1
|
Sawasawa T, Lin JD, Wang YH, Chen KJ, Yang YM, Hu SW, Cheng CW. Elevated serum GDF15 level as an early indicator of proximal tubular cell injury in acute kidney injury. Life Sci 2024; 357:123093. [PMID: 39362583 DOI: 10.1016/j.lfs.2024.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Acute kidney injury (AKI) is a high-burden medical condition, and current diagnostic criteria can only assess AKI after full manifestation. Stress marker growth differentiation factor 15 (GDF15) was reported to have a role in kidney injury of critical patients. Herein, we evaluated dynamic changes in GDF15 across diverse AKI scenarios and explored the underlying mechanisms of its induction. Serum parameters and renal lesions were analyzed in mouse models of unilateral ischemia-reperfusion injury (uni-IRI) and unilateral ureteral obstruction (UUO). The human proximal tubular (HK-2) cell line was stimulated with various conditions, and induction of GDF15 expression was determined. Serum GDF15 levels were rapidly induced within hours after injury in both animal models and declined thereafter. Renal GDF15 expression exhibited a temporary and early increased induction and was mainly located in aquaporin 1-positive proximal tubules in both unilateral AKI model tissues. In cell experiments, rapid GDF15 production was highly induced by t-BHP and CoCl2. Treatment with either an antioxidant or mitogen-activated protein kinase inhibitors abolished t-BHP- and CoCl2-mediated GDF15 expression. In addition, silencing nuclear factor erythroid 2-related factor 2 expression also reduced the basal and t-BHP- or CoCl2-mediated GDF15 expression level in HK-2 cells. Our data showed that elevated serum GDF15 levels could be detected early in unilateral AKI models without notable alterations in kidney function parameters. GDF15 expression was associated with oxidative stress- and hypoxia-mediated proximal tubular cell injury. These data document that elevated serum GDF15 can possibly serve as an early biomarker for proximal tubular cell injury in AKI.
Collapse
Affiliation(s)
- Thokozani Sawasawa
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiunn-Diann Lin
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kung-Ju Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yea-Mey Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Su-Wei Hu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Cai YT, Li Z, Wang YY, Li C, Ma QY. A novel GSK3β inhibitor 5n attenuates acute kidney injury. Heliyon 2024; 10:e29159. [PMID: 38644860 PMCID: PMC11031767 DOI: 10.1016/j.heliyon.2024.e29159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality caused by various factor. The specific strategies for AKI are still lacking. GSK3β is widely expressed in the kidneys. In acute models of injury, GSK3β promotes the systemic inflammatory response, increases the proinflammatory release of cytokines, induces apoptosis, and alters cell proliferation. We screened a series of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives which are recognized as new GSK3β inhibitors, and found that 5n had the least toxicity and the best cell protection. We then tested the anti-inflammatory and reno-protective effect of 5n in cisplatin-treated tubular epithelial cells. 5n had anti-inflammation effect indicated by phosphor-NF-κB detection. Finally, we found that 5n ameliorated renal injury and inflammation in cisplatin-induced AKI mouse model. Silencing GSK3β inhibited cell injury and inflammation induced by cisplatin. We found that GSK3β interacted with PP2Ac to modulate the activity of NF-κB. In conclusion, 5n, the novel GSK3β inhibitor, protects against AKI via PP2Ac-dependent mechanisms which may provide a potential strategy for the treatment of AKI in clinic.
Collapse
Affiliation(s)
- Yu-ting Cai
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yue-yue Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Chao Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qiu-ying Ma
- Department of pharmacy, 1. The First Affiliated Hospital of Anhui Medical University, 2. Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| |
Collapse
|
4
|
Liang LL, He MF, Zhou PP, Pan SK, Liu DW, Liu ZS. GSK3β: A ray of hope for the treatment of diabetic kidney disease. FASEB J 2024; 38:e23458. [PMID: 38315453 DOI: 10.1096/fj.202302160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3β (glycogen synthase kinase 3β), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3β participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3β in DKD and its damage mechanism in different intrinsic renal cells. GSK3β is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3β inhibitors on DKD are also discussed.
