1
|
Chestnykh D, Kalinichenko LS, von Hörsten S, Kornhuber J, Müller CP. The mirror preference test: A reverse translational approach to study anomalous subjective experience in rats. Brain Res Bull 2025; 222:111247. [PMID: 39921146 DOI: 10.1016/j.brainresbull.2025.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Significant advancements have been made in the treatment of psychotic disorders, yet current pharmacotherapy remains inadequate. Symptoms related to the misinterpretation of reality are crucial for diagnosis but pose challenges for preclinical research. In humans, a Mirror-Gazing test is used to examine abnormal self-experience and to predict the risk of schizophrenia. To address this, we developed a task to evaluate anomalous subjective experiences in rats using a Mirror-Preference test. Here we demonstrate that naive rats show a preference for a mirror chamber, which was followed by significant habituation over a series of trials. In subsequent tests, we utilized dimmed lighting and net-covered mirrors to induce incomplete mirror images. Acute stimulation with amphetamine (AMPH, 3 mg/kg, i.p.) further increased the preference for the mirror. In a model of psychosis induced by chronic AMPH administration, rats showed fewer and shorter interactions with the mirror but maintained their preference for the chamber where psychotic-like animals were given additional AMPH stimulation (1.5 mg/kg, i.p.) before testing. Here, a surprising reversal in chamber preference was observed, along with decreased frequency and duration of mirror contact, suggesting mirror avoidance. The AMPH-presensitized rats also exhibited hyperlocomotion and elevated anxiety, indicative of psychotic-like behaviour. Although self-recognition in rodents is debatable, recent studies suggest they can discriminate mirror images. We propose that limited visual perception that meets brain monoamine sensitization may trigger visual illusions as part of a psychotic-like state in rats. This novel approach can be utilized to test intervention strategies for psychosis in rats.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Jellinger KA. The pathobiology of depression in Huntington's disease: an unresolved puzzle. J Neural Transm (Vienna) 2024; 131:1511-1522. [PMID: 38349403 DOI: 10.1007/s00702-024-02750-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 12/01/2024]
Abstract
Huntington's disease (HD) is an autosomal-dominant progressive neurodegenerative disease that manifests with a triad of symptoms including motor dysfunctions, cognitive deficits, and prominent neuropsychiatric symptoms, the most common of which is depression, with a prevalence between 30 and 70%. Depressive symptoms occur in all stages of HD, beginning in presymptomatic HD gene carriers, and are strongly associated with suicidal ideation and suicidality, but their relationship with other clinical dimensions in HD is controversial and the underlying pathophysiology is poorly understood. Analysis of the available literature until November 2023 concerned the prevalence, clinical manifestations, neuroimaging, transgenic models, and treatment options of HD depression. While it was believed that depression in HD is due to psychosomatic factors in view of the fatal disease, studies in transgenic models of HD demonstrated molecular changes including neurotrophic and serotonergic dysregulation and disorders of the hypothalamic-pituitary-adrenal axis inducing depression-like changes. While relevant neuropathological data are missing, recent neuroimaging studies revealed correlations between depressive symptoms and dysfunctional connectivities in the default mode network, basal ganglia and prefrontal cortex, and changes in limbic and paralimbic structures related to the basic neurodegenerative process. The impact of response to antidepressants in HD patients is controversial; selective serotonin reuptake inhibitors are superior to serotonin-norepinephrine reuptake inhibitors, while electroconvulsive therapy may be effective for pharmacotherapy resistant cases. Since compared to major depressive disorder and depression in other neurodegenerative diseases, our knowledge of the molecular basis in HD depression is limited, further studies to elucidate the heterogeneous pathogenesis in this fatal disorder are warranted.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Jana A, Nath A, Sen P, Kundu S, Alghamdi BS, Abujamel TS, Saboor M, Woon-Khiong C, Alexiou A, Papadakis M, Alam MZ, Ashraf GM. Unraveling the Endocannabinoid System: Exploring Its Therapeutic Potential in Autism Spectrum Disorder. Neuromolecular Med 2024; 26:20. [PMID: 38744725 PMCID: PMC11093854 DOI: 10.1007/s12017-024-08781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/16/2024]
Abstract
The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.
