1
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals (Basel) 2022; 15:ph15091084. [PMID: 36145305 PMCID: PMC9504289 DOI: 10.3390/ph15091084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Therapeutically useful small-molecule inhibitors (SMIs) of protein−protein interactions (PPIs) initiating the cell attachment and entry of viruses could provide novel alternative antivirals that act via mechanisms similar to that of neutralizing antibodies but retain the advantages of small-molecule drugs such as oral bioavailability and low likelihood of immunogenicity. From screening our library, which is focused around the chemical space of organic dyes to provide good protein binders, we have identified several promising SMIs of the SARS-CoV-2 spike—ACE2 interaction, which is needed for the attachment and cell entry of this coronavirus behind the COVID-19 pandemic. They included organic dyes, such as Congo red, direct violet 1, and Evans blue, which seem to be promiscuous PPI inhibitors, as well as novel drug-like compounds (e.g., DRI-C23041). Here, we show that in addition to the original SARS-CoV-2 strain, these SMIs also inhibit this PPI for variants of concern including delta (B.1.617.2) and omicron (B.1.1.529) as well as HCoV-NL63 with low- or even sub-micromolar activity. They also concentration-dependently inhibited SARS-CoV-2-S expressing pseudovirus entry into hACE2-expressing cells with low micromolar activity (IC50 < 10 μM) both for the original strain and the delta variant. DRI-C23041 showed good therapeutic (selectivity) index, i.e., separation between activity and cytotoxicity (TI > 100). Specificities and activities require further optimization; nevertheless, these results provide a promising starting point toward novel broad-spectrum small-molecule antivirals that act via blocking the interaction between the spike proteins of coronaviruses and their ACE2 receptor initiating cellular entry.
Collapse
|
3
|
Proskurina AS, Ruzanova VS, Ostanin AA, Chernykh ER, Bogachev SS. Theoretical premises of a "three in one" therapeutic approach to treat immunogenic and nonimmunogenic cancers: a narrative review. Transl Cancer Res 2022; 10:4958-4972. [PMID: 35116346 PMCID: PMC8797664 DOI: 10.21037/tcr-21-919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Objective We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) in situ vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as Karanahan (from the Sanskrit kāraṇa [“source”] + han [“to kill”]). Background In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction. In situ vaccination activates a fully fledged anticancer immune response via an intricate network of ligand–receptor–cytokine interactions. CMLD CP-based chemotherapy primarily targets the suppressive tumor microenvironment and activates tumor-infiltrating effectors. In contrast, Karanahan technology, being aimed at replicative machinery of tumor cells (both stem-like and committed), does not depend on tumor immunogenicity. With this technology, mice engrafted with ascites and/or solid tumors can be successfully cured. There is a significant degree of mechanistic and therapeutic overlap between these three approaches. For instance, the similarities shared between in situ vaccination and Karanahan technology include the therapeutic procedure, the cell target [antigen-presenting cells (APC) and dendritic cells (DC)], and the use of DNA-based preparations (CpG and DNAmix). Features shared between CMLD CP-based chemotherapy and Karanahan technology are the timing and the dose of the cytostatic drug administration, which lead to tumor regression. Methods The following keywords were used to search PubMed for the latest research reporting successful eradication of transplantable cancers in animal models that relied on approaches distinct from those used in the Karanahan technology: eradication of malignancy, cure cancer, complete tumor regression, permanently eradicating advanced mouse tumor, metronomic chemotherapy, in situ vaccination, immunotherapy, and others. Conclusion We hypothesize, therefore, that very potent anticancer activity can be achieved once these three therapeutic modalities are combined into a single approach. This multimodal approach is theoretically curative for any type of cancer that depends on the presence of tumor-inducing cancer stem cells, provided that the active therapeutic components are efficiently delivered into the tumor and the specific biological features of a given patient’s tumor are properly addressed. We expect this multimodal approach to be primarily applicable to late-stage or terminal cancer patients who have exhausted all treatment options as well as patients with inoperable tumors.