1
|
Wang YG, Gan CP, Beukers-Korver J, Rosing H, Li WL, Wagenaar E, Lebre MC, Song JY, Pritchard C, Bin Ali R, Huijbers I, Beijnen JH, Schinkel AH. Intestinal human carboxylesterase 2 (CES2) expression rescues drug metabolism and most metabolic syndrome phenotypes in global Ces2 cluster knockout mice. Acta Pharmacol Sin 2024:10.1038/s41401-024-01407-4. [PMID: 39496863 DOI: 10.1038/s41401-024-01407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Carboxylesterase 2 (CES2) is expressed mainly in liver and intestine, but most abundantly in intestine. It hydrolyzes carboxylester, thioester, and amide bonds in many exogenous and endogenous compounds, including lipids. CES2 therefore not only plays an important role in the metabolism of many (pro-)drugs, toxins and pesticides, directly influencing pharmacology and toxicology in humans, but it is also involved in energy homeostasis, affecting lipid and glucose metabolism. In this study we investigated the pharmacological and physiological functions of CES2. We constructed Ces2 cluster knockout mice lacking all eight Ces2 genes (Ces2-/- strain) as well as humanized hepatic or intestinal CES2 transgenic strains in this Ces2-/- background. We showed that oral availability and tissue disposition of capecitabine were drastically increased in Ces2-/- mice, and tissue-specifically decreased by intestinal and hepatic human CES2 (hCES2) activity. The metabolism of the chemotherapeutic agent vinorelbine was strongly reduced in Ces2-/- mice, but only marginally rescued by hCES2 expression. On the other hand, Ces2-/- mice exhibited fatty liver, adipositis, hypercholesterolemia and diminished glucose tolerance and insulin sensitivity, but without body mass changes. Paradoxically, hepatic hCES2 expression rescued these metabolic phenotypes but increased liver size, adipose tissue mass and overall body weight, suggesting a "healthy" obesity phenotype. In contrast, intestinal hCES2 expression efficiently rescued all phenotypes, and even improved some parameters, including body weight, relative to the wild-type baseline values. Our results suggest that the induction of intestinal hCES2 may combat most, if not all, of the adverse effects of metabolic syndrome. These CES2 mouse models will provide powerful preclinical tools to enhance drug development, increase physiological insights, and explore potential solutions for metabolic syndrome-associated disorders.
Collapse
Affiliation(s)
- Yao-Geng Wang
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Chang-Pei Gan
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Joke Beukers-Korver
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Wen-Long Li
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Els Wagenaar
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ivo Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Lin X, Liu M, Yi Q, Zhou Y, Su J, Qing B, Lu Y, Pu C, Lan W, Zou L, Wang J. Design, synthesis, and evaluation of a carboxylesterase detection probe with therapeutic effects. Talanta 2024; 274:126060. [PMID: 38604044 DOI: 10.1016/j.talanta.2024.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this study, a lysosomal targeting fluorescent probe recognition on CEs was designed and synthesized. The obtained probe BF2-cur-Mor demonstrated excellent selectivity, sensitivity, pH-independence, and enzyme affinity towards CEs within 5 min. BF2-cur-Mor could enable recognition of intracellular CEs and elucidate that the CEs content of different cancer cells follows the rule of HepG2 > HCT-116 > A549 > HeLa, and the CEs expression level of hepatoma cancer cells far exceeds that of normal hepatic cells, being in good agreement with the previous reports. The ability of BF2-cur-Mor to monitor CEs in vivo was confirmed by zebrafish experiment. BF2-cur-Mor exhibits some pharmacological activity in that it can induce apoptosis in hepatocellular carcinoma cells but is weaker in normal hepatocyte cells, being expected to be a potential "diagnostic and therapeutic integration" tool for the clinical diagnosis of CEs-related diseases.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; Guangxi Health Science College, Nanning, 530023, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Min Liu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Ying Zhou
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Jinchan Su
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaqi Lu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Chunxiao Pu
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Lianjia Zou
- Guangxi Health Science College, Nanning, 530023, China.
