1
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
2
|
Hu JC, Tzeng HT, Lee WC, Li JR, Chuang YC. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2024; 25:8015. [PMID: 39125584 PMCID: PMC11312208 DOI: 10.3390/ijms25158015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and, in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy. However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome, often involving extravesical manifestations and different subtypes, calls for a departure from this uniform approach. This review provides insights into recent advancements in experimental strategies in animal models and human studies. The identified therapeutic approaches fall into four categories: (i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation, (ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extracorporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug delivery systems assisted by energy devices. Future investigations will require a broader range of animal models, studies on human bladder tissues, and well-designed clinical trials to establish the efficacy and safety of these therapeutic interventions.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Jian-Ri Li
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
3
|
Müller SM, Jücker M. The Functional Roles of the Src Homology 2 Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:5254. [PMID: 38791291 PMCID: PMC11121230 DOI: 10.3390/ijms25105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The src homology 2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are two proteins involved in intracellular signaling pathways and have been linked to the pathogenesis of several diseases. Both protein paralogs are well known for their involvement in the formation of various kinds of cancer. SHIP1, which is expressed predominantly in hematopoietic cells, has been implicated as a tumor suppressor in leukemogenesis especially in myeloid leukemia, whereas SHIP2, which is expressed ubiquitously, has been implicated as an oncogene in a wider variety of cancer types and is suggested to be involved in the process of metastasis of carcinoma cells. However, there are numerous other diseases, such as inflammatory diseases as well as allergic responses, Alzheimer's disease, and stroke, in which SHIP1 can play a role. Moreover, SHIP2 overexpression was shown to correlate with opsismodysplasia and Alzheimer's disease, as well as metabolic diseases. The SHIP1-inhibitor 3-α-aminocholestane (3AC), and SHIP1-activators, such as AQX-435 and AQX-1125, and SHIP2-inhibitors, such as K161 and AS1949490, have been developed and partly tested in clinical trials, which indicates the importance of the SHIP-paralogs as possible targets in the therapy of those diseases. The aim of this article is to provide an overview of the current knowledge about the involvement of SHIP proteins in the pathogenesis of cancer and other human diseases and to create awareness that SHIP1 and SHIP2 are more than just tumor suppressors and oncogenes.
Collapse
Affiliation(s)
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
4
|
Bradshaw WJ, Kennedy EC, Moreira T, Smith LA, Chalk R, Katis VL, Benesch JLP, Brennan PE, Murphy EJ, Gileadi O. Regulation of inositol 5-phosphatase activity by the C2 domain of SHIP1 and SHIP2. Structure 2024; 32:453-466.e6. [PMID: 38309262 PMCID: PMC10997489 DOI: 10.1016/j.str.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes.
Collapse
Affiliation(s)
- William J Bradshaw
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| | - Emma C Kennedy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Tiago Moreira
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Luke A Smith
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rod Chalk
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Justin L P Benesch
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul E Brennan
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Emma J Murphy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
5
|
Meyer ST, Fernandes S, Anderson RE, Pacherille A, Toms B, Kerr WG, Chisholm JD. Structure-Activity Studies on Bis-Sulfonamide SHIP1 Activators. Molecules 2023; 28:8048. [PMID: 38138538 PMCID: PMC10745928 DOI: 10.3390/molecules28248048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) enzyme opposes the activity of PI3K and therefore is of interest in the treatment of inflammatory disorders. Recent results also indicate that SHIP1 promotes phagolysosomal degradation of lipids by microglia, suggesting that the enzyme may be a target for the treatment of Alzheimer's disease. Therefore, small molecules that increase SHIP1 activity may have benefits in these areas. Recently we discovered a bis-sulfonamide that increases the enzymatic activity of SHIP1. A series of similar SHIP1 activators have been synthesized and evaluated to determine structure-activity relationships and improve in vivo stability. Some new analogs have now been found with improved potency. In addition, both the thiophene and the thiomorpholine in the parent structure can be replaced by groups without a low valent sulfur atom, which provides a way to access activators that are less prone to oxidative degradation.
Collapse
Affiliation(s)
- Shea T. Meyer
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Angela Pacherille
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Bonnie Toms
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - William G. Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Ehm P, Rietow R, Wegner W, Bußmann L, Kriegs M, Dierck K, Horn S, Streichert T, Horstmann M, Jücker M. SHIP1 Is Present but Strongly Downregulated in T-ALL, and after Restoration Suppresses Leukemia Growth in a T-ALL Xenotransplantation Mouse Model. Cells 2023; 12:1798. [PMID: 37443832 PMCID: PMC10341211 DOI: 10.3390/cells12131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Ruth Rietow
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Wiebke Wegner
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Oncology, Clinic for Radiation Therapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kevin Dierck
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University Hospital Köln, 50937 Cologne, Germany
| | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Ling XJ, Wei JF, Zhu Y. Aiming to IgE: Drug development in allergic diseases. Int Immunopharmacol 2023; 121:110495. [PMID: 37348229 DOI: 10.1016/j.intimp.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The incidence of allergic disease significantly increases in recent decades, causing it become a major public health problem all over the world. The common allergic diseases such as allergic dermatitis, allergy rhinitis, allergic asthma and food allergy are mediated, at least in part, by immunoglobulin E (IgE), and so IgE acts as a central role in allergic diseases. IgE can interact with its high-affinity receptor (FcεRⅠ) which is primarily expressed on tissue-resident mast cells and circulating basophils, initiating intracellular signal transduction and then causing the activation and degranulation of mast cells and basophils. On the other hand, IgE interaction with its low-affinity receptor (CD23), can regulate various IgE-mediated immune responses including IgE-allergen complex presentation, IgE synthesis, the growth and differentiation of both B and T cells, and the secretion of pro-inflammatory mediators. With the deeper mechanism research for allergic diseases, new therapeutic strategies for interfering IgE are developed and receive a great attention. In this review, we summarize a current profile of therapeutic strategies for interfering IgE in allergic diseases. Besides, we suggest that targeting memory B cells (including long-lived plasma cells and (or) IgE+ memory B cells) may help to completely control allergic diseases, and highlight that the development of drugs synergistically aiming to multiple targets can be a better choice for improving treatment efficacy which results from allergic diseases as the systemic disorders caused by an impaired immune system.