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S Ruzanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Alexandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Boone CE, Wang L, Gautam A, Newton IG, Steinmetz NF. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1739. [PMID: 34296535 PMCID: PMC8906799 DOI: 10.1002/wnan.1739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Cancer immunotherapy has emerged as a pillar of the cancer therapy armamentarium. Immune checkpoint therapy (ICT) is a mainstay of modern immunotherapy. Although ICT monotherapy has demonstrated remarkable clinical efficacy in some patients, the majority do not respond to treatment. In addition, many patients eventually develop resistance to ICT, disease recurrence, and toxicity from off-target effects. Combination therapy is a keystone strategy to overcome the limitations of monotherapy. With the integration of ICT and any therapy that induces tumor cell lysis and release of tumor-associated antigens (TAAs), ICT is expected to strengthen the coordinated innate and adaptive immune responses to TAA release and promote systemic, cellular antitumor immunity. Nanomedicine is well poised to facilitate combination ICT. Nanoparticles with delivery and/or immunomodulation capacities have been successfully combined with ICT in preclinical applications. Delivery nanoparticles protect and control the targeted release of their cargo. Inherently immunomodulatory nanoparticles can facilitate immunogenic cell death, modification of the tumor microenvironment, immune cell mimicry and modulation, and/or in situ vaccination. Nanoparticles are frequently multifunctional, combining multiple treatment strategies into a single platform with ICT. Nanomedicine and ICT combinations have great potential to yield novel, powerful treatments for patients with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Aayushma Gautam
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Isabel G. Newton
- Department of Radiology, University of California, San Diego, La Jolla CA 92039, USA,Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive San Diego, CA 92161
| | | |
Collapse
|
5
|
Bojadzic D, Alcazar O, Chen J, Chuang ST, Capcha JMC, Shehadeh LA, Buchwald P. Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infect Dis 2021; 7:1519-1534. [PMID: 33979123 PMCID: PMC8130611 DOI: 10.1021/acsinfecdis.1c00070] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Oscar Alcazar
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Jinshui Chen
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Sung-Ting Chuang
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Jose M. Condor Capcha
- Division of Cardiology, University of Miami, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - Lina A. Shehadeh
- Division of Cardiology, University of Miami, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Bojadzic D, Alcazar O, Buchwald P. Methylene Blue Inhibits the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction-a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Front Pharmacol 2021; 11:600372. [PMID: 33519460 PMCID: PMC7838506 DOI: 10.3389/fphar.2020.600372] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2, which is the first critical step initiating the viral attachment and entry of this coronavirus responsible for the ongoing COVID-19 pandemic. As part of this, we found that methylene blue, a tricyclic phenothiazine compound approved by the FDA for the treatment of methemoglobinemia and used for other medical applications (including the inactivation of viruses in blood products prior to transfusion when activated by light), inhibits this interaction. We confirmed that it does so in a concentration-dependent manner with a low micromolar half-maximal inhibitory concentration (IC50 = 3 μM) in our protein-based ELISA-type setup, while chloroquine, siramesine, and suramin showed no inhibitory activity in this assay. Erythrosine B, which we have shown before to be a promiscuous SMI of PPIs, also inhibited this interaction. Methylene blue inhibited the entry of a SARS-CoV-2 spike bearing pseudovirus into ACE2-expressing cells with similar IC50 (3.5 μM). Hence, this PPI inhibitory activity could contribute to its antiviral activity against SARS-CoV-2 even in the absence of light by blocking its attachment to ACE2-expressing cells and making this inexpensive and widely available drug potentially useful in the prevention and treatment of COVID-19 as an oral or inhaled medication.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
8
|
