reduced in the silkworm PD model. CONCLUSIONS This study provides a promising animal model for elucidating the pathogenesis of PD, as well as a relevant preliminary drug screening (e.g., LBP) and evaluation.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ting Mao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yunzhu Shang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson’s disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol 2022; 13:944376. [PMID: 36313295 PMCID: PMC9597253 DOI: 10.3389/fphar.2022.944376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reserpine is an effective drug for the clinical treatment of hypertension. It also induces Parkinson’s disease (PD)-like symptoms in humans and animals possible through the inhibition of monoamine vesicular transporters, thus decreasing the levels of monoamine neurotransmitters in the brain. However, the precise mechanisms remain unclear. Herein, we aimed to develop a preclinical reserpine model recapitulating the non-motor and motor symptoms of PD and investigate the underlying potential cellular mechanisms. Incubation of reserpine induced apoptosis, led to the accumulation of intracellular reactive oxygen species (ROS), lowered DNA methylation of alpha-synuclein gene, resulted in alpha-synuclein protein deposition, and elevated the ratio of LC3-II/LC3-Ⅰ and p62 in cultured SH-SY5Y cells. Feeding reserpine dose-dependently shortened the lifespan and caused impairment of motor functions in male and female Drosophila. Moreover, long-term oral administration of reserpine led to multiple motor and non-motor symptoms, including constipation, pain hypersensitivity, olfactory impairment, and depression-like behaviors in mice. The mechanistic studies showed that chronic reserpine exposure caused hypomethylation of the alpha-synuclein gene and up-regulated its expression and elevated the ratio of LC3-II/LC3-Ⅰ and expression of p62 in the substantia nigra of mice. Thus, we established preclinical animal models using reserpine to recapitulate the motor and non-motor symptoms of PD. Chronic reserpine exposure epigenetically elevated the levels of alpha-synuclein expression possible by lowering the DNA methylation status and inducing autophagic impairment in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- *Correspondence: Tong Liu, ; Weifeng Luo,
| |
Collapse
|
18
|
Screening of dopamine in living cells and animal model via graphene quantum dots anchored 3D macroporous nonenzymatic sensor. Mikrochim Acta 2022; 189:382. [DOI: 10.1007/s00604-022-05479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
19
|
Beserra-Filho JIA, Maria-Macêdo A, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, de Souza Araújo AA, Lucchese AM, Quintans-Júnior LJ, Santos JR, Silva RH, Ribeiro AM. Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism. Metab Brain Dis 2022; 37:2331-2347. [PMID: 35779151 DOI: 10.1007/s11011-022-01032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with β-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.
Collapse
Affiliation(s)
- Jose Ivo A Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Angélica Maria Lucchese
- Graduate Programm in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra M Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
20
|
Melo JEC, Santos TFO, Santos RS, Franco HS, Monteiro MCN, Bispo JMM, Mendonça MS, Ribeiro AM, Silva RH, Gois AM, Marchioro M, Lins LCRF, Santos JR. Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J Chem Neuroanat 2022; 125:102162. [PMID: 36115503 DOI: 10.1016/j.jchemneu.2022.102162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.
Collapse
Affiliation(s)
- João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Thassya F O Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo S Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Milena C N Monteiro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mylaine S Mendonça
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Murilo Marchioro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
21
|
Cunha DMG, Becegato M, Meurer YSR, Lima AC, Gonçalves N, Bioni VS, Engi SA, Bianchi PC, Cruz FC, Santos JR, Silva RH. Neuroinflammation in early, late and recovery stages in a progressive parkinsonism model in rats. Front Neurosci 2022; 16:923957. [PMID: 36090265 PMCID: PMC9459164 DOI: 10.3389/fnins.2022.923957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and non-motor signs, which are accompanied by progressive degeneration of dopaminergic neurons in the substantia nigra. Although the exact causes are unknown, evidence links this neuronal loss with neuroinflammation and oxidative stress. Repeated treatment with a low dose of reserpine—inhibitor of VMAT2—has been proposed as a progressive pharmacological model of PD. The aim of this study was to investigate whether this model replicates the neuroinflammation characteristic of this disease. Six-month-old Wistar rats received repeated subcutaneous injections of reserpine (0.1 mg/kg) or vehicle on alternate days. Animals were euthanized after 5, 10, or 15 injections, or 20 days after the 15th injection. Catalepsy tests (motor assessment) were conducted across treatment. Brains were collected at the end of each treatment period for immunohistochemical and RT-PCR analyzes. Reserpine induced a significant progressive increase in catalepsy duration. We also found decreased immunostaining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc) and increased GFAP + cells in the SNpc and dorsal striatum after 10 and 15 reserpine injections. Phenotyping microglial M1 and M2 markers showed increased number of CD11b + cells and percentage of CD11b + /iNOS + cells in reserpine-treated animals after 15 injections, which is compatible with tissue damage and production of cytotoxic factors. In addition, increased CD11b + /ArgI + cells were found 20 days after the last reserpine injection, together with an increment in IL-10 gene expression in the dorsal striatum, which is indicative of tissue repair or regeneration. Reserpine also induced increases in striatal interleukin TNF-alpha mRNA levels in early stages. In view of these results, we conclude that reserpine-induced progressive parkinsonism model leads to neuroinflammation in regions involved in the pathophysiology of PD, which is reversed 20 days after the last injection. These findings reveal that withdrawal period, together with the shift of microglial phenotypes from the pro-inflammatory to the anti-inflammatory stage, may be important for the study of the mechanisms involved in reversing this condition, with potential clinical applicability.