Collapse
Affiliation(s)
- Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Palash Sen
- School of Biosciences, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Swikriti Kundu
- Siksha Bhavana, Visva-Bharati University, Bolpur, West Bengal, 731235, India
| | - Badrah S Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Hannan AJ. Expanding horizons of tandem repeats in biology and medicine: Why 'genomic dark matter' matters. Emerg Top Life Sci 2023; 7:ETLS20230075. [PMID: 38088823 PMCID: PMC10754335 DOI: 10.1042/etls20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Approximately half of the human genome includes repetitive sequences, and these DNA sequences (as well as their transcribed repetitive RNA and translated amino-acid repeat sequences) are known as the repeatome. Within this repeatome there are a couple of million tandem repeats, dispersed throughout the genome. These tandem repeats have been estimated to constitute ∼8% of the entire human genome. These tandem repeats can be located throughout exons, introns and intergenic regions, thus potentially affecting the structure and function of tandemly repetitive DNA, RNA and protein sequences. Over more than three decades, more than 60 monogenic human disorders have been found to be caused by tandem-repeat mutations. These monogenic tandem-repeat disorders include Huntington's disease, a variety of ataxias, amyotrophic lateral sclerosis and frontotemporal dementia, as well as many other neurodegenerative diseases. Furthermore, tandem-repeat disorders can include fragile X syndrome, related fragile X disorders, as well as other neurological and psychiatric disorders. However, these monogenic tandem-repeat disorders, which were discovered via their dominant or recessive modes of inheritance, may represent the 'tip of the iceberg' with respect to tandem-repeat contributions to human disorders. A previous proposal that tandem repeats may contribute to the 'missing heritability' of various common polygenic human disorders has recently been supported by a variety of new evidence. This includes genome-wide studies that associate tandem-repeat mutations with autism, schizophrenia, Parkinson's disease and various types of cancers. In this article, I will discuss how tandem-repeat mutations and polymorphisms could contribute to a wide range of common disorders, along with some of the many major challenges of tandem-repeat biology and medicine. Finally, I will discuss the potential of tandem repeats to be therapeutically targeted, so as to prevent and treat an expanding range of human disorders.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Hannan AJ. Gene-environment interactions modulating brain disorders: Neurobiological mechanisms and therapeutic applications. Neurobiol Dis 2023; 188:106325. [PMID: 37838008 DOI: 10.1016/j.nbd.2023.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023] Open
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Hannan AJ. Chorea me a river: depression in Huntington's disease as an exemplar of precision medicine. Brain Commun 2022; 4:fcac294. [PMID: 36440099 PMCID: PMC9683389 DOI: 10.1093/braincomms/fcac294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
This scientific commentary refers to 'Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease' by McLauchlan et al. (https://doi.org/10.1093/braincomms/fcac278).
Collapse
Affiliation(s)
- Anthony J Hannan
- Correspondence to: Prof. Anthony J. Hannan, Florey Institute of
Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia.
E-mail:
| |
Collapse
|
7
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Environmental enrichment-inspired pharmacological tools for the treatment of addiction. Curr Opin Pharmacol 2020; 56:22-28. [PMID: 32966941 DOI: 10.1016/j.coph.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Environmental enrichment (EE) has been shown to produce powerful beneficial effects in animal models of addiction. In particular, the ability of EE to promote abstinence and prevent relapse may allow for the identification of brain mechanisms responsible for the recovery from addiction. Indeed, the effects of EE on specific brain mechanisms could be mimicked by old or new molecules, which may become novel medications, called enviromimetics. Here, we review the best known enviromimetics for the treatment of addiction and suggest that, whereas these compounds may be relatively ineffective by themselves, they may be useful complements for existing therapeutic approaches to manage addiction which includes behavioural, environmental and pharmacological interventions.