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Han B, Lee‐Okada H, Ishimine M, Orita H, Nishikawa K, Takagaki T, Kajino K, Yokomizo T, Hino O, Kobayashi T. Combined use of irinotecan and p53 activator enhances growth inhibition of mesothelioma cells. FEBS Open Bio 2020; 10:2375-2387. [PMID: 32961616 PMCID: PMC7609812 DOI: 10.1002/2211-5463.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive malignant neoplasm which rapidly invades pleural tissues and has a poor prognosis. Here, we explore enhancement of the effect of irinotecan [camptothecin-11 (CPT-11)] by the p53-dependent induction of carboxylesterase 2 (CES2), a CPT-11-activating enzyme, in MM. The level of CES2 mRNA was greatly increased on treatment with nutlin-3a. A combination of CPT-11 and nutlin-3a inhibited the growth of MM cells more effectively than either drug alone. Knocking down CES2 in MM cells reduced the effect of the drug combination, and its forced expression in MESO4 cells enhanced the growth inhibitory activity of CPT-11 in the absence of nutlin-3a. Enhancement of the growth inhibitory activity of CPT-11 by nutlin-3a suggests a possible new combinatorial MM chemotherapy regimen.
Collapse
Affiliation(s)
- Bo Han
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Momoko Ishimine
- Department of BiochemistryJuntendo University Graduate School of MedicineTokyoJapan
| | - Hajime Orita
- Department of Gastroenterology and Minimally Invasive SurgeryJuntendo University Faculty of MedicineTokyoJapan
| | - Keiko Nishikawa
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Tetsuya Takagaki
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Kazunori Kajino
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Takehiko Yokomizo
- Department of BiochemistryJuntendo University Graduate School of MedicineTokyoJapan
| | - Okio Hino
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Toshiyuki Kobayashi
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| |
Collapse
|
5
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Emi T, Michaud K, Orton E, Santilli G, Linh C, O'Connell M, Issa F, Kennedy S. Ultrasonic Generation of Pulsatile and Sequential Therapeutic Delivery Profiles from Calcium-Crosslinked Alginate Hydrogels. Molecules 2019; 24:molecules24061048. [PMID: 30884862 PMCID: PMC6470886 DOI: 10.3390/molecules24061048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Control over of biological processes can potentially be therapeutically regulated through localized biomolecular deliveries. While implantable hydrogels can provide localized therapeutic deliveries, they do not traditionally provide the temporally complex therapeutic delivery profiles required to regulate complex biological processes. Ionically crosslinked alginate hydrogels have been shown to release encapsulated payloads in response to a remotely applied ultrasonic stimulus, thus potentially enabling more temporally complex therapeutic delivery profiles. However, thorough characterizations of how different types of therapeutic payloads are retained and ultrasonically released need to be performed. Additionally, the impact of potentially disruptive ultrasonic stimulations on hydrogel structure and temperature need to be characterized to better understand what range of ultrasonic signals can be used to trigger release. To perform these characterizations, calcium-crosslinked alginate hydrogels were loaded with various model macromolecules (dextrans), chemotherapeutics, and protein signaling factors and exposed to a variety of single-pulse and multi-pulse ultrasonic signals at various amplitudes and durations. In response to single-pulsed ultrasonic exposures, quantifications of molecular release, degree of gel erosion, and increase in hydrogel temperature revealed that the ultrasonic stimulations required for statistically significant therapeutic deliveries often eroded and heated the gels to unacceptable levels. However, multi-pulse ultrasonic exposures were shown to achieve significant amounts of therapeutic release while keeping gel erosion and temperature increase at modest levels. Finally, experiments were performed demonstrating that ultrasonic stimulation could be used to generate drug release profiles shown to have potential therapeutic benefits (e.g., pulsatile and sequential anticancer delivery profiles). This work underscores the potential of using ultrasonically responsive polymeric hydrogels for providing on-demand control over more complex therapeutic deliver profiles and enhancing drug delivery strategies in cancer therapies and beyond.
Collapse
Affiliation(s)
- Tania Emi
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Kendra Michaud
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Emma Orton
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Grace Santilli
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Catherine Linh
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Meaghan O'Connell
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Fatima Issa
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| | - Stephen Kennedy
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA.