Collapse
Affiliation(s)
- Lu-Lu Liang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Meng-Fei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Pan-Pan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| |
Collapse
|
5
|
Zhang L, Miao M, Xu X, Bai M, Wu M, Zhang A. From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:342-357. [PMID: 37901706 PMCID: PMC10601966 DOI: 10.1159/000530485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs). Summary Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs. Key Messages Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Miao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Hejazian SM, Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Barzegari A, Gueguen V, Meddahi-Pellé A, Anagnostou F, Zununi Vahed S, Pavon-Djavid G. Biofactors regulating mitochondrial function and dynamics in podocytes and podocytopathies. J Cell Physiol 2023; 238:2206-2227. [PMID: 37659096 DOI: 10.1002/jcp.31110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.
Collapse
Affiliation(s)
| | | | | | | | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Fani Anagnostou
- Université de Paris, CNRS UMR 7052 INSERM U1271, B3OA, Paris, France
| | | | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|
7
|
Sheng J, Li X, Lei J, Gan W, Song J. Mitochondrial quality control in acute kidney disease. J Nephrol 2023; 36:1283-1291. [PMID: 36800104 DOI: 10.1007/s40620-023-01582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Acute kidney disease (AKD) involves multiple pathogenic mechanisms, including maladaptive repair of renal cells that are rich in mitochondria. Maintenance of mitochondrial homeostasis and quality control is crucial for normal kidney function. Mitochondrial quality control serves to maintain mitochondrial function under various conditions, including mitochondrial bioenergetics, mitochondrial biogenesis, mitochondrial dynamics (fusion and fission) and mitophagy. To date, increasing evidence indicates that mitochondrial quality control is disrupted when acute kidney disease develops. This review describes the mechanisms of mitochondria quality control in acute kidney disease, aiming to provide clues to help design new clinical treatments.
Collapse
Affiliation(s)
- Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xian Li
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - WeiHua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
8
|
Tanriover C, Copur S, Ucku D, Cakir AB, Hasbal NB, Soler MJ, Kanbay M. The Mitochondrion: A Promising Target for Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15020570. [PMID: 36839892 PMCID: PMC9960839 DOI: 10.3390/pharmaceutics15020570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Ahmet B. Cakir
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Nuri B. Hasbal
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Maria Jose Soler
- Nephrology and Kidney Transplant Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
- Correspondence: or ; Tel.: +90-212-2508250
| |
Collapse
|
9
|
Liu RP, Wang XQ, Wang J, Dan L, Li YH, Jiang H, Xu YN, Kim NH. Oroxin A reduces oxidative stress, apoptosis, and autophagy and improves the developmental competence of porcine embryos in vitro. Reprod Domest Anim 2022; 57:1255-1266. [PMID: 35780288 DOI: 10.1111/rda.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 μM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels, while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Rong-Ping Liu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Xin-Qin Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Jing Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Luo Dan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| |
Collapse
|
10
|
Abstract
Kidney function decreases with age and may soon limit millions of lives as the proportion of the population over 70 years of age increases. Glycogen synthase kinase 3β (GSK3β) is involved with metabolism and may have a role in kidney senescence, positioning it as a target for complications from chronic kidney disease. However, different studies suggest GSK3 has contrasting effects. In this issue of the JCI, Fang et al. explored the function of GSK3β and the interplay with lithium using human tissue and mouse models. Notably, GSK3β was overexpressed and activated in aging mice, and depleting GSK3β reduced senescence and glomerular aging. In this Commentary, we explore the similarities and differences between Fang et al. and previous findings by Hurcombe et al. These findings should prompt further study of lithium and other GSK3β inhibitors as a means of extending glomerular function in individuals with chronic kidney disease.
