1
|
Lazzarini G, Gatta A, Miragliotta V, Vaglini F, Viaggi C, Pirone A. Glial cells are affected more than interneurons by the loss of Engrailed 2 gene in the mouse cerebellum. J Anat 2024; 244:667-675. [PMID: 38009365 PMCID: PMC10941518 DOI: 10.1111/joa.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
Glial cells play a pivotal role in the inflammatory processes, which are common features of several neurodevelopmental and neurodegenerative disorders. Their major role in modulating neuroinflammation underscores their significance in these conditions. Engrailed-2 knockout mice (En2-/- ) are considered a valuable model for autism spectrum disorder (ASD) due to their distinctive neuroanatomical and behavioral traits. Given the higher prevalence of ASD in males, our objective was to investigate glial and interneuron alterations in the cerebellum of En2-/- mice compared with wild-type (WT) mice in both sexes. We employed immunohistochemical analysis to assess cell density for all cell types studied and analyzed the area (A) and shape factor (SF) of microglia cell bodies. Our findings revealed the following: (a) In WT mice, the density of microglia and astrocytes was higher in females than in males, while interneuron density was lower in females. Notably, in En2-mutant mice, these differences between males and females were not present. (b) In both male and female En2-/- mice, astrocyte density exceeded that in WT mice, with microglia density being greater only in females. (c) In WT females, microglia cell bodies exhibited a larger area and a lower shape factor compared to WT males. Remarkably, the En2 mutation did not appear to influence these sex-related differences. (d) In both male and female En2-/- mice, we observed a consistent pattern: microglia cell bodies displayed a larger area and a smaller shape factor. Given the ongoing debate surrounding the roles of glia and sex-related factors in ASD, our observations provide valuable insights into understanding how an ASD-associated gene En2 affects specific cell types in the cerebellum.
Collapse
Affiliation(s)
| | | | | | - Francesca Vaglini
- Department of Translational Research and of New Surgical and Medical TechnologiesUniversity of PisaPisaItaly
| | - Cristina Viaggi
- Department of Translational Research and of New Surgical and Medical TechnologiesUniversity of PisaPisaItaly
| | - Andrea Pirone
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Khan A, Kamal M, Alhothi A, Gad H, Adan MA, Ponirakis G, Petropoulos IN, Malik RA. Corneal confocal microscopy demonstrates sensory nerve loss in children with autism spectrum disorder. PLoS One 2023; 18:e0288399. [PMID: 37437060 DOI: 10.1371/journal.pone.0288399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.
Collapse
Affiliation(s)
- Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Madeeha Kamal
- Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Abdula Alhothi
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marian A Adan
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | | | | | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
4
|
Du Y, Chen L, Yan MC, Wang YL, Zhong XL, Xv CX, Li YB, Cheng Y. Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501). Mol Psychiatry 2023; 28:3092-3103. [PMID: 37117459 DOI: 10.1038/s41380-023-02079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Mei-Chen Yan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yan-Li Wang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Lin Zhong
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chen-Xi Xv
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yao-Bo Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China.