Collapse
|
9
|
Pietropaolo S, Bellocchio L, Bouzón-Arnáiz I, Yee BK. The role of the endocannabinoid system in autism spectrum disorders: Evidence from mouse studies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:183-208. [PMID: 32711810 DOI: 10.1016/bs.pmbts.2020.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A substantive volume of research on autism spectrum disorder (ASD) has emerged in recent years adding to our understanding of the etiopathological process. Preclinical models in mice and rats have been highly instrumental in modeling and dissecting the contributions of a multitude of known genetic and environmental risk factors. However, the translation of preclinical data into suitable drug targets must overcome three critical hurdles: (i) ASD comprises a highly heterogeneous group of conditions that can markedly differ in terms of their clinical presentation and symptoms, (ii) the plethora of genetic and environmental risk factors suggests a complex, non-unitary, etiopathology, and (iii) the lack of consensus over the myriad of preclinical models, with respect to both construct validity and face validity. Against this backdrop, this Chapter traces how the endocannabinoid system (ECS) has emerged as a promising target for intervention with predictive validity. Recent supportive preclinical evidence is summarized, especially studies in mice demonstrating the emergence of ASD-like behaviors following diverse genetic or pharmacological manipulations targeting the ECS. The critical relevance of ECS to the complex pathogenesis of ASD is underscored by its multiple roles in modulating neuronal functions and shaping brain development. Finally, we argue that important lessons have been learned from the novel mouse models of ASD, which not only stimulate game-changing innovative treatments but also foster a consensual framework to integrate the diverse approaches applied in the search of novel treatments for ASD.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- University of Bordeaux, Bordeaux Cedex, France; CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France.
| | - Luigi Bellocchio
- CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France; INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex, France
| | - Inés Bouzón-Arnáiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, Faculty of Health & Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
10
|
Hannan AJ. Epimimetics: Novel Therapeutics Targeting Epigenetic Mediators and Modulators. Trends Pharmacol Sci 2020; 41:232-235. [PMID: 32008853 DOI: 10.1016/j.tips.2020.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/13/2023]
Abstract
Epigenetic alterations have been associated with a wide range of diseases. Furthermore, many therapeutic interventions modelling environmental exposures appear to involve epigenetic mechanisms. Recent progress has been made in developing drugs targeting specific epigenetic components. Here, I propose developing 'epimimetics', novel drugs that mimic or enhance therapeutic effects of epigenetic modifications.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Yeshurun S, Hannan AJ. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry 2019. [PMID: 29520039 DOI: 10.1038/s41380-018-0039-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, striking new evidence has demonstrated non-genetic inheritance of acquired traits associated with parental environmental exposures. In particular, this transgenerational modulation of phenotypic traits is of direct relevance to psychiatric disorders, including depression, post-traumatic stress disorder, and other anxiety disorders. Here we review the recent progress in this field, with an emphasis on acquired traits of psychiatric illnesses transmitted epigenetically via the male lineage. We discuss the transgenerational effects of paternal exposure to stress vs. positive stimuli, such as exercise, and discuss their impact on the behavioral, affective and cognitive characteristics of their progeny. Furthermore, we review the recent evidence suggesting that these transgenerational effects are mediated by epigenetic mechanisms, including changes in DNA methylation and small non-coding RNAs in the sperm. We discuss the urgent need for more research exploring transgenerational epigenetic effects in animal models and human populations. These future studies may identify epigenetic mechanisms as potential contributors to the 'missing heritability' observed in genome-wide association studies of psychiatric illnesses and other human disorders. This exciting new field of transgenerational epigenomics will facilitate the development of novel strategies to predict, prevent and treat negative epigenetic consequences on offspring health, and psychiatric disorders in particular.