Collapse
Affiliation(s)
- Xiao-Jing Ling
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Ying Zhu
- Department of Blood Transfusion, Ganzhou Key Laboratory of Anesthesiology, Anesthesia and Surgery Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
9
|
Nohara LL, Ellis SLS, Dreier C, Dada S, Saranchova I, Munro L, Pfeifer CG, Coyle KM, Morrice JR, Shim DJS, Ahn P, De Voogd N, Williams DE, Cheng P, Garrovillas E, Andersen RJ, Jefferies WA. A novel cell-based screen identifies chemical entities that reverse the immune-escape phenotype of metastatic tumours. Front Pharmacol 2023; 14:1119607. [PMID: 37256225 PMCID: PMC10225555 DOI: 10.3389/fphar.2023.1119607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.
Collapse
Affiliation(s)
- Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Krysta M. Coyle
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica R. Morrice
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Joo Sung Shim
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Paul Ahn
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nicole De Voogd
- Netherlands Centre for Biodiversity Naturalis, Leiden, Netherlands
| | - David E. Williams
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Qin Q, Wang Y, Huang X, Jin X. SHIP-1 affects herpetic simplex keratitis prognosis by mediating CD4 + T lymphocytes migration through PI3K signaling and transcription factor KLF2 in the cornea. Antiviral Res 2022; 207:105424. [PMID: 36155071 DOI: 10.1016/j.antiviral.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Herpetic simplex keratitis (HSK) mainly represents an immune cell-mediated, and more specifically, CD4+ T cell-orchestrated inflammatory response to virus invasion. The virus in infected corneas could be easily inhibited or hidden in the trigeminal ganglion using antiviral drugs, but the immune-related inflammation will last for a long time and lead to significant complications. In the present study, we found that the subconjunctival injection of SHIP-1 activator AQX1125 in mouse HSK model alleviated the corneal inflammatory and angiogenic responses, as well as promoted quicker recovery of the cornea, with significantly fewer infiltration of CD4+ T lymphocytes. Furthermore, using primary CD4+ T lymphocytes, we observed that by modulating PI3K signaling and the expression of transcription factors KLF2 and CCR7, SHIP-1 could significantly influence the migration of lymphocytes toward CCL19 and 21, which are the "exit cues" for cells to emigrate from inflammatory sites. Thus, we propose that the pharmacological SHIP-1 activation represents a new potential therapeutic approach to control HSK lesions, and its function on the CCR7-CCL19/21 biological axis may be a novel underlying mechanism for its anti-inflammatory action.
Collapse
Affiliation(s)
- Qiyu Qin
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Yi Wang
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Xiaodan Huang
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China
| | - Xiuming Jin
- Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University No.1 Xihu Boulevard, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Widyadharma IPE, Dewi VT, Wijayanti IAS, Santosa KB. Efficacy and safety of oral pharmacological and supplementary therapies in bladder pain syndrome: a systematic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTreatment goals in bladder pain syndrome (BPS) or interstitial cystitis (IC) focusing on relieving symptoms to improve quality of life and avoiding adverse events (AEs) since curative treatment for BPS/IC is not available. The readily available pharmacologic options for BPS/IC including oral, intravesical, and transdermal therapy. The purpose of this study is to review randomized trial studies over the last 15 years examining the efficacy and safety of oral pharmacological and supplementary therapies for BPS/IC. A systematic search was conducted in PubMed and Medline Library. Only randomized-controlled trials and randomized comparative trials published between 2005 and 2020 on the efficacy and safety of oral therapies for BPS/IC were included. The keywords used were “bladder pain syndrome”, or “interstitial cystitis”, and “random” or “trial”. From 629 articles, nine were included in this review. Oral therapies included consist of cyclosporine A (CyA), amitriptyline, amitriptyline plus alpha lipoic acid (ALA) and omega-3 fatty acids (n-3 PUFA), PD-0299685, sildenafil, pentosan polysulfate sodium (PPS), AQX-1125, and hydrogen-rich water. Among retrieved trials, amitriptyline in combination with ALA and n-3 PUFA, sildenafil, and cyclosporine A proved their efficacy for BPS/IC. Sildenafil was generally well tolerated, while amitriptyline and CyA must be used with caution, the supplementation of ALA/n-3 PUFAs possibly lower dosage of amitriptyline, subsequently reduce its AEs. CyA was superior to PPS but possessed greater AEs. Further studies focusing on etiopathology and phenotype differentiation of this syndrome will greatly contribute to the development of effective therapy.