Collapse
|
11
|
Li W, Chen Y, He K, Cao T, Song D, Yang H, Li L, Lin J. The Apoptosis of Liver Cancer Cells Promoted by Curcumin/TPP-CZL Nanomicelles With Mitochondrial Targeting Function. Front Bioeng Biotechnol 2022; 10:804513. [PMID: 35242748 PMCID: PMC8887866 DOI: 10.3389/fbioe.2022.804513] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondrion is one of the most important cellular organelles, and many drugs work by acting on mitochondria. Curcumin (Cur)-induced apoptosis of HepG2 in liver cancer cells is closely related to the function of inhibiting mitochondria. However, the mitochondrion-targeting curcumin delivery system was rarely been reported. It is important to develop a high-efficiency mitochondrion-targeting curcumin vector that can deliver curcumin into mitochondria directly. Here, a special mitochondrion-targeting delivery system based on triphenylphosphine bromide (TPP)-chitosan-g-poly-(N-3-carbobenzyloxy-l-lysine) (CZL) with TPP functional on the surface is designed to perform highly efficient mitochondria-targeting delivery for effective liver cancer cell killing in vitro. The TEM images showed that the nanomicelles were spherical; the results of fluorescence test showed that TPP-CZL nanomicelles could promote the cellular uptake of drugs and finally targeted to the mitochondria. The results of cell survival rate and Hoechst staining showed that curcumin/TPP-CZL nanomicelles could promote the apoptosis of liver cancer cells. Curcumin/TPP-CZL nanomicelles could significantly reduce the mitochondrial membrane potential, increase the expression of pro apoptotic protein Bcl-2, and reduce the expression of antiapoptotic Bax protein, and these results were significantly better than curcumin/CZL nanomicelles and curcumin. It is a potential drug delivery system with high efficiency to target mitochondria of liver cancer cells.
Collapse
Affiliation(s)
- Wanyu Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yanan Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Kun He
- Hepatobiliary Surgery, Zhongshan People’s Hospital, Zhongshan, China
| | - Tianshou Cao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Daibo Song
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huiling Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- *Correspondence: Huiling Yang, ; Li Li, ; Jiantao Lin,
| | - Li Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- *Correspondence: Huiling Yang, ; Li Li, ; Jiantao Lin,
| | - Jiantao Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- *Correspondence: Huiling Yang, ; Li Li, ; Jiantao Lin,
| |
Collapse
|
12
|
Zhang X, Agborbesong E, Li X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222011253. [PMID: 34681922 PMCID: PMC8537003 DOI: 10.3390/ijms222011253] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are heterogeneous and highly dynamic organelles, playing critical roles in adenosine triphosphate (ATP) synthesis, metabolic modulation, reactive oxygen species (ROS) generation, and cell differentiation and death. Mitochondrial dysfunction has been recognized as a contributor in many diseases. The kidney is an organ enriched in mitochondria and with high energy demand in the human body. Recent studies have been focusing on how mitochondrial dysfunction contributes to the pathogenesis of different forms of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). AKI has been linked to an increased risk of developing CKD. AKI and CKD have a broad clinical syndrome and a substantial impact on morbidity and mortality, encompassing various etiologies and representing important challenges for global public health. Renal mitochondrial disorders are a common feature of diverse forms of AKI and CKD, which result from defects in mitochondrial structure, dynamics, and biogenesis as well as crosstalk of mitochondria with other organelles. Persistent dysregulation of mitochondrial homeostasis in AKI and CKD affects diverse cellular pathways, leading to an increase in renal microvascular loss, oxidative stress, apoptosis, and eventually renal failure. It is important to understand the cellular and molecular events that govern mitochondria functions and pathophysiology in AKI and CKD, which should facilitate the development of novel therapeutic strategies. This review provides an overview of the molecular insights of the mitochondria and the specific pathogenic mechanisms of mitochondrial dysfunction in the progression of AKI, CKD, and AKI to CKD transition. We also discuss the possible beneficial effects of mitochondrial-targeted therapeutic agents for the treatment of mitochondrial dysfunction-mediated AKI and CKD, which may translate into therapeutic options to ameliorate renal injury and delay the progression of these kidney diseases.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +507-266-0110