Lo CH, Huber EC, Sachs JN. Conformational states of TNFR1 as a molecular switch for receptor function. Protein Sci 2020; 29:1401-1415. [PMID: 31960514 DOI: 10.1002/pro.3829] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that plays a key role in the regulation of the inflammatory pathway. While inhibition of TNFR1 has been the focus of many studies for the treatment of autoimmune diseases such as rheumatoid arthritis, activation of the receptor is important for the treatment of immunodeficiency diseases such as HIV and neurodegenerative diseases such as Alzheimer's disease where a boost in immune signaling is required. In addition, activation of other TNF receptors such as death receptor 5 or FAS receptor is important for cancer therapy. Here, we used a previously established TNFR1 fluorescence resonance energy transfer (FRET) biosensor together with a fluorescence lifetime technology as a high-throughput screening platform to identify a novel small molecule that activates TNFR1 by increasing inter-monomeric spacing in a ligand-independent manner. This shows that the conformational rearrangement of pre-ligand assembled receptor dimers can determine the activity of the receptor. By probing the interaction between the receptor and its downstream signaling molecule (TRADD) our findings support a new model of TNFR1 activation in which varying conformational states of the receptor act as a molecular switch in determining receptor function.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Evan C Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Wu LY, Enkhjargal B, Xie ZY, Travis ZD, Sun CM, Zhou KR, Zhang TY, Zhu QQ, Hang CH, Zhang JH. Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats. Exp Neurol 2020; 326:113179. [PMID: 31930990 DOI: 10.1016/j.expneurol.2020.113179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation. Current study was performed to detect the role of recombinant OX40 (ReOX40) against neuronal apoptosis after SAH. The endovascular perforation model of SAH was performed on Sprague-Dawley (SD) rats. ReOX40 was injected intracerebroventricularly (i.c.v) 1 h after SAH induction and the following methods were employed: neurological function evaluation, immunofluorescence staining, fluoro-Jade C staining, and western blot. To study the underlying precise molecular mechanism, small interfering ribonucleic acid (siRNA) for OX40L and a specific inhibitor of PI3K, LY294002, were injected i.c.v. into SAH + ReOX40 rats before induction of SAH. When compared with sham rats, the expression of OX40 and OX40L was seen to decrease in the brain at 24 h after SAH induction. Administration of ReOX40 (5 μg/kg) increased expression of the OX40L, reduced the neuronal apoptosis, and improved short and long-term neurological function deficits. Furthermore, ReOx40 heightened activation of OX40L/PI3K/AKT axis, increased the downstream anti-apoptotic protein (Bcl2, Bcl-XL), and depressed the apoptotic protein (cleaved caspase 3, Bax). However, the protective effects of ReOX40 were abolished by the administration of OX40L siRNA and LY294002, respectively. These results demonstrate that ReOX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT pathway in EBI after SAH.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Cheng-Mei Sun
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Department of Anesthesiology and Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
10
|
Guo R, Zhang T, Meng X, Lin Z, Lin J, Gong Y, Liu X, Yu Y, Zhao G, Ding X, Chen X, Lu L. Lymphocyte mass cytometry identifies a CD3-CD4+ cell subset with a potential role in psoriasis. JCI Insight 2019; 4:125306. [PMID: 30747724 DOI: 10.1172/jci.insight.125306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
Psoriasis (PS) is a systemic, immune-mediated inflammatory disorder. However, the whole lymphocyte compartment and the potential pathologies of PS have not been fully characterized. In the present study, we examined whole lymphocyte subsets and signal transduction proteins using high-dimensional single-cell mass cytometry and a bioinformatics pipeline for an in-depth characterization of the immune cell subsets and protein profiles involved in pathways in the peripheral blood of patients with PS. We identified 15 major immune cell populations in T cell lineages and characterized various CD3+CD4+ Th and CD3+CD8+ T cytotoxic cell populations simultaneously across 24 leukocyte markers and 7 proteins related to the signal transduction pathways. High-dimensional analysis identified 3 new subsets that are abundant in PS peripheral blood, resembling CD3-CD4+ lymphoid tissue inducer cells, Tc17 cells, and CD8+CXCR3+ Tregs. We confirmed the CD3-CD4+ cells, and their features and functions, in an independent PS cohort. The use of single-cell mass cytometry allows systemic-level characterization of lymphocyte subpopulations and dysregulated signaling pathways in the blood of patients with PS, identifying abnormalities of different immune cell subsets. We validated that the CD3-CD4+ cells had elevated OX40 and decreased FRA2 expression, which were positively associated with the PS area and severity index.