| |
Collapse
|
7
|
Goeppert B, Renner M, Singer S, Albrecht T, Zhang Q, Mehrabi A, Pathil A, Springfeld C, Köhler B, Rupp C, Weiss KH, Kühl AA, Arsenic R, Pape UF, Vogel A, Schirmacher P, Roessler S, Utku N. Prognostic Impact of Carboxylesterase 2 in Cholangiocarcinoma. Sci Rep 2019; 9:4338. [PMID: 30867471 PMCID: PMC6416336 DOI: 10.1038/s41598-019-40487-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Carboxylesterase 2 (CES2) is instrumental for conversion of ester-containing prodrugs in cancer treatment. Novel treatment strategies are exceedingly needed for cholangiocarcinoma (CCA) patients. Here, we assessed CES2 expression by immunohistochemistry in a CCA cohort comprising 171 non-liver fluke associated, intrahepatic (n = 72) and extrahepatic (perihilar: n = 56; distal: n = 43) CCAs. Additionally, 80 samples of high-grade biliary intraepithelial neoplastic tissues and 158 corresponding samples of histological normal, non-neoplastic biliary tract tissues were included. CES2 expression was highest in non-neoplastic biliary tissue and significantly decreased in CCA. Patients showing any CES2 expression in tumor cells had a significantly better overall survival compared to negative cases (p = 0.008). This survival benefit was also maintained after stratification of CES2-positive cases, by comparing low, medium and high CES2 expression levels (p-trend = 0.0006). Evaluation of CCA subtypes showed the survival difference to be restricted to extrahepatic tumors. Correlation of CES2 expression with data of tumor-infiltrating immune cells showed that particularly CD8+ T cells were more frequently detected in CES2-positive CCAs. Furthermore, treatment of CCA cell lines with the prodrug Irinotecan reduced cell viability, increased cytotoxicity and modulated inflammatory gene expression. In conclusion, reduced CES2 expression is associated with poor outcome and low CD8+ T cell infiltration in CCA patients. Further clinical studies could show, whether CES2 expression may serve as a predictive marker in patients treated with prodrugs converted by CES2.
Collapse
Affiliation(s)
- Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany. .,Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.
| | - Marcus Renner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany
| | - Qiangnu Zhang
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.,Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.,University Hospital Heidelberg, National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg, Germany
| | - Bruno Köhler
- Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.,University Hospital Heidelberg, National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg, Germany
| | - Christian Rupp
- Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | - Karl Heinz Weiss
- Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany.,Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | - Anja A Kühl
- Department of Gastroenterology-Immunpathology, Institute for Medical Immunology, Campus Steglitz, Berlin, Charité, Germany
| | - Ruza Arsenic
- Department of Pathology, Institute for Medical Immunology, Campus Mitte, Berlin, Charité, Germany
| | - Ulrich Frank Pape
- Asklepios Klinik St. Georg, Asklepios Kliniken Hamburg GmbH, Hamburg, Germany
| | - Arndt Vogel
- Department of Internal Medicine, Medizinische Hochschule Hannover, Hannover, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), University Hospital Heidelberg, Heidelberg, Germany
| | - Nalân Utku
- Institute for Medical Immunology, Campus Virchow, Berlin, Charité, Germany. .,CellAct Pharma GmbH, Otto Hahn Strasse 15, 44227, Dortmund, Germany.
| |
Collapse
|
8
|
Yu J, Li X, Zhong C, Li D, Zhai X, Hu W, Guo C, Yuan Y, Zheng S. High-throughput proteomics integrated with gene microarray for discovery of colorectal cancer potential biomarkers. Oncotarget 2018; 7:75279-75292. [PMID: 27661117 PMCID: PMC5342740 DOI: 10.18632/oncotarget.12143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 01/15/2023] Open
Abstract
Proteins, as executives of genes' instructions, are responsible for cellular phenotypes. Integrating proteomics with gene microarray, we conducted this study to identify potential protein biomarkers of colorectal cancer (CRC). Isobaric tags with related and absolute quantitation (iTRAQ) labeling mass spectrometry (MS) was applied to screen and identify differentially expressed proteins between paired CRC and adjacent normal mucosa. Meanwhile, Affymetrix U133plus2.0 microarrays were used to perform gene microarray analysis. Verification experiments included immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay (ELISA) of selected proteins. Overall, 5469 differentially expressed proteins were detected with iTRAQ-MS from 24 matched CRC and adjacent normal tissues. And gene microarray identified 39859 differential genes from 52 patients. Of these, 3083 differential proteins had corresponding differentially expressed genes, with 245 proteins and their genes showed >1.5-fold change in expression level. Gene ontology enrichment analysis revealed that up-regulated proteins were more involved in cell adhesion and motion than down-regulated proteins. In addition, up-regulated proteins were more likely to be located in nucleus and vesicles. Further verification experiments with IHC confirmed differential expression levels of 5 proteins (S100 calcium-binding protein A9, annexin A3, nicotinamide phosphoribosyltransferase, carboxylesterase 2 and calcium activated chloride channel A1) between CRC and normal tissues. Besides, western blot showed a stepwise increase of annexin A3 abundance in normal colorectal mucosa, adenoma and CRC tissues. ELISA results revealed significantly higher serum levels of S100 calcium-binding protein A9 and annexin A3 in CRC patients than healthy controls, validating diagnostic value of these proteins. Cell experiments showed that inhibition of annexin A3 could suppress CRC cell proliferation and aggressiveness. S100 calcium-binding protein A9, annexin A3, nicotinamide phosphoribosyltransferase, carboxylesterase 2 and calcium activated chloride channel A1 were probably potential biomarkers of colorectal cancer. Annexin A3 was a potentially valuable therapeutic target of CRC.