Collapse
Affiliation(s)
- Shlomo Yeshurun
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Kelly Á, Hannan AJ. Therapeutic impacts of environmental enrichment: Neurobiological mechanisms informing molecular targets for enviromimetics. Neuropharmacology 2019; 145:1-2. [DOI: 10.1016/j.neuropharm.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Maruska K, Soares MC, Lima-Maximino M, Henrique de Siqueira-Silva D, Maximino C. Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res 2019; 1711:156-172. [PMID: 30684457 DOI: 10.1016/j.brainres.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Social plasticity, defined as the ability to adaptively change the expression of social behavior according to previous experience and to social context, is a key ecological performance trait that should be viewed as crucial for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of evolutionary relevant questions that can be asked. Second, that diversity also suggests translational relevance, since it is more likely that "core" mechanisms of social plasticity are discovered by analyzing a wider variety of social arrangements than relying on a single species. We analyze examples of social plasticity across fish species with different social organizations, concluding that a "core" mechanism is the initiation of behavioral shifts through the modulation of a conserved "social decision-making network", along with other relevant brain regions, by monoamines, neuropeptides, and steroid hormones. The consolidation of these shifts may be mediated via neurogenomic adjustments and regulation of the expression of plasticity-related molecules (transcription factors, cell cycle regulators, and plasticity products).
Collapse
Affiliation(s)
- Karen Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Monica Lima-Maximino
- Laboratório de Biofísica e Neurofarmacologia, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil; Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil; Grupo de Estudos em Reprodução de Peixes Amazônicos, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Caio Maximino
- Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
14
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
15
|
Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology 2019; 144:193-207. [DOI: 10.1016/j.neuropharm.2018.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
16
|
Stressing the Seminal Role of Paternal Experience in Transgenerational ‘Epigenopathy’ Affecting Offspring Health and Disease Susceptibility. Neuroscience 2018; 388:472-473. [DOI: 10.1016/j.neuroscience.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
|
17
|
The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice. Behav Pharmacol 2018; 28:458-465. [PMID: 28590303 DOI: 10.1097/fbp.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.
Collapse
|
18
|
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:205-215. [PMID: 29154800 DOI: 10.1016/j.pnpbp.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Human societies demand of its composing members the development of a wide array of social tools and strategies. A notable example is human outstanding ability to cooperate with others, in all its complex forms, depicting the reality of a highly demanding social framework in which humans need to be integrated as to attain physical and mental benefits. Considering the importance of social engagement, it's not entirely unexpected that most psychiatric disorders involve some disruption of normal social behaviour, ranging from an abnormal absence to a significant increase of social functioning. It is however surprising that knowledge on these social anxiety disorders still remains so limited. Here we review the literature focusing on the social and cooperative toolbox of 3 fish model species (cleaner fishes, guppies and zebrafish) which are amenable systems to test for social disorders. We build on current knowledge based on ethological information, arising from studies on cooperative behaviour in cleanerfishes and guppies, while profiting from the advantages of the intense use of zebrafish, to create novel paradigms aiming at the major socio-cognitive modules/dimensions in fish species. This focus may enable the discovery of putative conserved endpoints which are relevant for research into social disorders. We suggest that cross-species, cross-domain, functional and genetic approaches could provide a wider array of information on the neurobiological bases of social and cooperative behaviour, crucial to understanding the neural bases of social disorders and key to finding novel avenues towards treatment.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Sónia C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Tamires Dos Santos Carvalho
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| | - Caio Maximino
- IESB, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Unidade III, Marabá, Brazil
| |
Collapse
|
19
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Fukuda T, Yanagi S. Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; 74:3533-3552. [PMID: 28516224 PMCID: PMC11107632 DOI: 10.1007/s00018-017-2539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
21
|
Pang TYC, Short AK, Bredy TW, Hannan AJ. Transgenerational paternal transmission of acquired traits: Stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr Opin Behav Sci 2017; 14:140-147. [PMID: 29270445 PMCID: PMC5734660 DOI: 10.1016/j.cobeha.2017.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that pre-conceptual exposure of males to various environmental factors induces epigenetic changes in sperm, which can mediate the transmission of acquired traits in their offspring. The most thoroughly examined paternal exposures involve stress and elevated corticosterone, which have been shown to modulate offspring phenotypes in a manner that is relevant to predisposition to brain disorders, and psychiatric illness in particular. Recent seminal studies have demonstrated that key epigenetic information transmitted via the paternal germline involves small non-coding (snc) RNA transcripts such as microRNAs. Following fertilisation, these sncRNAs appear to regulate development so as to modify the phenotype of the offspring. Understanding the mechanisms involved in such transgenerational effects may facilitate future screening of human sperm for 'epigenetic health' and the tailoring of therapeutic interventions according to genetic and epigenetic contributions to illness.