| |
Collapse
|
13
|
Wang D, Lu X, Wang E, Shi L, Ma C, Tan X. Salvianolic acid B attenuates oxidative stress-induced injuries in enterocytes by activating Akt/GSK3β signaling and preserving mitochondrial function. Eur J Pharmacol 2021; 909:174408. [PMID: 34364877 DOI: 10.1016/j.ejphar.2021.174408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The cellular and tissue damage induced by oxidative stress (OS) contribute to a variety of human diseases, which include gastrointestinal diseases. Salvianolic acid B (Sal B), which is a natural polyphenolic acid in Salvia miltiorrhiza, exhibits prominent antioxidant properties. However, its precise function and molecular mechanisms in protecting normal intestine epithelium from OS-induced damage are still poorly defined. In this study, we tried to clarify this relationship. Here, we found Sal B addiction in the rat intestinal epithelial cell, IEC-6, prevented H2O2-induced cell viability decrease and apoptosis induction, ameliorated H2O2-induced intestinal epithelial barrier dysfunction and mitochondrial dysfunction, and suppressed H2O2-induced production of ROS to varying degrees, ranging from 10% to 30%. Moreover, by employing an ischemia reperfusion model of rats, we also discovered that Sal B treatment reversed ischemia and a reperfusion-caused decrease in villus height and crypt depth, decreased proliferation of enterocytes, and increased the apoptotic index in the jejunum and ileum. Mechanistically, Sal B treatment up-regulated the phosphorylated level of Akt and GSK3β in enterocytes in vitro and in vivo, and PI3K inhibitor LY294002 treatment abrogated the protective effects of Sal B. Meanwhile, the inactivation of GSK3β reversed the oxidative stress-induced apoptosis and mitochondrial dysfunction in IEC-6 cells. Together, our results demonstrated that the damage of intestinal epithelial cells in in vitro and in vivo models were both attenuated by Sal B treatment, and such antioxidant activity might very possibly be attributed to the activation of Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Dong Wang
- Department of Pancreatic and Thyroid Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China; Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China.
| | - Xiaona Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Enbo Wang
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Liangang Shi
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Xiaodong Tan
- Department of Pancreatic and Thyroid Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Chen B, Wang P, Liang X, Jiang C, Ge Y, Dworkin LD, Gong R. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease. Cell Death Dis 2021; 12:432. [PMID: 33931588 PMCID: PMC8087712 DOI: 10.1038/s41419-021-03709-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Renal tubular epithelial cells (TECs) play a key role in renal fibrogenesis. After persistent injuries that are beyond self-healing capacity, TECs will dedifferentiate, undergo growth arrest, convert to profibrogenic phenotypes, and resort to maladaptive plasticity that ultimately results in renal fibrosis. Evidence suggests that glycogen synthase kinase (GSK) 3β is centrally implicated in kidney injury. However, its role in renal fibrogenesis is obscure. Analysis of publicly available kidney transcriptome database demonstrated that patients with progressive chronic kidney disease (CKD) exhibited GSK3β overexpression in renal tubulointerstitium, in which the predefined hallmark gene sets implicated in fibrogenesis were remarkably enriched. In vitro, TGF-β1 treatment augmented GSK3β expression in TECs, concomitant with dedifferentiation, cell cycle arrest at G2/M phase, excessive accumulation of extracellular matrix, and overproduction of profibrotic cytokines like PAI-1 and CTGF. All these profibrogenic phenotypes were largely abrogated by GSK3β inhibitors or by ectopic expression of a dominant-negative mutant of GSK3β but reinforced in cells expressing the constitutively active mutant of GSK3β. Mechanistically, GSK3β suppressed, whereas inhibiting GSK3β facilitated, the activity of cAMP response element-binding protein (CREB), which competes for CREB-binding protein, a transcriptional coactivator essential for TGF-β1/Smad signaling pathway to drive TECs profibrogenic plasticity. In vivo, in mice with folic acid-induced progressive CKD, targeting of GSK3β in renal tubules via genetic ablation or by microdose lithium mitigated the profibrogenic plasticity of TEC, concomitant with attenuated interstitial fibrosis and tubular atrophy. Collectively, GSK3β is likely a pragmatic therapeutic target for averting profibrogenic plasticity of TECs and improving renal fibrosis.