Collapse
Affiliation(s)
- Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Chenhan Zhong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Dan Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaohui Zhai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
9
|
Li JN, Cao YF, He RR, Ge GB, Guo B, Wu JJ. Evidence for Shikonin acting as an active inhibitor of human carboxylesterases 2: Implications for herb-drug combination. Phytother Res 2018; 32:1311-1319. [PMID: 29468758 DOI: 10.1002/ptr.6062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jia-Nan Li
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- Department of Pharmacy; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou 121001 China
| | - Yun-Feng Cao
- Key Laborotary of Liaoning Tumor Clinical Metabolomics; Jinzhou 121001 China
- RSKT Biopharma Inc.; Dalian 116023 China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Guangzhou 510632 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Bin Guo
- Department of Pharmacy; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou 121001 China
| | - Jing-Jing Wu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
10
|
The Relationship between TP53 Gene Status and Carboxylesterase 2 Expression in Human Colorectal Cancer. DISEASE MARKERS 2018; 2018:5280736. [PMID: 29651325 PMCID: PMC5831679 DOI: 10.1155/2018/5280736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/28/2017] [Indexed: 11/26/2022]
Abstract
Irinotecan (CPT-11) is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking. In this study, we examined the relationship between TP53 gene status and CES2 expression in human colorectal cancer. Most colorectal cancer specimens (70%; 26 of 37) showed lower CES2 mRNA levels (≥1.5-fold lower) than the adjacent normal tissue, and only 30% (12 of 37) showed similar (<1.5-fold lower) or higher CES2 mRNA levels. However, TP53 gene sequencing revealed no relationship between CES2 downregulation and TP53 mutational status. Moreover, while colorectal cancer cells expressing wild-type p53 exhibited p53-dependent upregulation of CES2, PRIMA-1MET, a drug that restores the transcriptional activity of mutant p53, failed to upregulate CES2 expression in cells with TP53 missense mutations. These results, taken together, suggest that CES2 mRNA expression is decreased in human colorectal cancer independently of p53.
Collapse
|
11
|
Marczak MM, Yan B. Circadian rhythmicity: A functional connection between differentiated embryonic chondrocyte-1 (DEC1) and small heterodimer partner (SHP). Arch Biochem Biophys 2017; 631:11-18. [PMID: 28797635 DOI: 10.1016/j.abb.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022]
Abstract
Circadian rhythm misalignment has been increasingly recognized to pose health risk for a wide range of diseases, particularly metabolic disorders. The liver maintains metabolic homeostasis and expresses many circadian genes, such as differentiated embryo chondrocyte-1 (DEC1) and small heterodimer partner (SHP). DEC1 is established to repress transcription through E-box elements, and SHP belongs to the superfamily of nuclear receptors and has multiple E-box elements in its promoter. Importantly, DEC1 and SHP are inversely oscillated. This study was performed to test the hypothesis that the SHP gene is a target gene of DEC1. Cotransfection demonstrated that DEC1 repressed the SHP promoter and attenuated the transactivation of the classic circadian activator complex of Clock/Bmal1. Site-directed mutagenesis, electrophoretic mobility shift assay and chromatin immunoprecipitation established that the repression was achieved through the E-box in the proximal promoter. Transfection of DEC1 suppressed the expression of SHP. In circadian-inducing cells, the epileptic agent valproate inversely altered the expression of DEC1 and SHP. Both DEC1 and SHP are involved in energy balance and valproate is known to induce hepatic steatosis. Our findings collectively establish that DEC1 participates in the negative loop of SHP oscillating expression with potential implications in metabolic homeostasis.