Collapse
Affiliation(s)
- Terence Y C Pang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Annabel K Short
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92617, USA
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, CA 92617, USA
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Green IW, Glausier JR. Different Paths to Core Pathology: The Equifinal Model of the Schizophrenia Syndrome. Schizophr Bull 2016; 42:542-9. [PMID: 26392629 PMCID: PMC4838077 DOI: 10.1093/schbul/sbv136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Schizophrenia is a clinically heterogeneous disorder that is perhaps more accurately characterized as "the schizophrenia syndrome." This clinical heterogeneity is reflected in the heterogeneous neurobiological presentations associated with the illness. Moreover, even highly specific neural aberrations that are associated with distinct symptoms of schizophrenia are linked to a wide range of risk factors. As such, any individual with schizophrenia likely has a particular set of risk factors that interact and converge to cross the disease threshold, forming a particular etiology that ultimately generates a core pathophysiology. This core pathophysiology may then produce 1 or more symptoms of schizophrenia, leading to common symptoms across individuals in spite of disparate etiologies. As such, the schizophrenia syndrome can be considered as anequifinalentity: a state of dysfunction that can arise from different upstream etiologies. Moreover, schizophrenia etiologies are multifactorial and can involve the interactive effects of a broad range of genetic, environmental, and developmental risk factors. Through a consideration of how disparate etiologies, caused by different sets of risk factors, converge on the same net dysfunction, this paper aims to model the equifinal nature of schizophrenia symptoms. To demonstrate the equifinal model, we discuss how maternal infection and adolescent cannabis use, 2 recognized schizophrenia risk factors, may interact with other genetic, environmental, and/or developmental risk factors to cause the conserved clinical presentation of impaired working memory.
Collapse
Affiliation(s)
- Isobel W. Green
- Department of Psychology, Harvard College, Harvard University, Cambridge, MA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,*To whom correspondence should be addressed; Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213, US; tel: 412-624-7869, fax: 412-624-9910, e-mail:
| |
Collapse
|
23
|
The Role of Psychotropic Medications in the Management of Anorexia Nervosa: Rationale, Evidence and Future Prospects. CNS Drugs 2016; 30:419-42. [PMID: 27106297 PMCID: PMC4873415 DOI: 10.1007/s40263-016-0335-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder without approved medication intervention. Every class of psychoactive medication has been tried to improve treatment outcome; however, randomized controlled trials have been ambiguous at best and across studies have not shown robust improvements in weight gain and recovery. Here we review the available literature on pharmacological interventions since AN came to greater public recognition in the 1960s, including a critical review of why those trials may not have been successful. We further provide a neurobiological background for the disorder and discuss how cognition, learning, and emotion-regulating circuits could become treatment targets in the future. Making every effort to develop effective pharmacological treatment options for AN is imperative as it continues to be a complex psychiatric disorder with high disease burden and mortality.
Collapse
|
24
|
Hoffman KL. New dimensions in the use of rodent behavioral tests for novel drug discovery and development. Expert Opin Drug Discov 2016; 11:343-53. [DOI: 10.1517/17460441.2016.1153624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Fuccillo MV. Striatal Circuits as a Common Node for Autism Pathophysiology. Front Neurosci 2016; 10:27. [PMID: 26903795 PMCID: PMC4746330 DOI: 10.3389/fnins.2016.00027] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom domains-deficits in social interactions and restrictive, repetitive patterns of behavioral output. Whether the diverse nature of ASD symptomatology represents distributed dysfunction of brain networks or abnormalities within specific neural circuits is unclear. Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in ASD, and neurological and brain-imaging studies have supported this assumption. However, as our appreciation of striatal function expands to include regulation of behavioral flexibility, motivational state, goal-directed learning, and attention, we consider whether alterations in striatal physiology are a central node mediating a range of autism-associated behaviors, including social and cognitive deficits that are hallmarks of the disease. This review investigates multiple genetic mouse models of ASD to explore whether abnormalities in striatal circuits constitute a common pathophysiological mechanism in the development of autism-related behaviors. Despite the heterogeneity of genetic insult investigated, numerous genetic ASD models display alterations in the structure and function of striatal circuits, as well as abnormal behaviors including repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-making. Comparative analysis in rodents provides a unique opportunity to leverage growing genetic association data to reveal canonical neural circuits whose dysfunction directly contributes to discrete aspects of ASD symptomatology. The description of such circuits could provide both organizing principles for understanding the complex genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on striatal mechanisms of behavioral regulation may also prove useful for exploring the pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral deficits with ASD.