Collapse
Affiliation(s)
- Debora M. G. Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S. R. Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alvaro C. Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vinícius S. Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila A. Engi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula C. Bianchi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabio C. Cruz
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose R. Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Bioscience, Universidade Federal do Sergipe, Itabaiana, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
22
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
23
|
Cavalheiro EKFF, da Silva LE, Oliveira MP, Silva MG, Damiani AP, Ribeiro CB, Magenis ML, Cucker L, Michels M, Joaquim L, Machado RS, Vilela TC, Bitencourt RM, Andrade VM, Dal-Pizzol F, Petronilho F, Tuon T, Rezin GT. Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson's disease. Behav Brain Res 2022; 434:114019. [PMID: 35872330 DOI: 10.1016/j.bbr.2022.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 12/06/2022]
Abstract
Obesity is associated with low-grade chronic inflammation and oxidative stress, affecting the brain's reward system by decreasing dopaminergic neurotransmission. It is known that dopaminergic neurotransmission is also reduced in Parkinson's disease (PD), and high adiposity is considered a risk factor for the development of several neurodegenerative diseases, including PD. This study aimed to assess the effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced PD. The obese group showed increased inflammation and oxidative damage as well as inhibition of mitochondrial respiratory chain complexes I and II and DNA damage in the evaluated structures. The PD group did not show inflammation or mitochondrial dysfunction but exhibited oxidative damage in the hippocampus. The combination group (obesity + PD) showed reduced inflammation and oxidative stress and increased activity of complexes I and II of the mitochondrial respiratory chain in most of the analyzed structures. On the other hand, obesity + PD caused oxidative damage to proteins in the liver, prefrontal cortex, striatum, and cerebral cortex and oxidative stress in the hypothalamus, resulting in reduced catalase activity. Furthermore, the combination group showed DNA damage in blood, liver, and cerebral cortex. In conclusion, it was observed that the association of obesity and PD did not increase inflammation, oxidative stress, or mitochondrial dysfunction in most of the evaluated structures but increased oxidative damage and induced mechanisms that led to DNA damage in peripheral tissues and brain structures.
Collapse
Affiliation(s)
- Eulla Keimili Fernandes Ferreira Cavalheiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina G Silva
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Catharina B Ribeiro
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Marina L Magenis
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Luana Cucker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael M Bitencourt
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Talita Tuon
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
24
|
Bispo JMM, Melo JEC, Gois AM, Medeiros KAAL, Silva RS, Leal PC, Franco HS, Souza MF, Lins LCRF, Ribeiro AM, Silva RH, Santos JR. Testosterone propionate improves motor alterations and dopaminergic damage in the reserpine-induced progressive model of Parkinson's disease. Brain Res Bull 2022; 187:162-168. [PMID: 35781030 DOI: 10.1016/j.brainresbull.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder with a higher susceptibility to occur in men. Studies suggest that this susceptibility is related to the hormonal differences observed between men and women, being a risk factor for PD. In addition, testosterone supplementation has shown controversial results in animal models of PD and parkinsonian patients. This study evaluated the effect of chronic administration of testosterone propionate (TP) on motor behavior and neurochemical parameters in the reserpine-induced rat model of parkinsonism. Male Wistar rats received 15 injections of reserpine (RES - 0.1 mg/kg) every other day and were concomitantly treated with different doses (0.1, 1.0, or 5.0 mg/kg) of daily TP for 30 days. The rats were euthanized 48 h after the 15th injection of RES or vehicle. Brains were removed and subjected to Tyrosine hydroxylase (TH) immunohistochemistry. TP at 1.0 mg/kg reduced the damages caused by reserpine in the vacuous chewing and tong protrusion behaviors and prevented dopaminergic damage in the SNpc, VTA, and Striatum. TP at 5.0 mg/kg reduced the damages caused by reserpine in the catalepsy and tong protrusion behaviors, prevented the weight loss, and prevented dopaminergic damage in the VTA. Our results suggest that chronic administration of TP has a protective effect in a rat model of parkinsonism, improving motor alterations and dopamine depletion induced by RES.
Collapse
Affiliation(s)
- José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Katty A A L Medeiros
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Rodolfo Santos Silva
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Pollyana C Leal
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Graduate Program in Dentistry / Federal University of Sergipe, Aracaju, SE, Brazil.