| |
Collapse
|
5
|
Liao X, Chen M, Li Y. The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Front Neuroendocrinol 2023; 70:101064. [PMID: 36889545 DOI: 10.1016/j.yfrne.2023.101064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The present study aimed to systematically and quantitatively review evidence derived from both postmortem brain and PET studies to explore the pathological role of glia induced neuroinflammation in the pathogenesis of ASD, and discuss the implications of these findings in relation to disease pathogenesis and therapeutic strategies. METHOD An online databases search was performed to collate postmortem studies and PET studies regarding glia induced neuroinflammation in ASD as compared to controls. Two authors independently conducted the literature search, study selection and data extraction. The discrepancies generated in these processes was resolved through robust discussions among all authors. RESULT The literature search yielded the identification of 619 records, from which 22 postmortem studies and 3 PET studies were identified as eligible for the qualitative synthesis. Meta-analysis of postmortem studies reported increased microglial number and microglia density as well as increased GFAP protein expression and GFAP mRNA expression in ASD subjects as compared to controls. Three PET studies produced different outcomes and emphasized different details, with one reported increased and two reported decreased TSPO expression in ASD subjects as compared to controls. CONCLUSION Both postmortem evidences and PET studies converged to support the involvement of glia induced neuroinflammation in the pathogenesis of ASD. The limited number of included studies along with the considerable heterogeneity of these studies prevented the development of firm conclusions and challenged the explanation of variability. Future research should prioritize the replication of current studies and the validation of current observations.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Simone M, De Giacomo A, Palumbi R, Palazzo C, Lucisano G, Pompamea F, Micella S, Pascali M, Gabellone A, Marzulli L, Giordano P, Gargano CD, Margari L, Frigeri A, Ruggieri M. Serum Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Potential Diagnostic Biomarkers in Autism Spectrum Disorders: A Preliminary Study. Int J Mol Sci 2023; 24:ijms24033057. [PMID: 36769380 PMCID: PMC9917818 DOI: 10.3390/ijms24033057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopment disorders, characterized by a multifactorial etiology based on the interaction of genetic and environmental factors. Recent evidence supports the neurobiological hypothesis based on neuroinflammation theory. To date, there are no sufficiently validated diagnostic and prognostic biomarkers for ASD. Therefore, we decided to investigate the potential diagnostic role for ASD of two biomarkers well known for other neurological inflammatory conditions: the glial fibrillary acidic protein (GFAP) and the neurofilament (Nfl). Nfl and GFAP serum levels were analyzed using SiMoA technology in a group of ASD patients and in a healthy control group (CTRS), age- and gender-matched. Then we investigated the distribution, frequency, and correlation between serum Nfl and GFAP levels and clinical data among the ASD group. The comparison of Nfl and GFAP serum levels between ASD children and the control group showed a mean value of these two markers significantly higher in the ASD group (sNfL mean value ASD pt 6.86 pg/mL median value ASD pt 5.7 pg/mL; mean value CTRS 3.55 pg/mL; median value CTRS 3.1 pg; GFAP mean value ASD pt 205.7 pg/mL median value ASD pt 155.4 pg/mL; mean value CTRS 77.12 pg/mL; median value CTRS 63.94 pg/mL). Interestingly, we also found a statistically significant positive correlation between GFAP levels and hyperactivity symptoms (p-value <0.001). Further investigations using larger groups are necessary to confirm our data and to verify in more depth the potential correlation between these biomarkers and ASD clinical features, such as the severity of the core symptoms, the presence of associated symptoms, and/or the evaluation of a therapeutic intervention. However, these data not only might shed a light on the neurobiology of ASD, supporting the neuroinflammation and neurodegeneration hypothesis, but they also might support the use of these biomarkers in the early diagnosis of ASD, to longitudinally monitor the disease activity, and even more as future prognostic biomarkers.
Collapse
Affiliation(s)
- Marta Simone
- Regenerative and Precision Medicine Department and Jonic Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Andrea De Giacomo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Palumbi
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence:
| | - Claudia Palazzo
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucisano
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Pompamea
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Micella
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mara Pascali
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessandra Gabellone
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucia Marzulli
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Concetta Domenica Gargano
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucia Margari
- Regenerative and Precision Medicine Department and Jonic Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Frigeri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maddalena Ruggieri
- Translational Biomedicine and Neuroscience Department (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
8
|
Shen Y, Zhong JG, Lan WT, Li YH, Gong JH, Zhao BX, Hou XH. Bibliometric study of neuroinflammation in autism spectrum disorder. Front Psychiatry 2023; 14:1086068. [PMID: 36741118 PMCID: PMC9893120 DOI: 10.3389/fpsyt.2023.1086068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Neuroinflammation is closely associated with the occurrence and development of autism spectrum disorder (ASD). This study aims to describe the global development history and current status of neuroinflammation in ASD from 2004 to 2021 and reveal the research hotspots and frontiers to provide a reference for scholars in related fields to carry out further research. METHODS Journal articles on ASD and neuroinflammation-related research were obtained from the Web of Science Core Collection (WOSCC) database from its inception to 2021. Literature was analyzed visually by VOSviewer, CiteSpace, and R language, including publication analysis, author, institution, national/regional cooperative network analysis, and keyword analysis. We screened the most accumulatively cited 10 experimental papers in the field and the most cited 10 experimental papers in the last 2 years (2020 and 2021) for combing. RESULTS A total of 620 publications were included in this study, and the number of publications has increased in recent years. The United States (256, 41.29%) was the country with the largest number of publications. King Saud University (40, 6.45%) was the most published institution; Laila Al-Ayadhi Yousef was the most published researcher; the Brain Behavior and Immunity was the main journal for the study of neuroinflammation in autism, having published 22 related articles. Keyword co-occurrence analysis showed that short chain fatty acid, mast cells, and glial cells have been the focus of recent attention. Burst keywords show that gut microbiota and immune system are the future research trends. CONCLUSION This bibliometric study describes the basic framework for the development in the field of neuroinflammation and ASD through an exploration of key indicators (countries, institutions, journals, authors, and keywords). We found that the key role of neuroinflammation in the development of ASD is attracting more and more researchers' attention. Future studies can investigate the changes in cytokines and glial cells and their related pathways in ASD neuroinflammation. Immunotherapy to inhibit neuroinflammation may be intensively studied as a direction for ASD treatment or intervention.