Collapse
|
12
|
Glück M, Dally L, Jücker M, Ehm P. JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative Neoplasm (MPN). Int J Biochem Cell Biol 2022; 149:106229. [PMID: 35609769 DOI: 10.1016/j.biocel.2022.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myeloproliferative neoplasms (MPN) are a group of chronic haematological disorders. At the molecular level of MPN cells, the gain-of-function mutation V617F of the Janus kinase 2 (JAK2) leads to a constitutive activation of the downstream signaling cascade and is a conventional criteria for diagnosis. Here, the functional role of the tumor suppressor SHIP1 (SH2 domain containing inositol-5 phosphatase 1) in the pathogenesis of MPNs was investigated. METHODS Primary blood samples of MPN-patients were analysed using Western Blot technique regarding the level of SHIP1 expression. Moreover, SHIP1 and SHIP1-mutations were lentivirally transduced in the JAK2-V617F-positive UKE-1 cell line and expression was monitored over time. In addition, we examined SHIP1 reconstitution by inhibition of JAK2-V617F. Furthermore, we transfected SHIP1-expressing cells with a JAK2-V617F respectively a BCR-ABL construct and investigated changes in SHIP1 expression. RESULTS Four out of five MPN-patient samples showed a loss or a reduction in SHIP1 expression. We identified JAK2 as a negative regulator of SHIP1 expression in MPN cells and inhibition of JAK2-V617F implicates a reconstituted SHIP1 expression. This is significant because SHIP1 negatively regulates the AKT signaling pathway and in consequence the reconstitution of SHIP1 expression leads to a decreased cell growth. Moreover, we examined the impact of SHIP1 and patient-derived SHIP1-mutations on AKT phosphorylation and show the benefit of a combined therapy in MPN cells with inhibitors of the AKT/mTOR pathway. CONCLUSION In summary, the data suggest that SHIP1 may play a role during the development of MPNs and could be the basis for establishing a targeted therapy.
Collapse
Affiliation(s)
- Madeleine Glück
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lina Dally
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
13
|
Dungan OM, Dormann S, Fernandes S, Duffy BC, Effiong DG, Kerr WG, Chisholm JD. Synthetic studies on the indane SHIP1 agonist AQX-1125. Org Biomol Chem 2022; 20:4016-4020. [PMID: 35506893 DOI: 10.1039/d2ob00555g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AQX-1125 is an indane based SHIP1 agonist that has been evaluated in the clinic for the treatment of bladder pain syndrome/interstitial cystitis. To support our own studies on SHIP1 agonists as potential treatments for IBD and Crohn's disease, a new synthetic route to the SHIP1 agonist AQX-1125 has been developed. This sequence utilizes a hydroxy-acid intermediate which allows for ready differentiation of the C6 and C7 positions. The role of the C17 alkene in the biological activity of the system is also investigated, and this functional group is not required for SHIP1 agonist activity. While AQX-1125 shows SHIP1 agonist activity in enzyme assays, it does not show activity in cell based assays similar to other SHIP1 agonists, which limits the utility of this molecule.
Collapse
Affiliation(s)
- Otto M Dungan
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Shawn Dormann
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian C Duffy
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Daniel G Effiong
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - William G Kerr
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA. .,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 2021; 20:741-769. [PMID: 34127844 PMCID: PMC9297732 DOI: 10.1038/s41573-021-00209-1] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Overactive phosphoinositide 3-kinase (PI3K) in cancer and immune dysregulation has spurred extensive efforts to develop therapeutic PI3K inhibitors. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval - the PI3Kα isoform-selective inhibitor alpelisib for the treatment of breast cancer and inhibitors mainly aimed at the leukocyte-enriched PI3Kδ in B cell malignancies. In addition to targeting cancer cell-intrinsic PI3K activity, emerging evidence highlights the potential of PI3K inhibitors in cancer immunotherapy. This Review summarizes key discoveries that aid the clinical translation of PI3Kα and PI3Kδ inhibitors, highlighting lessons learnt and future opportunities.
Collapse
Affiliation(s)
| | - Matthew W D Perry
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer R Brown
- CLL Center, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Paris, France
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
16
|
Application of marine natural products in drug research. Bioorg Med Chem 2021; 35:116058. [PMID: 33588288 DOI: 10.1016/j.bmc.2021.116058] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
New diseases are emerging as the environment changes, so drug manufacturers are always on the lookout for new resources to develop effective and safe drugs. In recent years, many bioactive substances have been produced in the marine environment, which represents an alternative resource for new drugs used to combat major diseases such as cancer or inflammation. Many marine-derived medicinal substances are in preclinical or early stage of clinical development, and some marine drugs have been put on the market, such as ET743 (Yondelis®). This review presents the sources, activities, mechanisms of action and syntheses of bioactive substances based on marine natural products in clinical trials and on the market, which is helpful to understand the progress of drug research by application of marine natural products.
Collapse
|
17
|
Dispenza MC, Bochner BS, MacGlashan DW. Targeting the FcεRI Pathway as a Potential Strategy to Prevent Food-Induced Anaphylaxis. Front Immunol 2021; 11:614402. [PMID: 33391286 PMCID: PMC7773654 DOI: 10.3389/fimmu.2020.614402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Despite attempts to halt it, the prevalence of food allergy is increasing, and there is an unmet need for strategies to prevent morbidity and mortality from food-induced allergic reactions. There are no known medications that can prevent anaphylaxis, but several novel therapies show promise for the prevention of food-induced anaphylaxis through targeting of the high-affinity IgE receptor (FcϵRI) pathway. This pathway includes multiple candidate targets, including tyrosine kinases and the receptor itself. Small molecule inhibitors of essential kinases have rapid onset of action and transient efficacy, which may be beneficial for short-term use for immunotherapy buildup or desensitizations. Short courses of FDA-approved inhibitors of Bruton’s tyrosine kinase can eliminate IgE-mediated basophil activation and reduce food skin test size in allergic adults, and prevent IgE-mediated anaphylaxis in humanized mice. In contrast, biologics may provide longer-lasting protection, albeit with slower onset. Omalizumab is an anti-IgE antibody that sequesters IgE, thereby reducing FcϵRI expression on mast cells and basophils. As a monotherapy, it can increase the clinical threshold dose of food allergen, and when used as an adjunct for food immunotherapy, it decreases severe reactions during buildup phase. Finally, lirentelimab, an anti-Siglec-8 antibody currently in clinical trials, can prevent IgE-mediated anaphylaxis in mice through mast cell inhibition. This review discusses these and other emerging therapies as potential strategies for preventing food-induced anaphylaxis. In contrast to other food allergy treatments which largely focus on individual allergens, blockade of the FcϵRI pathway has the advantage of preventing clinical reactivity from any food.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Donald W MacGlashan