Collapse
Affiliation(s)
- Marek M Marczak
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States.
| |
Collapse
|
12
|
A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals. Biosens Bioelectron 2016; 83:193-9. [DOI: 10.1016/j.bios.2016.04.075] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
|
13
|
Kennedy S, Hu J, Kearney C, Skaat H, Gu L, Gentili M, Vandenburgh H, Mooney D. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials 2015; 75:91-101. [PMID: 26496382 DOI: 10.1016/j.biomaterials.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
In many biomedical contexts ranging from chemotherapy to tissue engineering, it is beneficial to sequentially present bioactive payloads. Explicit control over the timing and dose of these presentations is highly desirable. Here, we present a capsule-based delivery system capable of rapidly releasing multiple payloads in response to ultrasonic signals. In vitro, these alginate capsules exhibited excellent payload retention for up to 1 week when unstimulated and delivered their entire payloads when ultrasonically stimulated for 10-100 s. Shorter exposures (10 s) were required to trigger delivery from capsules embedded in hydrogels placed in a tissue model and did not result in tissue heating or death of encapsulated cells. Different types of capsules were tuned to rupture in response to different ultrasonic stimuli, thus permitting the sequential, on-demand delivery of nanoparticle payloads. As a proof of concept, gold nanoparticles were decorated with bone morphogenetic protein-2 to demonstrate the potential bioactivity of nanoparticle payloads. These nanoparticles were not cytotoxic and induced an osteogenic response in mouse mesenchymal stem cells. This system may enable researchers and physicians to remotely regulate the timing, dose, and sequence of drug delivery on-demand, with a wide range of clinical applications ranging from tissue engineering to cancer treatment.
Collapse
Affiliation(s)
- Stephen Kennedy
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jennifer Hu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Cathal Kearney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Anatomy, Tissue Engineering Research Group and Advanced Materials and Bioengineering Research Center, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadas Skaat
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Luo Gu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Marco Gentili
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herman Vandenburgh
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Vachirayonsti T, Ho KW, Yang D, Yan B. Suppression of the pregnane X receptor during endoplasmic reticulum stress is achieved by down-regulating hepatocyte nuclear factor-4α and up-regulating liver-enriched inhibitory protein. Toxicol Sci 2015; 144:382-92. [PMID: 25616597 DOI: 10.1093/toxsci/kfv008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is recognized as a common theme in the development of metabolic syndrome and other diseases. Chronic liver diseases develop ER stress and also show decreased capacity of drug metabolism. The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. This study was performed to determine whether ER stress condition decreases the expression of PXR and whether the decrease alters the induction of cytochrome P450 3A4 (CYP3A4). Human primary hepatocytes and HepG2 cell line (human hepatocellular carcinoma) were treated with brefeldin A and thapsigargin, 2 well-established ER stressors. Without exceptions, both stressors significantly decreased the expression of PXR. The decrease led to reduced induction of CYP3A4. Reporter dissection study, electrophoretic mobility shift assay, and chromatin immunoprecipitation located in the PXR promoter region 2 adjacent elements recognized by hepatocyte nuclear factor-4α (HNF-4α) and cytidine-cytidine-adenosine-adenosine-thymidine enhanced binding proteins (C/EBPs), respectively. Additional studies demonstrated that HNF-4α was down-regulated during ER stress but the expression of C/EBPβ varied depending on a particular form of C/EBPβ. Liver-enriched activator protein (LAP) was down-regulated but liver-enriched inhibitory protein (LIP) was highly induced. Nevertheless, over-expression of HNF-4α or LAP restored the expression of PXR. Interestingly, the very same sequence also responded to interleukin-6 (IL-6), and primary hepatocytes treated with thapsigargin significantly increased the level of IL-6 mRNA. These findings establish a functional interconnection between ER stress and signaling of proinflammatory cytokines in the regulation of PXR expression.