Collapse
Affiliation(s)
- Yingying Shen
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Jiu-Gen Zhong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Wan-Ting Lan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Yin-Hua Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jia-Heng Gong
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Ben-Xuan Zhao
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Xiao-Hui Hou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Wang M, Cheng X, Shi Q, Xu B, Hou X, Zhao H, Gui Q, Wu G, Dong X, Xu Q, Shen M, Cheng Q, Xue S, Feng H, Ding Z. Brain diffusion tensor imaging reveals altered connections and networks in epilepsy patients. Front Hum Neurosci 2023; 17:1142408. [PMID: 37033907 PMCID: PMC10073437 DOI: 10.3389/fnhum.2023.1142408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Accumulating evidence shows that epilepsy is a disease caused by brain network dysfunction. This study explored changes in brain network structure in epilepsy patients based on graph analysis of diffusion tensor imaging data. Methods The brain structure networks of 42 healthy control individuals and 26 epilepsy patients were constructed. Using graph theory analysis, global and local network topology parameters of the brain structure network were calculated, and changes in global and local characteristics of the brain network in epilepsy patients were quantitatively analyzed. Results Compared with the healthy control group, the epilepsy patient group showed lower global efficiency, local efficiency, clustering coefficient, and a longer shortest path length. Both healthy control individuals and epilepsy patients showed small-world attributes, with no significant difference between groups. The epilepsy patient group showed lower nodal local efficiency and nodal clustering coefficient in the right olfactory cortex and right rectus and lower nodal degree centrality in the right olfactory cortex and the left paracentral lobular compared with the healthy control group. In addition, the epilepsy patient group showed a smaller fiber number of edges in specific regions of the frontal lobe, temporal lobe, and default mode network, indicating reduced connection strength. Discussion Epilepsy patients exhibited lower global and local brain network properties as well as reduced white matter fiber connectivity in key brain regions. These findings further support the idea that epilepsy is a brain network disorder.
Collapse
Affiliation(s)
- Meixia Wang
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoyu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianru Shi
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Bo Xu
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoxia Hou
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Huimin Zhao
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Qian Gui
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Guanhui Wu
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaofeng Dong
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Qinrong Xu
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Mingqiang Shen
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Qingzhang Cheng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongxuan Feng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
- *Correspondence: Hongxuan Feng,
| | - Zhiliang Ding
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
- Zhiliang Ding,
| |
Collapse
|
10
|
Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat 2023; 19:841-850. [PMID: 37077706 PMCID: PMC10106330 DOI: 10.2147/ndt.s390053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023] Open
Abstract
A distinct pathology for autism spectrum disorder (ASD) remains elusive. Human and animal studies have focused on investigating the role of neurons in ASD. However, recent studies have hinted that glial cell pathology could be a characteristic of ASD. Astrocytes are the most abundant glial cell in the brain and play an important role in neuronal function, both during development and in adult. They regulate neuronal migration, dendritic and spine development, and control the concentration of neurotransmitters at the synaptic cleft. They are also responsible for synaptogenesis, synaptic development, and synaptic function. Therefore, any change in astrocyte number and/or function could contribute to the impairment of connectivity that has been reported in ASD. Data available to date is scarce but indicates that while the number of astrocytes is reduced, their state of activation and their GFAP expression is increased in ASD. Disruption of astrocyte function in ASD may affect proper neurotransmitter metabolism, synaptogenesis, and the state of brain inflammation. Astrocytes alterations are common to ASD and other neurodevelopmental disorders. Future studies about the role of astrocytes in ASD are required to better understand this disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Correspondence: Veronica Martinez-Cerdeño, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA, Tel +916 453-2163, Email
| |
Collapse
|
11
|
Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T. Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 2022; 15:94. [PMID: 36414974 PMCID: PMC9682671 DOI: 10.1186/s13041-022-00981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Isabella A. Graef
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
12
|
In vivo imaging translocator protein (TSPO) in autism spectrum disorder. Neuropsychopharmacology 2022; 47:1421-1427. [PMID: 35383319 PMCID: PMC9117200 DOI: 10.1038/s41386-022-01306-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022]
Abstract
Converging evidence points to the significant involvement of the immune system in autism spectrum disorders (ASD). Positron emission tomography (PET) can quantify translocator protein 18 kDa (TSPO), a marker with increased expression mainly in microglia and, to some extent astroglia during neuropsychiatric diseases with inflammation. This preliminary analysis explored, for the first time, whether TSPO binding was altered in male and female participants with ASD in vivo using full kinetic quantification. Thirteen individuals with ASD (IQ > 70 [n = 12], IQ = 62 [n = 1]), 5 F, 25 ± 5 years) were scanned with [18F]FEPPA PET. Data from 13 typically developing control participants with matching age and TSPO rs6971 polymorphism (9 F, age 24 ± 5 years) were chosen from previous studies for comparison. The two tissue compartment model (2TCM) was used to determine the total volume of distribution ([18F]FEPPA VT) in four previously identified regions of interest (ROI): prefrontal, temporal, cerebellar, and anterior cingulate cortices. We observe no significant difference in [18F]FEPPA VT relative to controls (F(1,26)= 1.74, p = 0.20). However, 2 ASD participants with higher VT had concurrent major depressive episodes (MDE), which has been consistently reported during MDE. After excluding those 2 ASD participants, in a post-hoc analysis, our results show lower [18F]FEPPA VT in ASD participants compared to controls (F(1,24)= 6.62, p = 0.02). This preliminary analysis provides evidence suggesting an atypical neuroimmune state in ASD.
Collapse
|
13
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
14
|
Falcone C, Mevises NY, Hong T, Dufour B, Chen X, Noctor SC, Martínez Cerdeño V. Neuronal and glial cell number is altered in a cortical layer-specific manner in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2238-2253. [PMID: 34107793 DOI: 10.1177/13623613211014408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT The cerebral cortex affected with autism spectrum disorder presents changes in the number of neurons and glia cells, possibly leading to a dysregulation of brain circuits and affecting behavior. However, little is known about cell number alteration in specific layers of the cortex in autism spectrum disorder. We found an increase in the number of neurons and a decrease in the number of astrocytes in specific layers of the prefrontal cortex in postmortem human brains from autism spectrum disorder cases. We hypothesize that this may be due to a failure in neural stem cells to shift differentiation from neurons to glial cells during prenatal brain development. These data provide key anatomical findings that contribute to the bases of autism spectrum disorder pathogenesis.
Collapse
Affiliation(s)
- Carmen Falcone
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Natalie-Ya Mevises
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Tiffany Hong
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Brett Dufour
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Xiaohui Chen
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | | | - Verónica Martínez Cerdeño
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| |
Collapse
|
15
|
An fMRI Feature Selection Method Based on a Minimum Spanning Tree for Identifying Patients with Autism. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder originating in infancy and childhood that may cause language barriers and social difficulties. However, in the diagnosis of ASD, the current machine learning methods still face many challenges in determining the location of biomarkers. Here, we proposed a novel feature selection method based on the minimum spanning tree (MST) to seek neuromarkers for ASD. First, we constructed an undirected graph with nodes of candidate features. At the same time, a weight calculation method considering both feature redundancy and discriminant ability was introduced. Second, we utilized the Prim algorithm to construct the MST from the initial graph structure. Third, the sum of the edge weights of all connected nodes was sorted for each node in the MST. Then, N features corresponding to the nodes with the first N smallest sum were selected as classification features. Finally, the support vector machine (SVM) algorithm was used to evaluate the discriminant performance of the aforementioned feature selection method. Comparative experiments results show that our proposed method has improved the ASD classification performance, i.e., the accuracy, sensitivity, and specificity were 86.7%, 87.5%, and 85.7%, respectively.