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Chamberlain TC, Cheung ST, Yoon JSJ, Ming-Lum A, Gardill BR, Shakibakho S, Dzananovic E, Ban F, Samiea A, Jawanda K, Priatel J, Krystal G, Ong CJ, Cherkasov A, Andersen RJ, McKenna SA, Van Petegem F, Mui ALF. Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. iScience 2020; 23:101433. [PMID: 32823063 PMCID: PMC7452241 DOI: 10.1016/j.isci.2020.101433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-inflammatory actions of interleukin-10 (IL10) are thought to be mediated primarily by the STAT3 transcription factor, but pro-inflammatory cytokines such as interleukin-6 (IL6) also act through STAT3. We now report that IL10, but not IL6 signaling, induces formation of a complex between STAT3 and the inositol polyphosphate-5-phosphatase SHIP1 in macrophages. Both SHIP1 and STAT3 translocate to the nucleus in macrophages. Remarkably, sesquiterpenes of the Pelorol family, which we previously described as allosteric activators of SHIP1 phosphatase activity, could induce SHIP1/STAT3 complex formation in cells and mimic the anti-inflammatory action of IL10 in a mouse model of colitis. Using crystallography and docking studies we identified a drug-binding pocket in SHIP1. Our studies reveal new mechanisms of action for both STAT3 and SHIP1 and provide a rationale for use of allosteric SHIP1-activating compounds, which mimic the beneficial anti-inflammatory actions of IL10. Video Abstract
Loss of normal interleukin-10 (IL10) function results in inflammatory diseases IL10 or SHIP1 agonists induce formation of SHIP1/STAT3 complexes SHIP1 Y190 phosphorylation is required for SHIP1/STAT3 complex formation SHIP1 agonists mimic IL10 anti-inflammatory action in a mouse model of colitis
Collapse
Affiliation(s)
- Thomas C Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jeff S J Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Andrew Ming-Lum
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Bernd R Gardill
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Soroush Shakibakho
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Edis Dzananovic
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fuqiang Ban
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Kamaldeep Jawanda
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - John Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gerald Krystal
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher J Ong
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Artem Cherkasov
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L-F Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
19
|
Systemic Therapy for Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC): Systematic Review of Published Trials in the Last 5 Years. CURRENT BLADDER DYSFUNCTION REPORTS 2020. [DOI: 10.1007/s11884-020-00592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Lemm EA, Valle-Argos B, Smith LD, Richter J, Gebreselassie Y, Carter MJ, Karolova J, Svaton M, Helman K, Weston-Bell NJ, Karydis L, Williamson CT, Lenz G, Pettigrew J, Harwig C, Stevenson FK, Cragg M, Forconi F, Steele AJ, Cross J, Mackenzie L, Klener P, Packham G. Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells. Clin Cancer Res 2020; 26:1700-1711. [PMID: 31831562 PMCID: PMC7124891 DOI: 10.1158/1078-0432.ccr-19-2202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Enzyme Activators/pharmacology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Sesquiterpenes/pharmacology
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Elizabeth A Lemm
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lindsay D Smith
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Johanna Richter
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yohannes Gebreselassie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Matthew J Carter
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jana Karolova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Michael Svaton
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nicola J Weston-Bell
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Laura Karydis
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chris T Williamson
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Jeremy Pettigrew
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark Cragg
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer Cross
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Lloyd Mackenzie
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
21
|
Mortazavi‐Jahromi SS, Aslani M, Omidian S, Ahmadzadeh A, Rezaieyazdi Z, Mirshafiey A. Immunopharmacological effect of β‐
d
‐mannuronic acid (M2000), as a new immunosuppressive drug, on gene expression of miR‐155 and its target molecules (SOCS1, SHIP1) in a clinical trial on rheumatoid arthritis patients. Drug Dev Res 2019; 81:295-304. [DOI: 10.1002/ddr.21619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Saiedeh Omidian
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim HospitalShahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
22
|
MacDonald SM. History of Histamine-Releasing Factor (HRF)/Translationally Controlled Tumor Protein (TCTP) Including a Potential Therapeutic Target in Asthma and Allergy. Results Probl Cell Differ 2019; 64:291-308. [PMID: 29149416 DOI: 10.1007/978-3-319-67591-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histamine-releasing factor (HRF) also known as translationally controlled tumor protein (TCTP) is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here we will highlight the subcloning of the molecule, its clinical implications, as well as an inducible-transgenic mouse. Particular attention will be paid to its extracellular functioning and its potential role as a therapeutic target in asthma and allergy. The cells and the cytokines that are produced when stimulated or primed by HRF/TCTP will be detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP or at least its mouse counterpart appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells that are activated by HRF/TCTP participate in the allergic response, the extracellular functions of HRF/TCTP could exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of the phosphatase SHIP-1 have been shown to modulate the P13 kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
Affiliation(s)
- Susan M MacDonald
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.69, Baltimore, MD, 21224, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Rasmussen P, Spillner E, Hoffmann HJ. Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunol Lett 2019; 210:40-46. [PMID: 31004680 DOI: 10.1016/j.imlet.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/20/2022]
Abstract
IgE-mediated activation of basophil granulocytes and mast cells follows a bell-shaped dose-response curve. The decreased activation at supraoptimal allergen stimulation is thought to be associated with SH2-containing inositol-5'-phosphatase 1 (SHIP-1). SHIP-1 phosphorylation is inversely related to IgE-mediated releasability of basophils. This study sought to clarify the regulatory role of SHIP-1 in degranulation of basophil granulocytes and mast cells by selective inhibition of the phosphatase function of SHIP-1with 3-α-aminocholestane (3-α-AC). Six grass pollen allergic patients, six non-responder patients and six cultured human primary mast cell lines were included. The effect of 3-α-AC (1-60 μM, 30 min, 37 °C) was analyzed at individual suboptimal, optimal and supra-optimal allergen concentrations. The activity, upregulation of CD63, measured at different conditions was compared to evaluate the maximal effect of selective SHIP-1 inhibition. Basophils of five non-responder patients were treated with 3-α-AC (10 μM, 30 min, 37 °C). At high concentrations (>60 μM) of 3-α-AC, cells appeared to enter apoptosis. The median reactivity increased from 27.1% to 44.9% CD63+ basophils at 10 μM of 3-α-AC and suboptimal allergen stimulation (p = 0.0153). There was no effect on blood basophils of 3-α-AC at optimal or supra-optimal allergen concentrations. In contrast, treatment with more than 6 μM 3-α-AC significantly inhibited mast cell reactivity. 10 μM 3-α-AC reduced median reactivity from 32.85% to 16.5% CD63+ mast cells (p = 0.0465). Treatment with 3-α-AC did not increase response of basophils of non-responder patients. Modulating blood basophils with 3-α-AC enhanced reactivity only at suboptimal allergen concentration, and basophils from non-responders did not regain responsiveness to IgE stimulation. 3-α-AC inhibited the IgE response of mast cells in a dose dependent manner.