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Marina F Souza
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Lívia C R F Lins
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
25
|
Floris G, Scheggi S, Pes R, Bortolato M. The steroidogenic inhibitor finasteride reverses pramipexole-induced alterations in probability discounting. Brain Res Bull 2022; 181:157-166. [PMID: 35122898 PMCID: PMC9012661 DOI: 10.1016/j.brainresbull.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 12/28/2022]
Abstract
Pramipexole is a potent agonist of D3 and D2 dopamine receptors, currently approved for clinical use in Parkinson's disease (PD) and restless leg syndrome. Several studies have shown that pramipexole significantly increases the risk of pathological gambling and impulse-control disorders. While these iatrogenic complications can impose a severe social and financial burden, their treatment poses serious clinical challenges. Our group previously reported that the steroidogenic inhibitor finasteride reduced pathological gambling severity in PD patients who developed this complication following pramipexole treatment. To study the mechanisms underlying these effects, here we tested the impact of finasteride in a rat model of pramipexole-induced alterations of probability discounting. We previously showed that, in rats exposed to low doses of the monoamine-depleting agent reserpine (1mg/kg/day, SC), pramipexole (0.3mg/kg/day, SC) increased the propensity to engage in disadvantageous choices. This effect was paralleled by a marked D3 receptor upregulation in the nucleus accumbens. First, we tested how finasteride (25-50mg/kg, IP) intrinsically affects probability discounting. While the highest dose of finasteride produced a marked lack of interest in lever pressing (manifested as a significant increase in omissions), the 25mg/kg (IP) dose did not intrinsically modify probability discounting. However, this finasteride regimen significantly reduced the adverse effects of reserpine and pramipexole in probability discounting by diminishing rats' propensity to engage in highly disadvantageous probabilistic choices. The same regimen also reversed the upregulation of D3 receptors in the nucleus accumbens induced by reserpine and pramipexole. These findings confirm that finasteride opposes the impulsivity caused by pramipexole and suggest that this effect may be underpinned by a normalizing effect on D3 receptor expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Gabriele Floris
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA.
| | - Simona Scheggi
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA; Dept. of Molecular and Developmental Medicine, School of Medicine, University of Siena, ITALY
| | - Romina Pes
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence (KS), USA
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA; Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence (KS), USA.
| |
Collapse
|
26
|
Knapik JJ, Trone DW, Steelman RA, Farina EK, Lieberman HR. Adverse effects associated with use of specific dietary supplements: The US Military Dietary Supplement Use Study. Food Chem Toxicol 2022; 161:112840. [PMID: 35093428 DOI: 10.1016/j.fct.2022.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Dietary supplements (DSs) are used by 50% of Americans and 70% of United States military service members (SMs); some have adverse effects (AEs). This cross-sectional investigation examined AEs associated with specific DSs. A stratified random sample of SMs from the Air Force, Army, Marine Corps, and Navy was obtained. Volunteers completed a questionnaire reporting AEs for 96 generic and 62 specific DSs. The highest prevalence (≥1 AE) in specific DS categories was 35% prohormones, 33% weight loss supplements, 26% pre/post workout supplements, 14% herbal products, 12% multivitamin/multiminerals, 11% protein/amino acids, 9% muscle building supplements, 7% other DSs, 6% joint health products, and 5% individual vitamins/minerals. Specific DSs of concern (with proportion reporting AEs) included: Libido Max® (35%), Hydroxycut Hardcore® (33%), OxyElite® (33%), Roxylean® (31%), Growth Factor 9® (30%), Super HD® (29%), Hydroxycut Advanced® (29%), Lipo 6® (28%), The Ripper® (27%), Test Booster® (27%), Xenadrine Xtreme Thermogenic® (27%), C4 Extreme® (26%), and C4 Origional® (25%). Products marketed for weight loss, use before/after workout, and prohormones had the highest AE prevalence. DSs can contain substances with independent/additive AEs and/or interact with other ingredients or prescribed medications. Methods described here could provide a continuous surveillance system detecting dangerous DSs entering the market.
Collapse
Affiliation(s)
- Joseph J Knapik
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
| | - Daniel W Trone
- Naval Health Research Center, Building 329, Ryne Rd, San Diego, CA, 92152, USA
| | - Ryan A Steelman
- Army Public Health Center, 8252 Blackhawk Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Emily K Farina
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
27
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
28
|
Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, Becegato M, Soares MBL, Marinho GF, Santos JR, Silva RH. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:757714. [PMID: 34759815 PMCID: PMC8573221 DOI: 10.3389/fnagi.2021.757714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The main symptoms are motor signs such as resting tremor and difficulty in initializing movements. Non-motor alterations, such as cognitive deficits, can precede the motor symptoms. PD is more frequent in men than women. The mechanisms related to this difference are not completely understood. There is evidence that females present distinct characteristics in dopaminergic function compared to males. While the severity of motor impairments is often compared between sexes, little is known about sex differences in the prodromal stage. Most animal models of PD present acute severe motor impairment, which precludes the study of non-motor symptoms. Our research group have proposed an adaptation of the classic reserpine protocol, using low doses in a chronic treatment. This method allows the observation of progressive motor impairment as well as premotor deficits. Here we investigate possible behavioral and neuronal sex differences in the effects of the repeated treatment with a low dose of reserpine in rats. Male and female Wistar rats received 10–15 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. We followed-up the estrous cycle phases and conducted motor and cognitive assessments (catalepsy, open field, oral movements and object recognition tests). The euthanasia occurred 48 h after the 10th or 15th injections, with the collection of blood for the quantification of sex hormones and brains for tyrosine hydroxylase (TH) immunohistochemistry in the substantia nigra pars compact (SNpc). Reserpine induced progressive catalepsy, involuntary oral movements and cognitive deficits in male rats. The behavioral effects of reserpine were attenuated (motor) or absent (cognitive) in females. Reserpine decreased TH immunoreactivity in males, but not in females. Estrogen levels in females negatively correlated with catalepsy duration. Our findings show that females present a delay and/or a prevention in the reserpine-induced motor alterations in the progressive PD model, compatible with the lower prevalence of this disease in women. Further, females were protected from the deficit in object recognition at the prodromal stage. The absence of reserpine-induce decrease in TH immunoreactivity suggests that differences in dopaminergic function/plasticity are related to this protection in female sex.