Collapse
|
16
|
Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
|
17
|
Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol Neurobiol 2020; 57:3424-3438. [DOI: 10.1007/s12035-020-01976-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
18
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Neurobiology of sensory processing in autism spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:161-181. [PMID: 32711809 DOI: 10.1016/bs.pmbts.2020.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered sensory processing and perception has been one of the characteristics of autism spectrum disorder (ASD). In this chapter, we review the neural underpinnings of sensory abnormalities of ASD by examining the literature on clinical, behavioral and neurobiological evidence that underlies the main patterns of sensory integration function and dysfunction. Furthermore, neural differences in anatomy, function and connectivity of different regions underlying sensory processing are also discussed. We conclude that sensory integration intervention is built on the premise of neuroplasticity to improve function and behavior for individuals with ASD.
Collapse
|
20
|
Abstract
Epilepsy is considered a major serious chronic neurological disorder, characterized by recurrent seizures. It is usually associated with a history of a lesion in the nervous system. Irregular activation of inflammatory molecules in the injured tissue is an important factor in the development of epilepsy. It is unclear how the imbalanced regulation of inflammatory mediators contributes to epilepsy. A recent research goal is to identify interconnected inflammation pathways which may be involved in the development of epilepsy. The clinical use of available antiepileptic drugs is often restricted by their limitations, incidence of several side effects, and drug interactions. So development of new drugs, which modulate epilepsy through novel mechanisms, is necessary. Alternative therapies and diet have recently reported positive treatment outcomes in epilepsy. Vitamin D (Vit D) has shown prophylactic and therapeutic potential in different neurological disorders. So, the aim of current study was to review the associations between different brain inflammatory mediators and epileptogenesis, to strengthen the idea that targeting inflammatory pathway may be an effective therapeutic strategy to prevent or treat epilepsy. In addition, neuroprotective effects and mechanisms of Vit D in clinical and preclinical studies of epilepsy were reviewed.
Collapse
|
21
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Lobzhanidze G, Japaridze N, Lordkipanidze T, Rzayev F, MacFabe D, Zhvania M. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int J Dev Neurosci 2020; 80:139-156. [PMID: 31997401 DOI: 10.1002/jdn.10011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids, produced as gut microbiome metabolites but also present in the diet, exert broad effects in host physiology. Propionic acid (PPA), along with butyrate and acetate, plays a growing role in health, but also in neurological conditions. Increased PPA exposure in humans, animal models and cell lines elicit diverse behavioural and biochemical changes consistent with organic acidurias, mitochondrial disorders and autism spectrum disorders (ASD). ASD is considered a disorder of synaptic dysfunction and cell signalling, but also neuroinflammatory and neurometabolic components. We examined behaviour (Morris water and radial arm mazes) and the ultrastructure of the hippocampus and medial prefrontal cortex (electron microscopy) following a single intraperitoneal (i.p.) injection of PPA (175 mg/kg) in male adolescent rats. PPA treatment showed altered social and locomotor behaviour without changes in learning and memory. Both transient and enduring ultrastructural alterations in synapses, astro- and microglia were detected in the CA1 hippocampal area. Electron microscopic analysis showed the PPA treatment significantly decreased the total number of synaptic vesicles, presynaptic mitochondria and synapses with a symmetric active zone. Thus, brief systemic administration of this dietary and enteric short chain fatty acid produced behavioural and dynamic brain ultrastructural changes, providing further validation of the PPA model of ASD.
Collapse
Affiliation(s)
- Giorgi Lobzhanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Laboratory of Electron Microscopy, Research Center of Azerbaijan Medical University, Baku, Azerbaijan
| | - Derrick MacFabe
- The Kilee Patchell-Evans Autism Research Group, London, ON, Canada.,Faculty of Medicine, Department of Microbiology, Center for Healthy Eating and Food Innovation, Maastricht University, Maastricht, the Netherlands
| | - Mzia Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
23
|
Wang L, Zhang Z, Chen J, Manyande A, Haddad R, Liu Q, Xu F. Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex. Front Neural Circuits 2020; 14:4. [PMID: 32116571 PMCID: PMC7019026 DOI: 10.3389/fncir.2020.00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.