Collapse
Affiliation(s)
- Ruru Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Meng
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Lin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Yuetian Yu
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guilin Zhao
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Smith WM, Purvis IJ, Bomstad CN, Labak CM, Velpula KK, Tsung AJ, Regan JN, Venkataraman S, Vibhakar R, Asuthkar S. Therapeutic targeting of immune checkpoints with small molecule inhibitors. Am J Transl Res 2019; 11:529-541. [PMID: 30899360 PMCID: PMC6413273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Immune checkpoints are known to contribute to tumor progression by enhancing cancer's ability to evade the immune system and metastasize. Immunotherapies, including monoclonal antibodies, have been developed to target specific immunosuppressive molecules on the membranes of cancer cells and have proven revolutionary in the field of oncology. Recently, small molecule inhibitors (SMIs) have gained increased attention in cancer research with potential applications in immunotherapy. SMIs have desirable benefits over large-molecule inhibitors, such as monoclonal antibodies, including greater cell permeability, organ specificity, longer half-lives, cheaper production costs, and the possibility for oral administration. This paper will review the mechanisms by which noteworthy and novel immune checkpoints contribute to tumor progression, and how they may be targeted by SMIs and epigenetic modifiers to offer possible adjuvants to established therapeutic regimens. SMIs target immune checkpoints in several ways, such as blocking signaling between tumorigenic factors, building immune tolerance, and direct inhibition via epigenetic repression of immune inhibitory molecules. Further investigation into combination therapies utilizing SMIs and conventional cancer therapies will uncover new treatment options that may provide better patient outcomes across a range of cancers.
Collapse
Affiliation(s)
- Wade M Smith
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Ian J Purvis
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Colin N Bomstad
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL
- Department of Illinois Neurological Institute, University of Illinois College of MedicinePeoria, IL
| | - Jenna N Regan
- Department of Health Sciences Education, University of Illinois College of MedicinePeoria, IL
| | | | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| |
Collapse
|
12
|
An J, Ding S, Hu X, Sun L, Gu Y, Xu Y, Hu Y, Liu C, Zhang X. Preparation, characterization and application of anti-human OX40 ligand (OX40L) monoclonal antibodies and establishment of a sandwich ELISA for autoimmune diseases detection. Int Immunopharmacol 2018; 67:260-267. [PMID: 30562687 DOI: 10.1016/j.intimp.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
Abstract
OX40L (CD252, TNFSF4), a type II transmembrane protein which like other tumor necrosis factor ligands, involved in the costimulation and differentiation of T cells, functions as a positive signal in immune response. To investigate the biological function of soluble OX40L (sOX40L), three functional anti-OX40L monoclonal antibodies (mAbs) 3D2, 3F7 and 2H3 were obtained by hybridoma technology. Besides, specificity of the mAbs was further demonstrated by ELISA, Western blot and Immunofluorescence experiments. We also developed a novel enzyme-linked immunosorbent assay (ELISA) based on two anti-human OX40L antibodies 3D2 and 3F7 with different epitopes. Using the ELISA system, we found that sOX40L in the sera of healthy donors increases in an age-dependent manner and that enhanced sOX40L expression in some autoimmune diseases especially in rheumatoid arthritis (RA) patients, suggesting the potential diagnostic significance of sOX40L in the autoimmune diseases. Together, these data demonstrate that the existence of circulating sOX40L in human sera might play an important role in immunoregulation.
Collapse
Affiliation(s)
- Jingnan An
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Sisi Ding
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Lili Sun
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Yumin Hu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xueguang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Bojadzic D, Chen J, Alcazar O, Buchwald P. Design, Synthesis, and Evaluation of Novel Immunomodulatory Small Molecules Targeting the CD40⁻CD154 Costimulatory Protein-Protein Interaction. Molecules 2018; 23:E1153. [PMID: 29751636 PMCID: PMC5978685 DOI: 10.3390/molecules23051153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
We report the design, synthesis, and testing of novel small-molecule compounds targeting the CD40⁻CD154 (CD40L) costimulatory interaction for immunomodulatory purposes. This protein-protein interaction (PPI) is a TNF-superfamily (TNFSF) costimulatory interaction that is an important therapeutic target since it plays crucial roles in the activation of T cell responses, and there is resurgent interest in its modulation with several biologics in development. However, this interaction, just as all other PPIs, is difficult to target by small molecules. Following up on our previous work, we have now identified novel compounds such as DRI-C21091 or DRI-C21095 that show activity (IC50) in the high nanomolar to low micromolar range in the binding inhibition assay and more than thirty-fold selectivity versus other TNFSF PPIs including OX40⁻OX40L, BAFFR-BAFF, and TNF-R1-TNFα. Protein thermal shift (differential scanning fluorimetry) assays indicate CD154 and not CD40 as the binding partner. Activity has also been confirmed in cell assays and in a mouse model (alloantigen-induced T cell expansion in a draining lymph node). Our results expand the chemical space of identified small-molecule CD40⁻CD154 costimulatory inhibitors and provide lead structures that have the potential to be developed as orally bioavailable immunomodulatory therapeutics that are safer and less immunogenic than corresponding biologics.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
15
|
Toogood PL. Small molecule immuno-oncology therapeutic agents. Bioorg Med Chem Lett 2017; 28:319-329. [PMID: 29326017 DOI: 10.1016/j.bmcl.2017.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Treatment of cancer by activation of an antitumor immune response is now a widely practiced and well-accepted approach to therapy. However, despite dramatic responses in some patients, the high proportion of unresponsive patients points to a considerable unmet medical need. Although antibody therapies have led the way, small molecule immuno-oncology agents are close behind. This perspective provides an overview of some of the many small molecule approaches being explored. It encompasses small molecule modulators of validated targets such as programed cell death 1 (PD-1) as well as novel approaches still to be proven clinically.