Collapse
Affiliation(s)
- Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
26
|
Peedicayil J. Preclinical epigenetic models for screening epigenetic drugs for schizophrenia. J Pharmacol Toxicol Methods 2016; 77:1-5. [DOI: 10.1016/j.vascn.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 01/09/2023]
|
27
|
Burrows EL, Hannan AJ. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol Psychol 2015; 116:82-9. [PMID: 26687973 DOI: 10.1016/j.biopsycho.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
28
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
29
|
Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, Origoni A, Katsafanas E, Schweinfurth LAB, Savage CLG, Banis M, Khushalani S, Dickerson FB. Metagenomic Sequencing Indicates That the Oropharyngeal Phageome of Individuals With Schizophrenia Differs From That of Controls. Schizophr Bull 2015; 41:1153-61. [PMID: 25666826 PMCID: PMC4535630 DOI: 10.1093/schbul/sbu197] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal sites such as the oropharynx contain a wide range of microorganisms, collectively designated as the microbiome. The microbiome can affect behavior through a number of neurobiological and immunological mechanisms. Most previous studies have focused on the bacterial components of the microbiome. However, the microbiome also includes viruses such as bacteriophages, which are viruses that infect bacteria and alter their metabolism and replication. We employed metagenomic analysis to characterize bacteriophage genomes in the oral pharynx of 41 individuals with schizophrenia and 33 control individuals without a psychiatric disorder. This analysis was performed by the generation of more than 100,000,000 sequence reads from each sample and the mapping of these reads to databases. We identified 79 distinct bacteriophage sequences in the oropharyngeal samples. Of these, one bacteriophage genome, Lactobacillus phage phiadh, was found to be significantly different in individuals with schizophrenia (P < .00037, q < 0.03 adjusted for multiple comparisons). The differential levels of Lactobacillus phage phiadh remained significant when controlling for age, gender, race, socioeconomic status, or cigarette smoking (P < .006). Within the group of individuals with schizophrenia, the level of Lactobacillus phage phiadh correlated with the prevalence of immunological disorders as well as with the administration of valproate, which has been shown in animal models to alter the microbiome. The bacteriophage composition of the oropharynx in individuals with schizophrenia differs from that of controls. The biological consequences of this difference and the potential effects of altering bacteriophage levels through therapeutic interventions are worthy of further investigation.
Collapse
Affiliation(s)
- Robert H. Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD;,*To whom correspondence should be addressed; Department of Pediatrics, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287–4933, US; tel: 410-614-0004, fax: 410-955-3723, e-mail:
| | - Emily G. Severance
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sarven Sabunciyan
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kristin L. Gressitt
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ou Chen
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Cassie Stallings
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrea Origoni
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | - Emily Katsafanas
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | | | | | - Maria Banis
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | - Sunil Khushalani
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | | |
Collapse
|
30
|
Lawrence AJ, Cryan JF. Found in translation? Commentary on a BJP themed issue about animal models in neuropsychiatry research. Br J Pharmacol 2015; 171:4521-3. [PMID: 25257223 DOI: 10.1111/bph.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This themed issue of Br J Pharmacol is dedicated to the utility and needs of animal models in psychiatry research. The following articles document strengths and weaknesses, indicate areas where better models are sorely needed and provide examples where pharmacological studies may result in mechanistic breakthrough and aid in drug development. In addition, complicating factors both in disease and treatment strategies are canvassed, such as sex differences, genetic and environmental influences. While not exhaustive, the intention was to use a number of exemplars to stimulate discussion around how animal models can aid in improving our understanding and treatment of many devastating conditions.