Collapse
Affiliation(s)
- Alvaro C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S R Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vinicius S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Débora M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuela B L Soares
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela F Marinho
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Silva-Martins S, Beserra-Filho JIA, Maria-Macêdo A, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, Silva RH, Dos Santos JR, Gandhi SR, Quintans-Júnior LJ, Ribeiro AM. Myrtenol complexed with β-cyclodextrin ameliorates behavioural deficits and reduces oxidative stress in the reserpine-induced animal model of Parkinsonism. Clin Exp Pharmacol Physiol 2021; 48:1488-1499. [PMID: 34351001 DOI: 10.1111/1440-1681.13563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Current pharmacological approaches to treat Parkinson's disease have low long-term efficacy and important adverse side effects. The development of new pharmacological therapies has focused on novel plant-derived phytochemicals. The alcoholic monoterpene myrtenol has been isolated from several plant species, and has anxiolytic, analgesic, anti-inflammatory and antioxidant actions. Our study evaluated the neuroprotective potential of myrtenol complexed with β-cyclodextrin (MYR) on a progressive parkinsonism model induced by reserpine (RES) in mice. The complexation with cyclodextrins enhances the pharmacological action of monoterpenes. Male Swiss mice were treated daily with MYR (5 mg/kg, p.o.) and with RES (0.1 mg/kg, s.c.) every other day during 28 days. Behavioural evaluations were conducted across treatment. At the end of the treatment, immunohistochemistry for tyrosine hydroxylase (TH) and oxidative stress parameters were evaluated. Chronic MYR-treatment protected against olfactory sensibility loss, restored short-term memory and decreased RES-induced motor impairments. Moreover, this treatment prevented dopaminergic depletion and reduced the oxidative status index in the dorsal striatum. Therefore, MYR ameliorated motor and non-motor impairments in the progressive animal model of parkinsonism, possibly by an antioxidant action. Additional research is needed to investigate the mechanisms involved in this neuroprotective effect.
Collapse
Affiliation(s)
| | | | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | - Regina Helena Silva
- Departament of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
30
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
31
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
32
|
Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL. Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia. J Therm Biol 2021; 98:102906. [PMID: 34016333 DOI: 10.1016/j.jtherbio.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Resistance to hypoxia is one of the most prominent features of natural hibernation and is expected to be present in the pharmacological torpor (PT) that simulates hibernation. We studied resistance to lethal hypoxia (3.5% oxygen content) in rats under PT. To initiate PT, we used the previously developed pharmacological composition (PC) which, after a single intravenous injection, can induce a daily decrease in Tb by 7 °C-8 °C at the environmental temperature of 22 °C-23 °C. Half-survival (median) time of rats in lethal hypoxia was found to increase from 5 ± 0.8 min in anesthetized control rats to 150 ± 12 min in rats injected with PC, which is a 30-fold increase. Behavioral tests after PT and hypoxia, including the traveling distance, the number of rearing and grooming episodes, revealed that animal responses are significantly restored within a week. It is assumed that the discovered unprecedented resistance of artificially torpid rats to lethal hypoxia may open up broad prospects for the therapeutic use of PT for preconditioning to various damaging factors, treatment of diseases, and extend the so-called "golden hour" for lifesaving interventions.
Collapse
Affiliation(s)
| | - Yury S Tarahovsky
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia; Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region 142290, Russia.