Collapse
Affiliation(s)
- Bohan Chen
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
| | - Xianhui Liang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
| | - Chunming Jiang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Lance D Dworkin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, 02903, USA.
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, USA.
| |
Collapse
|
15
|
Lei M, Chen G, Zhang M, Lei J, Li T, Li D, Zheng H. A pH-sensitive drug delivery system based on hyaluronic acid co-deliver doxorubicin and aminoferrocene for the combined application of chemotherapy and chemodynamic therapy. Colloids Surf B Biointerfaces 2021; 203:111750. [PMID: 33862573 DOI: 10.1016/j.colsurfb.2021.111750] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/14/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Doxorubicin is a broad-spectrum antineoplastic drug used in tumor therapy, its clinical application is limited by side effects on normal tissues. In this article, a pH-responsive drug delivery system (NPs(DOX/AFc)) with co-delivers doxorubicin (DOX) and aminoferrocene (AFc) was prepared by a two-step synthesis method including the oxidation of hyaluronic acid and Schiff base reaction. NPs(DOX/AFc) can be used in combination therapy of chemodynamic therapy (CDT) and chemotherapy (CT), thus the dosage of the chemotherapeutic drug DOX was reduced. The drug release behavior of NPs(DOX/AFc) in vitro showed that acid-responsive drug releases under the endosomal/lysosomal environment were 56.5 % of DOX and 61.8 % of AFc. In vitro toxicity experiments showed that DOX and AFc had synergistic effects (CI = 0.878). The results of intracellular ROS measurement and the mitochondrial membrane potential analysis showed that in tumor cells NPs(DOX4/AFc) induced more production of reactive oxygen species and more loss of the mitochondrial membrane potential. In short, this co-delivery system based on polymer prodrugs provides a new idea for the combined application of CT and CDT.
Collapse
Affiliation(s)
- Mengheng Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Gang Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Mengyao Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiaqing Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Tingting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
16
|
Gujarati NA, Vasquez JM, Bogenhagen DF, Mallipattu SK. The complicated role of mitochondria in the podocyte. Am J Physiol Renal Physiol 2020; 319:F955-F965. [PMID: 33073585 PMCID: PMC7792691 DOI: 10.1152/ajprenal.00393.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria play a complex role in maintaining cellular function including ATP generation, generation of biosynthetic precursors for macromolecules, maintenance of redox homeostasis, and metabolic waste management. Although the contribution of mitochondrial function in various kidney diseases has been studied, there are still avenues that need to be explored under healthy and diseased conditions. Mitochondrial damage and dysfunction have been implicated in experimental models of podocytopathy as well as in humans with glomerular diseases resulting from podocyte dysfunction. Specifically, in the podocyte, metabolism is largely driven by oxidative phosphorylation or glycolysis depending on the metabolic needs. These metabolic needs may change drastically in the presence of podocyte injury in glomerular diseases such as diabetic kidney disease or focal segmental glomerulosclerosis. Here, we review the role of mitochondria in the podocyte and the factors regulating its function at baseline and in a variety of podocytopathies to identify potential targets for therapy.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Jessica M Vasquez
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Daniel F Bogenhagen
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Renal Section, Northport Department of Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
17
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
18
|