Collapse
Affiliation(s)
- Thaveechai Vachirayonsti
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Karen W Ho
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Dongfang Yang
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
15
|
Silvestris N, Simone G, Partipilo G, Scarpi E, Lorusso V, Brunetti AE, Maiello E, Paradiso A, Mangia A. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int J Mol Sci 2014; 15:15767-77. [PMID: 25198900 PMCID: PMC4200864 DOI: 10.3390/ijms150915767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/31/2023] Open
Abstract
Enzymatic activation of irinotecan (CPT-11) is due to carboxylesterase (CES), and its pharmacological behavior is influenced by drug resistance-related proteins. We previously reported that the clinical response and prognosis of metastatic colorectal cancer (mCRC) patients did not differ in tumors with different thymidylate synthase (TS) or topoisomerase-I (Topo-I) expression. Using immunohistochemistry (IHC), we evaluated the biological role of CES2 and the expression of breast cancer resistance protein (BCRP/ABCG2) in 58 consecutive mCRC patients, who had undergone a first-line CPT-11/5-FU/leucovirin (FOLFIRI) regimen. The expression of these proteins was also examined in a group of synchronous lymph nodes and liver metastases. Furthermore, all samples were revaluated for TS and Topo-I expression. High expression of CES2, ABCG2, TS and Topo-I was observed in 55%, 56%, 38% and 49% of patients, respectively. There was a significant association between high TS and high ABCG2 expression (p = 0.049). Univariate analysis showed that only TS expression significantly impacted on time to progression (p = 0.005). Moreover, Cox’ multivariate analysis revealed that TS expression was significantly associated with overall survival (p = 0.01). No significant correlation was found between investigated markers expression and clinical response. Topo-I expression resulted in being significantly higher in liver metastases with respect to the corresponding primary tumors (p < 0.0001), emphasizing the role of Topo-I expression in metastatic cancer biology. In primary tumor tissues, CES2 expression tended to be higher than that observed in liver metastasis tissues (p = 0.05). These preliminary data may suggest CES2 over-expression as a potential marker of malignant phenotype. In light of these findings, we suggest that Topo-I expression together with TS expression could be associated with metastatic progression of CRC. Further studies are warranted with the aim of evaluating the potential predictive and prognostic role of CES2 and ABCG2 in larger series of patients.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Giovanni Simone
- Pathology Department, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Giulia Partipilo
- Functional Biomorphology Laboratory, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Emanuela Scarpi
- IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), 47014 Meldola, Italy.
| | - Vito Lorusso
- Medical Oncology Unit, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Anna Elisabetta Brunetti
- Medical Oncology Unit, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Evaristo Maiello
- Oncology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy.
| | - Angelo Paradiso
- Experimental Medical Oncology, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| | - Anita Mangia
- Functional Biomorphology Laboratory, National Cancer Research Centre-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy.
| |
Collapse
|
16
|
Xiao D, Shi D, Yang D, Barthel B, Koch TH, Yan B. Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs. Biochem Pharmacol 2012; 85:439-47. [PMID: 23228697 DOI: 10.1016/j.bcp.2012.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 01/02/2023]
Abstract
Orlistat has been the most used anti-obesity drug and the mechanism of its action is to reduce lipid absorption by inhibiting gastrointestinal lipases. These enzymes, like carboxylesterases (CESs), structurally belong to the α/β hydrolase fold superfamily. Lipases and CESs are functionally related as well. Some CESs (e.g., human CES1) have been shown to hydrolyze lipids. This study was designed to test the hypothesis that orlistat inhibits CESs with higher potency toward CES1 than CES2, a carboxylesterase with little lipase activity. Liver microsomes and recombinant CESs were tested for the inhibition of the hydrolysis of standard substrates and the anticancer prodrugs pentyl carbamate of p-aminobenzyl carbamate of doxazolidine (PPD) and irinotecan. Contrary to the hypothesis, orlistat at 1 nM inhibited CES2 activity by 75% but no inhibition on CES1, placing CES2 one of the most sensitive targets of orlistat. The inhibition varied among some CES2 polymorphic variants. Pretreatment with orlistat reduced the cell killing activity of PPD. Certain mouse but not rat CESs were also highly sensitive. CES2 is responsible for the hydrolysis of many common drugs and abundantly expressed in the gastrointestinal track and liver. Inhibition of this carboxylesterase probably presents a major source for altered therapeutic activity of these medicines if co-administered with orlistat. In addition, orlistat has been linked to various types of organ toxicities, and this study provides an alternative target potentially involved in these toxicological responses.
Collapse
Affiliation(s)
- Da Xiao
- Department of Biomedical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|