| | - Natalia P Komelina
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | - Maxim O Khrenov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region 142290, Russia
| | | |
Collapse
|
33
|
Sałat K, Furgała-Wojas A. Serotonergic Neurotransmission System Modulator, Vortioxetine, and Dopaminergic D 2/D 3 Receptor Agonist, Ropinirole, Attenuate Fibromyalgia-Like Symptoms in Mice. Molecules 2021; 26:molecules26082398. [PMID: 33924258 PMCID: PMC8074757 DOI: 10.3390/molecules26082398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Fibromyalgia is a disease characterized by lowered pain threshold, mood disorders, and decreased muscular strength. It results from a complex dysfunction of the nervous system and due to unknown etiology, its diagnosis, treatment, and prevention are a serious challenge for contemporary medicine. Impaired serotonergic and dopaminergic neurotransmission are regarded as key factors contributing to fibromyalgia. The present research assessed the effect of serotonergic and dopaminergic system modulators (vortioxetine and ropinirole, respectively) on the pain threshold, depressive-like behavior, anxiety, and motor functions of mice with fibromyalgia-like symptoms induced by subcutaneous reserpine (0.25 mg/kg). By depleting serotonin and dopamine in the mouse brain, reserpine induced symptoms of human fibromyalgia. Intraperitoneal administration of vortioxetine and ropinirole at the dose of 10 mg/kg alleviated tactile allodynia. At 5 and 10 mg/kg ropinirole showed antidepressant-like properties, while vortioxetine had anxiolytic-like properties. None of these drugs influenced muscle strength but reserpine reduced locomotor activity of mice. Concluding, in the mouse model of fibromyalgia vortioxetine and ropinirole markedly reduced pain. These drugs affected emotional processes of mice in a distinct manner. Hence, these two repurposed drugs should be considered as potential drug candidates for fibromyalgia. The selection of a specific drug should depend on patient’s key symptoms.
Collapse
|
34
|
Lu JS, Chen QY, Chen X, Li XH, Zhou Z, Liu Q, Lin Y, Zhou M, Xu PY, Zhuo M. Cellular and synaptic mechanisms for Parkinson's disease-related chronic pain. Mol Pain 2021; 17:1744806921999025. [PMID: 33784837 PMCID: PMC8020085 DOI: 10.1177/1744806921999025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer’s disease. Chronic pain is experienced by the vast majority of
patients living with Parkinson’s disease. The degeneration of dopaminergic
neuron acts as the essential mechanism of Parkinson’s disease in the midbrain
dopaminergic pathway. The impairment of dopaminergic neurons leads to
dysfunctions of the nociceptive system. Key cortical areas, such as the anterior
cingulate cortex (ACC) and insular cortex (IC) that receive the dopaminergic
projections are involved in pain transmission. Dopamine changes synaptic
transmission via several pathway, for example the D2-adenly cyclase (AC)-cyclic
AMP (cAMP)-protein kinase A (PKA) pathway and D1-G protein-coupled receptor
kinase 2 (GRK2)-fragile X mental retardation protein (FMRP) pathway. The
management of Parkinson’s disease-related pain implicates maintenance of stable
level of dopaminergic drugs and analgesics, however a more selective drug
targeting at key molecules in Parkinson’s disease-related pain remains to be
investigated.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiang Chen
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, Mohamed W, Moustafa AA. Neurotoxin-Induced Rodent Models of Parkinson's Disease: Benefits and Drawbacks. Neurotox Res 2021; 39:897-923. [PMID: 33765237 DOI: 10.1007/s12640-021-00356-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Collapse
Affiliation(s)
- Mohamed El-Gamal
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Salama
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | | | | | - Ahmed M Fathalla
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amira M Soliman
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Mansoura, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia.,Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
36
|
Cintra RR, Lins LCRF, Medeiros KAAL, Souza MF, Gois AM, Bispo JMM, Melo MS, Leal PC, Meurer YSR, Ribeiro AM, Silva RH, Marchioro M, Santos JR. Nociception alterations precede motor symptoms in a progressive model of parkinsonism induced by reserpine in middle-aged rats. Brain Res Bull 2021; 171:1-9. [PMID: 33675933 DOI: 10.1016/j.brainresbull.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Nociception alterations are frequent non-motor symptoms of the prodromal phase of Parkinson's disease (PD). The period for the onset of symptoms and the pathophysiological mechanisms underlying these alterations remain unclear. We investigated the course of nociception alterations in a progressive model of parkinsonism induced by reserpine (RES) in rats. Male Wistar rats (6-7 months) received 5 or 10 subcutaneous injections of RES (0.1 mg/kg) or vehicle daily for 20 days. Motor evaluation and nociceptive assessment were performed throughout the treatment. At the end of the treatment rats were euthanized, the brains removed and processed for immunohistochemical analysis (TH and c-Fos). The RES-treated rats exhibited an increased nociceptive response to mechanical and chemical stimulation in the electronic von Frey and formalin tests, respectively. Moreover, these alterations preceded the motor impairment observed in the catalepsy test. In addition, the RES treatment reduced the TH-immunoreactivity in the ventral tegmental area (VTA) and increased the c-Fos expression in the ventral-lateral periaqueductal gray (vlPAG), rostral ventral medulla (RVM) and dorsal raphe nucleus (DRN) after noxious stimuli induced by formalin. Taken together, our results reinforce that nociceptive changes are one of the early signs of PD and monoamine depletion in basal ganglia can be involved in the abnormal processing of nociceptive information in PD.