Motrapu M, Świderska MK, Mesas I, Marschner JA, Lei Y, Martinez Valenzuela L, Fu J, Lee K, Angelotti ML, Antonelli G, Romagnani P, Anders HJ, Anguiano L. Drug Testing for Residual Progression of Diabetic Kidney Disease in Mice Beyond Therapy with Metformin, Ramipril, and Empagliflozin. J Am Soc Nephrol 2020; 31:1729-1745. [PMID: 32576600 DOI: 10.1681/asn.2019070703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Progression of CKD in type 2 diabetes, despite dual inhibition of sodium-glucose transporter-2 and the renin-angiotensin system, remains a concern. Bromoindirubin-3'-oxime (BIO), previously reported to promote podocyte survival and regeneration, is a candidate additional drug to elicit renoprotective effects beyond therapy with metformin, ramipril, and empagliflozin (MRE). Evaluating a drug with standard therapeutics more closely mimics the clinical setting than evaluating the drug alone. METHODS Uninephrectomized BKS-Lepr-/- (db/db) mice treated with or without MRE served as a model of progressive CKD in type 2 diabetes. Mice on or off MRE were randomized to only 4 weeks of add-on BIO or vehicle. The primary end point was slope of GFR (ΔGFR). RESULTS Four weeks of MRE treatment alone did not affect ΔGFR, but significantly attenuated hyperglycemia, albuminuria, and glomerulosclerosis and increased podocyte filtration slit density, as assessed by STED super-resolution microscopy upon tissue clearing. BIO alone improved albuminuria, podocyte density in superficial and juxtamedullary nephrons, and podocyte filtration slit density. MRE+BIO combination therapy had additive protective effects on ΔGFR, glomerulosclerosis, podocyte density in juxtamedullary nephrons, and filtration slit density. CONCLUSIONS Add-on treatment with BIO for only 4 weeks attenuates progression of CKD beyond MRE therapy in mice with type 2 diabetes. Additional drug combinations may help to further delay ESKD in type 2 diabetes.
Collapse
Affiliation(s)
- Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Monika Katarzyna Świderska
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Irene Mesas
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian Aurelio Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Yutian Lei
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Laura Martinez Valenzuela
- Nephrology Unit, Bellvitge University Hospital, Hospitalet de Llobregat, de Llobregat, Spain.,IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, de Llobregat, Spain
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Lidia Anguiano
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
19
|
Gao J, Long L, Xu F, Feng L, Liu Y, Shi J, Gong Q. Icariside II, a phosphodiesterase 5 inhibitor, attenuates cerebral ischaemia/reperfusion injury by inhibiting glycogen synthase kinase-3β-mediated activation of autophagy. Br J Pharmacol 2020; 177:1434-1452. [PMID: 31658364 PMCID: PMC7056470 DOI: 10.1111/bph.14912] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Cerebral ischaemia/reperfusion causes exacerbated neuronal damage involving excessive autophagy and neuronal loss. The present study was designed to investigate the effect of icariside II, one of main active ingredients of Herba Epimedii on this loss and whether this is related to its PDE 5 inhibitory action. Experimental Approach Focal cerebral ischaemia was induced in the rat by transient middle cerebral artery occlusion over 2 hr, followed by reperfusion with icariside II, 3‐methylamphetamine or rapamycin. The effect of icariside II was determined measuring behaviour changes and the size of the infarction. The expressions of PDE 5, autophagy‐related proteins and the level of phosphorylation of glycogen synthase kinase‐3β (GSK‐3β) were determined. Cultured primary cortical neurons were subjected to oxygen and glucose deprivation followed by reoxygenation in the presence and absence of icariside II. A surface plasmon resonance assay and molecular docking were used to explore the interactions of icariside II with PDE 5 or GSK‐3β. Key Results Icariside II not only protected against induced ischaemic reperfusion injury in rats but also attenuated such injury in primary cortical neurons. The neuroprotective effects of icariside II on such injury were attributed to interfering with the PKG/GSK‐3β/autophagy axis by directly bounding to PDE 5 and GSK‐3β. Conclusions and Implications These findings indicate that icariside II attenuates cerebral I/R‐induced injury via interfering with PKG/GSK‐3β/autophagy axis. This study raises the possibility that icariside II and other PDE 5 inhibitors maybe effective in the treatment ischaemia stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Long Long
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Linying Feng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Yuangui Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