Collapse
Affiliation(s)
- Peter L Toogood
- Lycera Corp., 1350 Highland Drive, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Chen J, Song Y, Bojadzic D, Tamayo-Garcia A, Landin AM, Blomberg BB, Buchwald P. Small-Molecule Inhibitors of the CD40-CD40L Costimulatory Protein-Protein Interaction. J Med Chem 2017; 60:8906-8922. [PMID: 29024591 PMCID: PMC5823691 DOI: 10.1021/acs.jmedchem.7b01154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Costimulatory interactions are required for T cell activation and development of an effective immune response; hence, they are valuable therapeutic targets for immunomodulation. However, they, as all other protein-protein interactions, are difficult to target by small molecules. Here, we report the identification of novel small-molecule inhibitors of the CD40-CD40L interaction designed starting from the chemical space of organic dyes. For the most promising compounds such as DRI-C21045, activity (IC50) in the low micromolar range has been confirmed in cell assays including inhibition of CD40L-induced activation in NF-κB sensor cells, THP-1 myeloid cells, and primary human B cells as well as in murine allogeneic skin transplant and alloantigen-induced T cell expansion in draining lymph node experiments. Specificity versus other TNF-superfamily interactions (TNF-R1-TNF-α) and lack of cytotoxicity have also been confirmed at these concentrations. These novel compounds provide proof-of-principle evidence for the possibility of small-molecule inhibition of costimulatory protein-protein interactions, establish the structural requirements needed for efficient CD40-CD40L inhibition, and serve to guide the search for such immune therapeutics.
Collapse
Affiliation(s)
- Jinshui Chen
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Yun Song
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Alejandro Tamayo-Garcia
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Ana Marie Landin
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Bonnie B. Blomberg
- Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| |
Collapse
|
17
|
Buchwald P. A three-parameter two-state model of receptor function that incorporates affinity, efficacy, and signal amplification. Pharmacol Res Perspect 2017; 5:e00311. [PMID: 28603630 PMCID: PMC5464340 DOI: 10.1002/prp2.311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2016] [Revised: 02/27/2017] [Accepted: 03/22/2017] [Indexed: 01/30/2023] Open
Abstract
A generalized model of receptor function is proposed that relies on the essential assumptions of the minimal two-state receptor theory (i.e., ligand binding followed by receptor activation), but uses a different parametrization and allows nonlinear response (transduction) for possible signal amplification. For the most general case, three parameters are used: Kd, the classic equilibrium dissociation constant to characterize binding affinity; ε, an intrinsic efficacy to characterize the ability of the bound ligand to activate the receptor (ranging from 0 for an antagonist to 1 for a full agonist); and γ, a gain (amplification) parameter to characterize the nonlinearity of postactivation signal transduction (ranging from 1 for no amplification to infinity). The obtained equation, E/Emax=εγLεγ+1-εL+Kd, resembles that of the operational (Black and Leff) or minimal two-state (del Castillo-Katz) models, E/Emax=τLτ+1L+Kd, with εγ playing a role somewhat similar to that of the τ efficacy parameter of those models, but has several advantages. Its parameters are more intuitive as they are conceptually clearly related to the different steps of binding, activation, and signal transduction (amplification), and they are also better suited for optimization by nonlinear regression. It allows fitting of complex data where receptor binding and response are measured separately and the fractional occupancy and response are mismatched. Unlike the previous models, it is a true generalized model as simplified forms can be reproduced with special cases of its parameters. Such simplified forms can be used on their own to characterize partial agonism, competing partial and full agonists, or signal amplification.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology and Diabetes Research InstituteMiller School of MedicineUniversity of MiamiMiamiFlorida
| |
Collapse
|
18
|
Abstract