Collapse
Affiliation(s)
- Rachel R Cintra
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Lívia C R F Lins
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Katty A A L Medeiros
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Marina F Souza
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mônica S Melo
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Pollyana C Leal
- Post-graduate Program of Dentistry, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ywlliane S R Meurer
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Regina H Silva
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Murilo Marchioro
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - José R Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
37
|
Deficiency of Biogenic Amines Modulates the Activity of Hypoglossal Nerve in the Reserpine Model of Parkinson's Disease. Cells 2021; 10:cells10030531. [PMID: 33801475 PMCID: PMC8001069 DOI: 10.3390/cells10030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
The underlying cause of respiratory impairments appearing in Parkinson's disease (PD) is still far from being elucidated. To better understand the pathogenesis of respiratory disorders appearing in PD, we studied hypoglossal (HG) and phrenic (PHR) motoneuron dysfunction in a rat model evoked with reserpine administration. After reserpine, a decrease in the baseline amplitude and minute HG activity was noted, and no depressive phase of the hypoxic ventilatory response was observed. The pre-inspiratory time of HG activity along with the ratio of pre-inspiratory time to total respiratory cycle time and the ratio of pre-inspiratory to inspiratory amplitude were significantly reduced during normoxia, hypoxia, and recovery compared to sham rats. We suggest that the massive depletion of not only dopamine, but above all noradrenaline and serotonin in the brainstem observed in our study, has an impact on the pre-inspiratory activity of the HG. The shortening of the pre-inspiratory activity of the HG in the reserpine model may indicate a serious problem with maintaining the correct diameter of the upper airways in the preparation phase for inspiratory effort and explain the development of obstructive sleep apnea in some PD patients. Therapies involving the supplementation of amine depletion other than dopamine should be considered.
Collapse
|
38
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
39
|
Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of parkinsonism in middle-aged rats. Exp Gerontol 2020; 145:111198. [PMID: 33310153 DOI: 10.1016/j.exger.2020.111198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to investigate balance alterations and the possible role of the cholinergic neurons in the pedunculopontine nucleus (PPN) in the early stages of a progressive animal model of Parkinson's disease (PD). Twenty-eight middle-aged (8-9 months) male Wistar rats received 4 or 10 subcutaneous vehicle (control, CTL) or reserpine (RES) injections (0.1 mg/kg). The animals were submitted to different behavioral tests. Forty-eight hours after the 4th injection, half of the animals of each group (n = 7) were perfused and submitted to immunohistochemical analysis for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The remaining animals (n = 7 per group) were killed 48 h after the 10th injection. RES group presented motor deficits in the catalepsy and open field tests starting at days 12 and 20 of treatment, respectively (only for the animals that received 10 injections). On the other hand, dynamic and static balance changes were observed at earlier stages of RES treatment, starting at days 6 and 4, respectively. At this point of the treatment, there was no decrease in the number of TH immunoreactivity neurons in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS). However, a decrease was observed in SNpc and dorsal striatum of animals that received 10 injections. In contrast, there was a decrease in the number of ChAT immunoreactive cells in PPN concomitantly to the balance alterations at the early stages of treatment (after 4 RES injections). Thus, by mimicking the progressiveness of PD, the reserpine model made it possible to identify static and dynamic balance impairments prior to the motor alterations in the catalepsy and open field tests. In addition, changes in balance were accompanied by a reduction in the number of ChAT immunoreactive cells in NPP in the early stages of treatment.
Collapse
|
40
|
Areal LB, Blakely RD. Neurobehavioral changes arising from early life dopamine signaling perturbations. Neurochem Int 2020; 137:104747. [PMID: 32325191 PMCID: PMC7261509 DOI: 10.1016/j.neuint.2020.104747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) signaling is critical to the modulation of multiple brain functions including locomotion, reinforcement, attention and cognition. The literature provides strong evidence that altered DA availability and actions can impact normal neurodevelopment, with both early and enduring consequences on anatomy, physiology and behavior. An appreciation for the developmental contributions of DA signaling to brain development is needed to guide efforts to preclude and remedy neurobehavioral disorders, such as attention-deficit/hyperactivity disorder, addiction, bipolar disorder, schizophrenia and autism spectrum disorder, each of which exhibits links to DA via genetic, cellular and/or pharmacological findings. In this review, we highlight research pursued in preclinical models that use genetic and pharmacological approaches to manipulate DA signaling at sensitive developmental stages, leading to changes at molecular, circuit and/or behavioral levels. We discuss how these alterations can be aligned with traits displayed by neuropsychiatric diseases. Lastly, we review human studies that evaluate contributions of developmental perturbations of DA systems to increased risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA; Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
41
|
Pereira AG, Poli A, Matheus FC, de Bortoli da Silva L, Fadanni GP, Izídio GS, Latini A, Prediger RD. Temporal development of neurochemical and cognitive impairments following reserpine administration in rats. Behav Brain Res 2020; 383:112517. [DOI: 10.1016/j.bbr.2020.112517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
|
42
|