Collapse
Affiliation(s)
- Pernille Rasmussen
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
24
|
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis are regarded as a diseases of accelerated lung ageing and show all of the hallmarks of ageing, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and a low grade chronic inflammation due to senescence-associated secretory phenotype (SASP). Many of these ageing mechanisms are driven by exogenous and endogenous oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerate the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs and dietary interventions are now in development to treat chronic lung disease.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
25
|
Dellis AE, Papatsoris AG. Bridging pharmacotherapy and minimally invasive surgery in interstitial cystitis/bladder pain syndrome treatment. Expert Opin Pharmacother 2018; 19:1369-1373. [PMID: 30074829 DOI: 10.1080/14656566.2018.1505865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interstitial cystitis/bladder pain syndrome (IC/BPS) is a painful and debilitating clinical entity which is challenging to diagnose and even more difficult to treat. Unfortunately, none of the existing oral and intravesical medications have been established as effective and therefore relevant research is ongoing. Areas covered: In this review, the authors present established and emerging treatment options for IC/BPS in terms of medication and minimal invasive procedures. Both American and European Urological Association Guidelines recommend multimodal behavioral techniques alongside oral (e.g. amitriptyline and pentosan polysulfate sodium) or minimally invasive treatments (e.g. dimethyl sulfoxide, botulinum toxin, chondroitin sulfate, triamcinolone, hyaluronic acid, and lidocaine). Novel treatment modalities include immunomodulating drugs, stem cell therapy, nerve growth factor, and ASP6294. Expert opinion: IC/BPS is still a pathophysiological enigma with multifactorial etiopathogenesis that may be controlled but not completely cured. Patient-tailored phenotype-directed multimodal therapy is the most promising treatment strategy. Combined phenotypic categorization with specific biomarkers could help toward better treatment.
Collapse
Affiliation(s)
- Athanasios E Dellis
- a 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece.,b 1st Department of Urology, Laikon General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios G Papatsoris
- c 2nd Department of Urology, Sismanogleion General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
26
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Pharmacological management of interstitial cystitis /bladder pain syndrome and the role cyclosporine and other immunomodulating drugs play. Expert Rev Clin Pharmacol 2018; 11:495-505. [PMID: 29575959 DOI: 10.1080/17512433.2018.1457435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Interstitial cystitis/bladder pain syndrome (IC/BPS) is a symptomatic disorder characterized by pelvic pain and urinary frequency. Immunological responses are considered as one of the possible etiologies of IC/BPS. In this review, we focused on emerging targets, especially on those modulating immunological mechanisms for the treatments of IC/BPS. Area covered: This review was based on the literature search of PubMed/MEDLINE, for which key words following bladder pain syndrome, interstitial cystitis, and/or cyclosporine A (CyA) were used. We discussed current treatments and the drugs targeting the immune responses including CyA and other drugs with different mechanisms including NGF antibodies and P2X3 antagonists. Expert commentary: IC/BPS is often difficult to treat by current treatments. Immunosuppression agents, especially CyA are considered as effective treatments for IC/BPS with Hunner's lesion because these drugs suppress the inflammatory responses in the bladder underlying urinary symptoms of the disease. Base on the previous literatures, we should use CyA for the refractory IC/BPS, especially that with Hunner's lesion due to its side effects. New drugs targeting other mechanisms such as urothelial or afferent nerve dysfunction or new delivery systems such as sustained drug releasing devices or gene therapy techniques may be promising for the future treatments of IC/BPS.