Collapse
Affiliation(s)
- Andrew J Lawrence
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
31
|
Association between NR4A2 genetic variation and schizophrenia: A comprehensive systematic review and meta-analysis. Neurosci Lett 2015; 598:85-90. [PMID: 25982322 DOI: 10.1016/j.neulet.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/13/2015] [Accepted: 05/09/2015] [Indexed: 01/22/2023]
Abstract
The homo sapiens nuclear receptor subfamily 4, group A (NR4A2) genetic variation has been implicated as a risk factor for schizophrenia (SZ). Nevertheless, the results are inconclusive. We conducted a comprehensive systematic review and meta-analysis to quantify the impact of NR4A2 variation on the risk of SZ. All eligible case-control studies published up to September 2014 were identified by searching PubMed OVID, EBSCO, PsycINFO and ISI web of knowledge. Pooled odds ratio with 95% confidence interval were used to access the strength of association in fixed- or random-effects model. Seven studies that reported 17 variants with a total of 3027 participants were included. Of these variants, five ones (rs143618355, rs199674295, c.366-369 del TAC, c.-469delG and P4) were present only in cases, and three ones (rs35479735, rs3832066 and rs397706674) were available for meta-analysis. Overall, there was no significant association between the three variants and SZ risk under allele model, dominant model and recessive model. The results failed to reveal significant link between NR4A2 polymorphism and SZ risk. However, large-sized and well-designed studies are warranted to validate our findings.
Collapse
|
32
|
Pietropaolo S, Crusio WE, D'amato FR. Treatment Approaches in Rodent Models for Autism Spectrum Disorder. Curr Top Behav Neurosci 2015; 30:325-340. [PMID: 26857461 DOI: 10.1007/7854_2015_433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have seen an impressive amount of research devoted to the developing of therapies to treat autism spectrum disorder (ASD). This work has been largely based on rodent models, employing a multitude of genetic and environmental manipulations. Unfortunately, the task of identifying suitable treatments for ASD is extremely challenging, due to a variety of problems specific to the research in this field. Here, we first discuss these problems, including (I) the presence of a large variety of rodent models (often without universal consensus on their validity), (II) the difficulties in choosing the most appropriate behavioural markers to assess the efficacy of possible treatments, (III) the limited knowledge we still have of the neurobiological bases of ASD pathology and of its aetiology, and (IV) the complexity of ASD itself, including a highly heterogeneous group of disorders sometimes with markedly different symptoms (therefore unlikely to be treated with the same approaches). Second, we give a critical overview of the most relevant advances in designing treatments for ASD, focusing on the most commonly used animal model, the laboratory mouse. We include pharmacological and non-pharmacological approaches, underlining their specific advantages, but also their current limitations especially in relation to the problems discussed before. Finally, we highlight the theoretical (e.g. the combination of multiple rather than single treatments) and methodological (e.g. use of single-gene mouse models) approaches that seem more promising to us, suggesting various strategies that can be adopted to simplify the complex field of research on treatments for ASD.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- INCIA, University of Bordeaux, Bat B2, Allée Geoffroy St. Hilaire, CS 50023, 33615, Pessac Cedex, France. .,INCIA, UMR 5287, CNRS, Bat B2, Allée Geoffroy St. Hilaire, CS 50023, 33615, Pessac Cedex, France.
| | - Wim E Crusio
- INCIA, University of Bordeaux, Bat B2, Allée Geoffroy St. Hilaire, CS 50023, 33615, Pessac Cedex, France.,INCIA, UMR 5287, CNRS, Bat B2, Allée Geoffroy St. Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Francesca R D'amato
- CNR, Cell Biology and Neurobiology Institute, IRCCS, Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychiatry and Neurosciences, Laval University, Québec City, Canada
| |
Collapse
|