The tumour necrosis factor receptor OX40 (CD134) is activated by its cognate ligand OX40L (CD134L, CD252) and functions as a T cell co-stimulatory molecule. OX40-OX40L interactions have been proposed as a potential therapeutic target for treating autoimmunity. OX40 is expressed on activated T cells, and in the mouse at rest on regulatory T cells (Treg). OX40L is found on antigen-presenting cells, activated T cells and others including lymphoid tissue inducer cells, some endothelia and mast cells. Expression of both molecules is increased after antigen presentation occurs and also in response to multiple other pro-inflammatory factors including CD28 ligation, CD40L ligation and interferon-gamma signaling. Their interactions promote T cell survival, promote an effector T cell phenotype, promote T cell memory, tend to reduce regulatory function, increase effector cytokine production and enhance cell mobility. In some circumstances, OX40 agonism may be associated with increased tolerance, although timing with respect to antigenic stimulus is important. Further, recent work has suggested that OX40L blockade may be more effective than OX40 blockade in reducing autoimmunity. This article reviews the expression of OX40 and OX40L in health, the effects of their interactions and insights from their under- or over-expression. We then review OX40 and OX40L expression in human autoimmune disease, identified associations of variations in their genes (TNFRSF4 and TNFSF4, respectively) with autoimmunity, and data from animal models of human diseases. A rationale for blocking OX40-OX40L interaction in human autoimmunity is then presented along with commentary on the one trial of OX40L blockade in human disease conducted to date. Finally, we discuss potential problems with clinical use of OX40-OX40L directed pharmacotherapy.
Collapse
Affiliation(s)
- Gwilym J Webb
- MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK. .,National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK.
| | - Gideon M Hirschfield
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Peter J L Lane
- MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
19
|
Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM. Nanoparticulate immunotherapy for cancer. J Control Release 2015; 219:167-180. [DOI: 10.1016/j.jconrel.2015.09.062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
20
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
21
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
22
|
Abstract
"Protein-protein interactions (PPIs) are one of the most promising new targets in drug discovery. With estimates between 300,000 and 650,000 in human physiology, targeted modulation of PPIs would tremendously extend the "druggable" genome. In fact, in every disease a wealth of potentially addressable PPIs can be found making pharmacological intervention based on PPI modulators in principle a generally applicable technology. An impressing number of success stories in small-molecule PPI inhibition and natural-product PPI stabilization increasingly encourage academia and industry to invest in PPI modulation. In this chapter examples of both inhibition as well as stabilization of PPIs are reviewed including some of the technologies which has been used for their identification."
Collapse
|
23
|
Brauns T, Leblanc P, Gelfand JA, Poznanski M. Could mycobacterial Hsp70-containing fusion protein lead the way to an affordable therapeutic cancer vaccine? Expert Rev Vaccines 2014; 14:435-46. [PMID: 25496347 DOI: 10.1586/14760584.2015.979797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Cancer vaccine development efforts have recently gained momentum, but most vaccines showing clinical impact in human trials tend to be based on technology approaches that are very costly and difficult to produce at scale. With the projected doubling of the incidence of cancer and its related cost of care in the U.S. over the next two decades, the widespread clinical use of such vaccines will prove difficult to justify. Heat shock protein-based vaccines have shown the potential to elicit clinically meaningful immunologic responses in cancer, but the predominant development approach - heat shock protein-peptide complexes derived from a patient's own tumor - face similar challenges of cost and scalability. New innovative modalities for deploying heat shock proteins in cancer vaccines may open the door to vaccines that can generate potent cytotoxic responses against multiple tumor targets and can be made in a cost-effective and scalable manner.
Collapse
Affiliation(s)
- Timothy Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital - Medicine/Infectious Diseases, 149 13th Street, Mailstop 149-5-5246, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|