Crans RAJ, Wouters E, Valle-León M, Taura J, Massari CM, Fernández-Dueñas V, Stove CP, Ciruela F. Striatal Dopamine D 2-Muscarinic Acetylcholine M 1 Receptor-Receptor Interaction in a Model of Movement Disorders. Front Pharmacol 2020; 11:194. [PMID: 32231561 PMCID: PMC7083216 DOI: 10.3389/fphar.2020.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor control deficits, which is associated with the loss of striatal dopaminergic neurons from the substantia nigra. In parallel to dopaminergic denervation, there is an increase of acetylcholine within the striatum, resulting in a striatal dopaminergic–cholinergic neurotransmission imbalance. Currently, available PD pharmacotherapy (e.g., prodopaminergic drugs) does not reinstate the altered dopaminergic–cholinergic balance. In addition, it can eventually elicit cholinergic-related adverse effects. Here, we investigated the interplay between dopaminergic and cholinergic systems by assessing the physical and functional interaction of dopamine D2 and muscarinic acetylcholine M1 receptors (D2R and M1R, respectively), both expressed at striatopallidal medium spiny neurons. First, we provided evidence for the existence of D2R–M1R complexes via biochemical (i.e., co-immunoprecipitation) and biophysical (i.e., BRET1 and NanoBiT®) assays, performed in transiently transfected HEK293T cells. Subsequently, a D2R–M1R co-distribution in the mouse striatum was observed through double-immunofluorescence staining and AlphaLISA® immunoassay. Finally, we evaluated the functional interplay between both receptors via behavioral studies, by implementing the classical acute reserpine pharmacological animal model of experimental parkinsonism. Reserpinized mice were administered with a D2R-selective agonist (sumanirole) and/or an M1R-selective antagonist (VU0255035), and alterations in PD-related behavioral tasks (i.e., locomotor activity) were evaluated. Importantly, VU0255035 (10 mg/kg) potentiated the antiparkinsonian-like effects (i.e., increased locomotor activity and decreased catalepsy) of an ineffective sumanirole dose (3 mg/kg). Altogether, our data suggest the existence of putative striatal D2R/M1R heteromers, which might be a relevant target to manage PD motor impairments with fewer adverse effects.
Collapse
Affiliation(s)
- René A J Crans
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium.,Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Marta Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Caio M Massari
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Programa de Poìs-graduação em Bioquiìmica, Centro de Ciencias Bioloìgicas, Universidade Federal de Santa Catarina, Florianoìpolis, Brazil
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Rahman MM, Chakraborti RR, Potol MA, Abir AH, Sharmin O, Alam M, Khan MFR, Afrin R, Jannat H, Wadud R, Habib ZF. Epalrestat improves motor symptoms by reducing oxidative stress and inflammation in the reserpine induced mouse model of Parkinson's disease. Animal Model Exp Med 2020; 3:9-21. [PMID: 32318655 PMCID: PMC7167235 DOI: 10.1002/ame2.12097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting a large number of elderly people worldwide. The current therapies for PD are symptom-based; they do not provide a cure but improve the quality of life. Muscular dysfunction is the hallmark clinical feature of PD and oxidative stress and inflammation play a critical role in its pathogenesis. Epalrestat is used for the treatment of diabetic neuropathy and is known to improve antioxidative defense mechanisms in the CNS. Therefore, in this study, we investigated the role of Epalrestat in the reserpine induced mouse model of PD. METHOD We used Swiss Albino mice for the PD model and tested for akinesia/bradykinesia, muscular rigidity, palpebral ptosis, and tremor, as well as conducting swim and open field tests. Brain samples were used to determine oxidative stress parameters and infiltration of immune cells. RESULTS Epalrestat treatment significantly improved akinesia and bradykinesia, muscular dysfunctions, tremor level, and gait functions compared to the reserpine group. It also improved the latency in the swim test. Eplarestat significantly reduced lipid peroxidation and NO concentration in different brain tissues and increased the activity of antioxidative enzymes, glutathione, catalase, and superoxide dismutase. Furthermore, Epalrestat reduced neuroinflammation by reducing the number of infiltrating immune cells. CONCLUSION Eplarestat improves muscular dysfunction in PD by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rupali Rani Chakraborti
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Md. Abdullah Potol
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Ariful Haque Abir
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Ozayra Sharmin
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Mahabub Alam
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Md. Fazlur Rahman Khan
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rownock Afrin
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Humayra Jannat
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Rasiqh Wadud
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| | - Zaki Farhad Habib
- Laboratory of PharmacologyDepartment of Pharmaceutical SciencesSchool of Health & Life SciencesNorth South UniversityDhakaBangladesh
| |
Collapse
|
44
|
Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019; 76:106835. [PMID: 31518687 DOI: 10.1016/j.ntt.2019.106835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Venlafaxine (VEN) is one of the first clinical drugs for the treatment of depression. Long-term use may cause a potentially life-threatening serotonin syndrome. Melatonin (MT) could ameliorate depression behavior. Therefore, the aim of this study was to investigate the antidepressant effects of venlafaxine in combination with melatonin on zebrafish. Reserpine was used to induce depression-like behavioral zebrafish. To explore the effects of combined use of venlafaxine and melatonin on depression-like zebrafish induced by reserpine. We tested the depressive behavior of adult zebrafish through a novel tank test, and evaluated the levels of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) in zebrafish brain using enzyme-linked immunosorbent assay (ELISA), besides that the gene expression of serotonin transporters a (serta), dopamine transporters (dat) and norepinephrine transporters (net), vesicular monoamine transporter2 (vmat2) and monoamine oxidase (mao) were evaluated by qRT-PCR. The results showed that, compared with reserpine-only group, venlafaxine (VEN, 0.025 mg/L) and melatonin (MT, 1 μM) increased the parameters of exploration in the top of the tank and decreased freezing behavior significantly. Compared with reserpine-only group, the use of VEN combined with MT increased serotonin and norepinephrine levels significantly, while there was no obvious difference in dopamine content. The results of qRT-PCR showed that the use of VEN combined with MT significantly reduced the expression of serta and promoted the expression of vmat2, but had no significant effect on the expression of net, dat and mao. The results indicated that venlafaxine combined with melatonin showed more effective role to remedy the depressive symptoms in zebrafish, providing a reference for the clinical application of antidepressants.