Collapse
Affiliation(s)
- Teruyuki Ogawa
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan.,b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Osamu Ishizuka
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tomohiro Ueda
- c Department of Urology , Ueda Clinic , Kyoto , Japan
| | - Pradeep Tyagi
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael B Chancellor
- d Department of Urology , Oakland University William Beaumont School of Medicine , Royal Oak , MI , USA
| | - Naoki Yoshimura
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,c Department of Urology , Ueda Clinic , Kyoto , Japan
| |
Collapse
|
27
|
Mortazavi-Jahromi SS, Farazmand A, Motamed N, Navabi SS, Mirshafiey A. Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway. Int Immunopharmacol 2018; 55:323-329. [DOI: 10.1016/j.intimp.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
28
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Current Pharmacologic Approaches in Painful Bladder Research: An Update. Int Neurourol J 2017; 21:235-242. [PMID: 29298474 PMCID: PMC5756823 DOI: 10.5213/inj.1735022.511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
The symptoms of interstitial cystitis (IC)/bladder pain syndrome (BPS) may have multiple causes and involve many contributing factors. Traditional treatments (intravesical instillations) have had a primary focus on the bladder as origin of symptoms without adequately considering the potential influence of other local (pelvic) or systemic factors. Systemic pharmacological treatments have had modest success. A contributing factor to the low efficacy is the lack of phenotyping the patients. Individualized treatment based on is desirable, but further phenotype categorization is needed. There seems to be general agreement that IC is a unique disease and that BPS is a syndrome with multiple pathophysiologies, but this has so far not been not been well reflected in preclinical research with the aim of finding new pharmacological treatments. Current research approaches, including anti-nerve growth factor treatment, anti-tumor necrosis factor-α treatment, activation of SHIP1 (AQX-1125), and P2X3 receptor antagonists, and α1-adrenoceptor antagonists are potential systemic treatments, implying that not only the bladder is exposed to the administered drug, which may be beneficial if the IC/BPS is a bladder manifestation of a systemic disease, or negative (adverse effects) if it is a local bladder condition. Local treatment approaches such as the antagonism of Toll-like receptors (which still is only experimental) and intravesical liposomes (with positive proof-of-concept), may have the advantages of a low number of systemic adverse effects, but cannot be expected to have effects on symptoms generated outside the bladder. Assessment of which of the treatment approaches discussed in this review that can be developed into useful therapies requires further studies.
Collapse
|
30
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|
31
|
Mykoniatis I, Katafigiotis I, Sfoungaristos S, Yutkin V. Immunotherapy options for painful bladder syndrome: what’s the potential? Expert Opin Biol Ther 2017; 17:1471-1480. [DOI: 10.1080/14712598.2017.1375094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ioannis Mykoniatis
- 1st Urology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Vladimir Yutkin
- Hadassah and Hebrew University Hospital, Urology Department, Jerusalem, Israel
| |
Collapse
|
32
|
Cross J, Stenton GR, Harwig C, Szabo C, Genovese T, Di Paola R, Esposito E, Cuzzocrea S, Mackenzie LF. AQX-1125, small molecule SHIP1 activator inhibits bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2017; 174:3045-3057. [PMID: 28658529 PMCID: PMC5573425 DOI: 10.1111/bph.13934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The phosphatase SHIP1 negatively regulates the PI3K pathway, and its predominant expression within cells of the haematopoietic compartment makes SHIP1 activation a novel strategy to limit inflammatory signalling generated through PI3K. AQX-1125 is the only clinical-stage, orally administered, SHIP1 activator. Here, we demonstrate the prophylactic and therapeutic effects of AQX-1125, in a mouse model of bleomycin-induced lung fibrosis. EXPERIMENTAL APPROACH For prophylactic evaluation, AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or dexamethasone (1 mg·kg-1 ·d-1 , i.p.) were given to CD-1 mice starting 3 days before intratracheal administration of bleomycin (0.1 IU per mouse) and continued daily for 7 or 21 days. Therapeutic potentials of AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or pirfenidone (90 mg·kg-1 ·d-1 , p.o.) were assessed by initiating treatment 13 days after bleomycin instillation and continuing until day 28. KEY RESULTS Given prophylactically, AQX-1125 (10 and 30 mg·kg-1 ) reduced histopathological changes in lungs, 7 and 21 days following bleomycin-induced injury. At the same doses, AQX-1125 reduced the number of total leukocytes, neutrophil activity, TGF-β immunoreactivity and soluble collagen in lungs. Administered therapeutically, AQX-1125 (10 and 30 mg·kg-1 ) improved lung histopathology, cellular infiltration and reduced lung collagen content. At 30 mg·kg-1 , the effects of AQX-1125 were similar to those of pirfenidone (90 mg·kg-1 ) with corresponding improvements in disease severity. CONCLUSIONS AND IMPLICATIONS AQX-1125 prevented bleomycin-induced lung injury during the inflammatory and fibrotic phases. AQX-1125, given therapeutically, modified disease progression and improved survival, as effectively as pirfenidone.
Collapse
Affiliation(s)
| | | | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Csaba Szabo
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Emanuale Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | | |
Collapse
|
33
|
Bian M, Du X, Wang P, Cui J, Xu J, Gu J, Zhang T, Chen Y. Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration. Sci Rep 2017; 7:6015. [PMID: 28729651 PMCID: PMC5519667 DOI: 10.1038/s41598-017-06471-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/14/2017] [Indexed: 01/17/2023] Open
Abstract
Photoreceptor degeneration is a central pathology of various retinal degenerative diseases which currently lack effective therapies. Antioxidant and anti-inflammatory activities are noted for Panax notoginsenoside saponins (PNS) and related saponin compound(s). However, the photoreceptor protective potentials of PNS or related saponin compound(s) remain unknown. The current study revealed that PNS protected against photoreceptor loss in bright light-exposed BALB/c mice. Combination of ginsenoside Rb1 and Rd, two major saponin compounds of PNS, recapitulated the retinal protection of PNS and attenuated retinal oxidative stress and inflammatory changes. Rb1 or Rd partially alleviated all-trans-Retinal-induced oxidative stress in ARPE19 cells. Rb1 or Rd suppressed lipopolysaccharides (LPS)-induced proinflammatory gene expression in ARPE19 and RAW264.7 cells. Rb1 or Rd also modulated the expression of proinflammatory microRNA, miR-155 and its direct target, anti-inflammatory SHIP1, in LPS-stimulated RAW264.7 cells. The retinal expression of miR-155 and SHIP1 was altered preceding extensive retinal damage, which was maintained at normal level by Rb1 and Rd combination. This work shows for the first time that altered expression of miR-155 and SHIP1 are involved in photoreceptor degeneration. Most importantly, novel retinal protective activities of combination of Rb1 and Rd justify further evaluation for the treatment of related retinal degenerative disorders.