20
|
Ahmad F, Woodgett JR. Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118616. [PMID: 31785335 DOI: 10.1016/j.bbamcr.2019.118616] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
21
|
Shen Y, Chen S, Zhao Y. Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β. Biochem Biophys Res Commun 2019; 516:1137-1144. [DOI: 10.1016/j.bbrc.2019.06.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023]
|
22
|
Niringiyumukiza JD, Cai H, Chen L, Li Y, Wang L, Zhang M, Xu X, Xiang W. Protective properties of glycogen synthase kinase-3 inhibition against doxorubicin-induced oxidative damage to mouse ovarian reserve. Biomed Pharmacother 2019; 116:108963. [DOI: 10.1016/j.biopha.2019.108963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
|
23
|
Hurcombe JA, Lay AC, Ni L, Barrington AF, Woodgett JR, Quaggin SE, Welsh GI, Coward RJ. Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB Bioadv 2019; 1:498-510. [PMID: 31825015 PMCID: PMC6902909 DOI: 10.1096/fba.2019-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and β). In the podocyte it has previously been reported that inhibition of the β isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.
Collapse
Affiliation(s)
| | - A C Lay
- Bristol Renal, University of Bristol
| | - L Ni
- Bristol Renal, University of Bristol
| | | | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - G I Welsh
- Bristol Renal, University of Bristol
| | | |
Collapse
|
24
|
Hurcombe JA, Hartley P, Lay AC, Ni L, Bedford JJ, Leader JP, Singh S, Murphy A, Scudamore CL, Marquez E, Barrington AF, Pinto V, Marchetti M, Wong LF, Uney J, Saleem MA, Mathieson PW, Patel S, Walker RJ, Woodgett JR, Quaggin SE, Welsh GI, Coward RJM. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat Commun 2019; 10:403. [PMID: 30679422 PMCID: PMC6345761 DOI: 10.1038/s41467-018-08235-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023] Open
Abstract
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
Collapse
Affiliation(s)
- J A Hurcombe
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P Hartley
- Bournemouth University, Bournemouth, BH12 5BB, UK
| | - A C Lay
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L Ni
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - J J Bedford
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J P Leader
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - S Singh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A Murphy
- Department of Pathology, Southern General Hospital, Glasgow, G51 4TF, UK
| | - C L Scudamore
- Mary Lyon Centre, MRC Harwell, Didcot, Oxford, OX11 0RD, UK
| | - E Marquez
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A F Barrington
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - V Pinto
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - M Marchetti
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L-F Wong
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - J Uney
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - M A Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P W Mathieson
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
- The University of Hong Kong, Pokfulam, Hong Kong
| | - S Patel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R J Walker
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - G I Welsh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - R J M Coward
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
25
|
Eirin A, Lerman A, Lerman LO. The Emerging Role of Mitochondrial Targeting in Kidney Disease. Handb Exp Pharmacol 2017; 240:229-250. [PMID: 27316914 DOI: 10.1007/164_2016_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Renal disease affects millions of people worldwide, imposing an enormous financial burden for health-care systems. Recent evidence suggests that mitochondria play an important role in the pathogenesis of different forms of renal disease, including genetic defects, acute kidney injury, chronic kidney disease, aging, renal tumors, and transplant nephropathy. Renal mitochondrial abnormalities and dysfunction affect several cellular pathways, leading to increased oxidative stress, apoptosis, microvascular loss, and fibrosis, all of which compromise renal function. Over recent years, compounds that specifically target mitochondria have emerged as promising therapeutic options for patients with renal disease. Although