Collapse
Affiliation(s)
- Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Zhuo-Ran Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
45
|
Wang S, Duan M, Guan K, Zhou X, Zheng M, Shi X, Ye M, Guan W, Kuver A, Huang M, Liu Y, Dai K, Li X. Developmental neurotoxicity of reserpine exposure in zebrafish larvae (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:115-123. [PMID: 31128281 DOI: 10.1016/j.cbpc.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022]
Abstract
Reserpine is widely used for treatment of hypertension and schizophrenia. As a specific inhibitor of monoamine transporters, reserpine is known to deplete monoamine neurotransmitters and cause decreased movement symptoms. However, how zebrafish larvae respond to reserpine treatment is not well studied. Here we show that swimming distance and average velocity are significantly reduced after reserpine exposure under various stimulatory conditions. Using liquid chromatograph-mass spectrometer analysis, decreased levels of monoamines (e.g. dopamine, noradrenaline, and serotonin) were detected in reserpine-treated larvae. Moreover, reserpine treatment significantly reduced the number of dopaminergic neurons, which was identified with th (Tyrosine Hydroxylase) in situ hybridization in the preoptic area. Interestingly, dopaminergic neuron development-associated genes, such as otpa, otpb, wnt1, wnt3, wnt5 and manf, were downregulated in reserpine treated larvae. Our data indicates that 2 mg/L reserpine exposure induces dopaminergic neuron damage in the brain, demonstrating a chemical induced depression-like model in zebrafish larvae for future drug development.
Collapse
Affiliation(s)
- Shao Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, PR China
| | - Kaiyu Guan
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Xianyong Zhou
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Xulai Shi
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Minjie Ye
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Wanchun Guan
- School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Aarti Kuver
- School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, PR China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, Zhejiang Province, PR China
| | - Yunbing Liu
- Yangtze Valley Water Environment Monitoring Center, Add: No.13, Yongqing Branch Road, Wuhan 430010, Hubei Province, PR China
| | - Kezhi Dai
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China.
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China.
| |
Collapse
|
46
|
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019; 14:35. [PMID: 31488222 PMCID: PMC6728988 DOI: 10.1186/s13024-019-0332-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, αSynuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers αSynuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
47
|
Kumar S, Singh A, Kumar B. Screening of monoterpene indole alkaloids in six
Rauwolfia
species by ultra‐high performance liquid chromatography orbitrap velos pro mass spectrometer. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sunil Kumar
- Sophisticated Analytical Instrument FacilityCSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Awantika Singh
- Sophisticated Analytical Instrument FacilityCSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument FacilityCSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi India
| |
Collapse
|
48
|
Rijntjes M, Meyer PT. No Free Lunch With Herbal Preparations: Lessons From a Case of Parkinsonism and Depression Due to Herbal Medicine Containing Reserpine. Front Neurol 2019; 10:634. [PMID: 31275227 PMCID: PMC6591315 DOI: 10.3389/fneur.2019.00634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
The increasing use of herbal medicines calls for a heightened awareness of their potential side-effects. This especially pertains to western countries, where patients tend to use herbal medicine as self-medication, often alongside regular prescriptions, and physicians have less experience with their application. Here we report a case in which Parkinsonism, depression, and an atypical finding detected by dopamine transporter single-photon emission computed tomography were all belatedly recognized as side-effects of herbal medicine. This only occurred because one of its active ingredients, reserpine, has been extensively studied. For most other herbal medicines, however, knowledge about side-effects remains scarce or unavailable. Therefore, we suggest that physicians, when taking a medication history, should actively ask for the use of any herbal preparations.
Collapse
Affiliation(s)
- Michel Rijntjes
- Department of Neurology and Neurophysiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Sex differences in the progressive model of parkinsonism induced by reserpine in rats. Behav Brain Res 2019; 363:23-29. [DOI: 10.1016/j.bbr.2019.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/05/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
50
|
Cognitive and anxiety-like impairments accompanied by serotonergic ultrastructural and immunohistochemical alterations in early stages of parkinsonism. Brain Res Bull 2019; 146:213-223. [DOI: 10.1016/j.brainresbull.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|