Collapse
Affiliation(s)
- Minjuan Bian
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoye Du
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Peiwei Wang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingang Cui
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing Xu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Jiangping Gu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, 201203, China
| | - Teng Zhang
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yu Chen
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
34
|
Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 2017; 47:932-945. [PMID: 28480512 DOI: 10.1002/eji.201646795] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
The phosphoinositide phosphatase SHIP is a critical regulator of immune cell activation. Despite considerable study, the mechanisms controlling SHIP activity to ensure balanced cell activation remain incompletely understood. SHIP dampens BCR signaling in part through its association with the inhibitory coreceptor Fc gamma receptor IIB, and serves as an effector for other inhibitory receptors in various immune cell types. The established paradigm emphasizes SHIP's inhibitory receptor-dependent function in regulating phosphoinositide 3-kinase signaling by dephosphorylating the phosphoinositide PI(3,4,5)P3 ; however, substantial evidence indicates that SHIP can be activated independently of inhibitory receptors and can function as an intrinsic brake on activation signaling. Here, we integrate historical and recent reports addressing the regulation and function of SHIP in immune cells, which together indicate that SHIP acts as a multifunctional protein controlled by multiple regulatory inputs, and influences downstream signaling via both phosphatase-dependent and -independent means. We further summarize accumulated evidence regarding the functions of SHIP in B cells, T cells, NK cells, dendritic cells, mast cells, and macrophages, and data suggesting defective expression or activity of SHIP in autoimmune and malignant disorders. Lastly, we discuss the biological activities, therapeutic promise, and limitations of small molecule modulators of SHIP enzymatic activity.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
35
|
Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol 2017; 139:3-14. [PMID: 28411115 DOI: 10.1016/j.bcp.2017.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Marine sponges have consistently been the richest source of new marine natural products with unprecedented chemical scaffolds and potent biological activities that have been reported in the chemical literature since the early 1970s. During the last 40years, chemists in the Andersen laboratory at UBC, in collaboration with biologists, have discovered many novel bioactive sponge natural products. Four experimental drug candidates for treatment of inflammation and cancer, that were inspired by members of this sponge natural product collection, have progressed to phase I/II/III clinical trials. This review recounts the scientific stories behind the discovery and development of these four drug candidates; IPL576,092, HTI-286 (Taltobulin), EPI-506 (Ralaniten acetate), and AQX-1125.
Collapse
Affiliation(s)
- Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
36
|
Abstract
Chronic obstructive pulmonary disease (COPD) is regarded as a disease of accelerated lung aging. This affliction shows all of the hallmarks of aging, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence, and a low-grade chronic inflammation (inflammaging). Many of these pathways are driven by chronic exogenous and endogenous oxidative stress. There is also a reduction in antiaging molecules, such as sirtuins and Klotho, which further accelerate the aging process. COPD is associated with several comorbidities (multimorbidity), such as cardiovascular and metabolic diseases, that share the same pathways of accelerated aging. Understanding these mechanisms has helped identify several novel therapeutic targets, and several drugs and dietary interventions are now in development to treat multimorbidity.
Collapse
Affiliation(s)
- Peter J. Barnes
- National Heart and Lung Institute, Imperial College, London SW3 6LY, United Kingdom
| |
Collapse
|
37
|
Thomas MP, Erneux C, Potter BVL. SHIP2: Structure, Function and Inhibition. Chembiochem 2017; 18:233-247. [DOI: 10.1002/cbic.201600541] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy and Pharmacology; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Christophe Erneux
- I.R.I.B.H.M.; Université Libre de Bruxelles; Campus Erasme 808 Route de Lennik 1070 Brussels Belgium
| | - Barry V. L. Potter
- Drug Discovery and Medicinal Chemistry; Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT UK
| |
Collapse
|
38
|
Nickel JC, Egerdie B, Davis E, Evans R, Mackenzie L, Shrewsbury SB. A Phase II Study of the Efficacy and Safety of the Novel Oral SHIP1 Activator AQX-1125 in Subjects with Moderate to Severe Interstitial Cystitis/Bladder Pain Syndrome. J Urol 2016; 196:747-54. [DOI: 10.1016/j.juro.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Blair Egerdie
- University of Western Ontario, London, Ontario, Canada
| | - Edward Davis
- Citrus Valley Medical Centre, Glendora, California
| | - Robert Evans
- Wake Forest University, Winston Salem, North Carolina
| | - Lloyd Mackenzie
- Aquinox Pharmaceuticals (Canada), Inc., Vancouver, British Columbia, Canada
| | | |
Collapse
|
39
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
40
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Current and emerging drugs for interstitial cystitis/bladder pain syndrome (IC/BPS). Expert Opin Emerg Drugs 2015; 20:555-70. [DOI: 10.1517/14728214.2015.1105216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Leaker BR, Barnes PJ, O'Connor BJ, Ali FY, Tam P, Neville J, Mackenzie LF, MacRury T. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin Exp Allergy 2015; 44:1146-53. [PMID: 25040039 DOI: 10.1111/cea.12370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND SH2-containing inositol-5'-phosphatase 1 (SHIP1) is an endogenous inhibitor of the phosphoinositide-3-kinase pathway that is involved in the activation and chemotaxis of inflammatory cells. AQX-1125 is a first-in-class, oral SHIP1 activator with a novel anti-inflammatory mode of action. OBJECTIVE To evaluate the effects of AQX-1125 on airway responses to allergen challenge in mild-to-moderate asthmatic patients. METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was performed in 22 steroid-naïve mild-to-moderate asthmatics with a documented late-phase response to inhaled allergen (LAR). AQX-1125 (450 mg daily) or placebo was administered orally for 7 days. Allergen challenge was performed on day 6 (2 h postdose), followed by methacholine challenge (day 7), and induced sputum collection and fractional exhaled nitric oxide (FeNO). RESULTS AQX-1125 significantly attenuated the late-phase response compared with placebo (FEV1 4-10 h: mean difference 150 mL, 20%; P = 0.027) and significantly increased the minimum FEV1 during LAR (mean difference 180 mL; P = 0.014). AQX-1125 had no effect on the early-phase response. AQX-1125 showed a trend in reduction of sputum eosinophils, neutrophils and macrophages although this did not achieve significance as there were only 11 paired samples for analysis. There was no effect on methacholine responsiveness or FeNO. Pharmacokinetic data showed AQX-1125 was rapidly absorbed with geometric mean Cmax and AUC0-24 h values of 1417 ng/mL and 16 727 h ng/mL, respectively. AQX-1125 was well tolerated, but mild GI side-effects (dyspepsia, nausea and abdominal pain) were described in 4/22 subjects on active treatment. These side-effects were mild self-limiting, required no further treatment and did not lead to discontinuation of therapy. CONCLUSION AND CLINICAL RELEVANCE AQX-1125, a novel oral SHIP1 activator, significantly reduces the late response to allergen challenge, with a trend to reduce airway inflammation. AQX-1125 was safe and well tolerated and merits further investigation in inflammatory disorders.