Collapse
Affiliation(s)
- Li Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiacheng Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, United Kingdom
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Qing Liu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
24
|
Okumura T, Kumazaki H, Singh AK, Touhara K, Okamoto M. Individuals With Autism Spectrum Disorder Show Altered Event-Related Potentials in the Late Stages of Olfactory Processing. Chem Senses 2020; 45:37-44. [PMID: 31711116 DOI: 10.1093/chemse/bjz070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atypical sensory reactivities are pervasive among people with autism spectrum disorder (ASD). With respect to olfaction, most previous studies have used psychophysical or questionnaire-based methodologies; thus, the neural basis of olfactory processing in ASD remains unclear. This study aimed to determine the stages of olfactory processing that are altered in ASD. Fourteen young adults with high-functioning ASD (mean age, 21 years; 3 females) were compared with 19 age-matched typically developing (TD) controls (mean age, 21 years; 4 females). Olfactory event-related potentials (OERPs) for 2-phenylethyl alcohol-a rose-like odor-were measured with 64 scalp electrodes while participants performed a simple odor detection task. Significant group differences in OERPs were found in 3 time windows 542 ms after the stimulus onset. The cortical source activities in these time windows, estimated using standardized low-resolution brain electromagnetic tomography, were significantly higher in ASD than in TD in and around the posterior cingulate cortex, which is known to play a crucial role in modality-general cognitive processing. Supplemental Bayesian analysis provided substantial evidence for an alteration in the later stages of olfactory processing, whereas conclusive evidence was not provided for the earlier stages. These results suggest that olfactory processing in ASD is altered at least at the later, modality-general processing stage.
Collapse
Affiliation(s)
- Toshiki Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hirokazu Kumazaki
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Archana K Singh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan.,WPI International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Masako Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,ERATO Touhara Chemosensory Signal Project, JST, University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Noriega G. Restricted, Repetitive, and Stereotypical Patterns of Behavior in Autism-an fMRI Perspective. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1139-1148. [PMID: 31021772 DOI: 10.1109/tnsre.2019.2912416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main objective of this paper is to determine whether resting-state fMRI can identify functional connectivity differences between individuals with autism who experience severe issues with restricted, repetitive, and stereotypical behaviors, those who experience only mild issues, and controls. We use resting-state fMRI data from the ABIDE-I preprocessed repository, with participants grouped according to their ADI-R Restricted, Repetitive, and Stereotyped Patterns of Behavior Subscore. Three processing methods are used for analysis. A time-correlation approach establishes a basic baseline, and we introduce a method based on sliding time windows, with means across time adjusted to consider the fraction of time the correlation measure is above/below average. We complement these with a band-limited coherence approach. For completeness, preprocessing schemes with and without global signal regression are considered. Our results are in line with recent ones which find both over- and under-connectivities in the autistic brain. We find that there are indeed significant differences in connectivity between various regions that differentiate between ASD subjects with severe stereotypical/restrictive behavior issues, those with only mild issues, and controls. Interestingly, for some regions, the "signature" of subjects in the milder of the ASD groups appears to be distinct (i.e., over- or under-connected) relative to both the more severe ASD group and the controls.
Collapse
|
26
|
Saniya K, Patil BG, Chavan MD, Prakash KG, Sailesh KS, Archana R, Johny M. Neuroanatomical Changes in Brain Structures Related to Cognition in Epilepsy: An Update. J Nat Sci Biol Med 2017; 8:139-143. [PMID: 28781476 PMCID: PMC5523517 DOI: 10.4103/0976-9668.210016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Understanding the microanatomical changes in brain structures is necessary for developing innovative therapeutic approaches to prevent/delay the cognitive impairment in epilepsy. We review here the microanatomical changes in the brain structures related to cognition in epilepsy. Here, we have presented the changes in major brain structures related to cognition, which helps the clinicians understand epilepsy more clearly and also helps researchers develop new treatment procedures.
Collapse
Affiliation(s)
- K Saniya
- Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - B G Patil
- Department of Anatomy, Shri B. M. Patil Medical College, Bijapur, Karnataka, India
| | - Madhavrao D Chavan
- Department of Pharmacology, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - K G Prakash
- Department of Anatomy, Azeezia Institute of Medical Sciences, Kollam, Kerala, India
| | - Kumar Sai Sailesh
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| | - R Archana
- Department of Anatomy, Saveetha Medical College, Saveetha University, Chennai, Tamil Nadu, India
| | - Minu Johny
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| |
Collapse
|