Collapse
Affiliation(s)
- B R Leaker
- Respiratory Clinical Trials Ltd., London, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
43
|
Abstract
In ageing populations many patients have multiple diseases characterised by acceleration of the normal ageing process. Better understanding of the signalling pathways and cellular events involved in ageing shows that these are characteristic of many chronic degenerative diseases, such as chronic obstructive pulmonary disease (COPD), chronic cardiovascular and metabolic diseases, and neurodegeneration. Common mechanisms have now been identified in these diseases, which show evidence of cellular senescence with telomere shortening, activation of PI3K–AKT–mTOR signalling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and low grade chronic inflammation (“inflammaging”). Many of these pathways are driven by chronic oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerates the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs have already been developed that may slow the ageing process, as well as lifestyle interventions, such as diet and physical activity. This indicates that in the future new treatment approaches may target the common pathways involved in multimorbidity and this area of research should be given high priority. Thus, COPD should be considered as a component of multimorbidity and common disease pathways, particularly accelerated ageing, should be targeted.
Collapse
|
44
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
45
|
Patent highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
46
|
Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol 2014; 134:530-44. [DOI: 10.1016/j.jaci.2014.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/14/2023]
|
47
|
Abstract
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Siobhán Smith
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Caroline Jefferies
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
48
|
Trésaugues L, Silvander C, Flodin S, Welin M, Nyman T, Gräslund S, Hammarström M, Berglund H, Nordlund P. Structural basis for phosphoinositide substrate recognition, catalysis, and membrane interactions in human inositol polyphosphate 5-phosphatases. Structure 2014; 22:744-55. [PMID: 24704254 DOI: 10.1016/j.str.2014.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
SHIP2, OCRL, and INPP5B belong to inositol polyphosphate 5-phophatase subfamilies involved in insulin regulation and Lowes syndrome. The structural basis for membrane recognition, substrate specificity, and regulation of inositol polyphosphate 5-phophatases is still poorly understood. We determined the crystal structures of human SHIP2, OCRL, and INPP5B, the latter in complex with phosphoinositide substrate analogs, which revealed a membrane interaction patch likely to assist in sequestering substrates from the lipid bilayer. Residues recognizing the 1-phosphate of the substrates are highly conserved among human family members, suggesting similar substrate binding modes. However, 3- and 4-phosphate recognition varies and determines individual substrate specificity profiles. The high conservation of the environment of the scissile 5-phosphate suggests a common reaction geometry for all members of the human 5-phosphatase family.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Susanne Flodin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helena Berglund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm, Sweden; Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
49
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
50
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Chernoff D, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J Pharmacol 2013; 168:1519-29. [PMID: 23121409 DOI: 10.1111/bph.12038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The efficacy of AQX-1125, a small-molecule SH2-containing inositol-5'-phosphatase 1 (SHIP1) activator and clinical development candidate, is investigated in rodent models of inflammation. EXPERIMENTAL APPROACH AQX-1125 was administered orally in a mouse model of passive cutaneous anaphylaxis (PCA) and a number of rodent models of respiratory inflammation including: cigarette smoke, LPS and ovalbumin (OVA)-mediated airway inflammation. SHIP1 dependency of the AQX-1125 mechanism of action was investigated by comparing the efficacy in wild-type and SHIP1-deficient mice subjected to an intrapulmonary LPS challenge. RESULTS AQX-1125 exerted anti-inflammatory effects in all of the models studied. AQX-1125 decreased the PCA response at all doses tested. Using bronchoalveolar lavage (BAL) cell counts as an end point, oral or aerosolized AQX-1125 dose dependently decreased the LPS-mediated pulmonary neutrophilic infiltration at 3-30 mg kg⁻¹ and 0.15-15 μg kg⁻¹ respectively. AQX-1125 suppressed the OVA-mediated airway inflammation at 0.1-10 mg kg⁻¹. In the smoke-induced airway inflammation model, AQX-1125 was tested at 30 mg kg⁻¹ and significantly reduced the neutrophil infiltration of the BAL fluid. AQX-1125 (10 mg kg⁻¹) decreased LPS-induced pulmonary neutrophilia in wild-type mice but not in SHIP1-deficient mice. CONCLUSIONS The SHIP1 activator, AQX-1125, suppresses leukocyte accumulation and inflammatory mediator release in rodent models of pulmonary inflammation and allergy. As shown in the mouse model of LPS-induced lung inflammation, the efficacy of the compound is dependent on the presence of SHIP1. Pharmacological SHIP1 activation may have clinical potential for the treatment of pulmonary inflammatory diseases.
Collapse
|