the most compelling evidence is based on preclinical studies, several compounds are currently being tested in clinical trials. This chapter provides an overview of the involvement of mitochondrial dysfunction in renal disease and summarizes the current knowledge on mitochondria-targeted strategies to attenuate renal disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Wang Z, Yu C, Li XH, Deng BQ. The prognostic value of oxidative stress and inflammation in Chinese hemodialysis patients. Ren Fail 2017; 39:54-58. [PMID: 27767372 PMCID: PMC6014340 DOI: 10.1080/0886022x.2016.1244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is limited information about oxidative stress and inflammation on the mortality of Chinese hemodialysis (HD) patients. SUBJECTS AND METHODS A total of 177 HD patients and 35 healthy controls were enrolled. Their demographic information, clinical characteristics, oxidant and inflammation markers were compared. Multivariate Cox regression analysis was used to assess the risk factors for mortality. RESULTS Twenty-seven (15.3%) HD patients died during the one-year follow-up. The mean age, age ≥70 years, serum level of cardiac troponin T (cTnT), malondialdehyde (MDA) > 5 nmol/L, as well as CRP >10 mg/L and the level of interleukin (IL)-6 were significantly different between the nonsurvival and survival HD patients. Multivariate Cox's regression analysis identified age, age ≥70 years, cTnT, and IL-6 were independent predictors of mortality in HD patients. CONCLUSIONS Age, age ≥70 years, cTnT, and IL-6 were independent predictors of mortality in Chinese HD patients. Elevated IL-6 level, instead of MDA, was predictive of poor outcome in Chinese hemodialysis patients.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nephrology & Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology & Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin-hua Li
- Department of Nephrology & Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing-qing Deng
- Department of Nephrology & Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Wang Z, Yu C, Zhou LN, Chen X. Effects of Tripterygium wilfordii Induction Therapy to IgA Nephropathy Patients with Heavy Proteinuria. Biol Pharm Bull 2017; 40:1833-1838. [PMID: 28867717 DOI: 10.1248/bpb.b17-00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although some new drugs have been developed, Tripterygium wilfordii HOOK F. (TWHF) has the merits of relatively lower price and fewer side effects. Unfortunately, the efficacy and safety of the TWHF (especially dosage 120 mg/d) in the immunoglobulin A (IgA) nephropathy (IgAN) are still lacking. A cohort study including 49 IgAN patients with heavy proteinuria who received induction therapy was undertaken. Patients were divided into three groups: Prednisone (PRE), conventional-dose TWHF (CTW) and double-dose TWHF (DTW). The clinical features, laboratory data, histological manifestations and outcomes of the groups were compared. We found that urinary protein excretion and rates of elevated n-acetyl-β-D-glucosaminidase (NAG) and retinol binding protein (RBP) were prominent in all groups. Neither histopathological changes nor the rates of renal insufficiency were significantly different among groups. Patients in the PRE (69.2%) and DTW groups (87.5%) achieved complete remission; none of the CTW group did. Furthermore, the total remission rate of the DTW group was substantially higher than that of the CTW group. The degree of hypoproteinemia, improved considerably in the PRE and DTW groups. Treatment was well tolerated in all patients, and no serious adverse events were observed. Our findings suggested that induction therapy with double dose TWHF significantly improved response rates in IgAN patients with heavy proteinuria, and did not considerably increase side effects.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Chao Yu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Li-Na Zhou
- Department of Nephrology, Yancheng Third People's Hospital
| | - Xin Chen
- Department of Nephrology, Yancheng Third People's Hospital
| |
Collapse
|
28
|
Cui H, Huan ML, Ye WL, Liu DZ, Teng ZH, Mei QB, Zhou SY. Mitochondria and Nucleus Dual Delivery System To Overcome DOX Resistance. Mol Pharm 2017; 14:746-756. [DOI: 10.1021/acs.molpharmaceut.6b01016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Han Cui
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Meng-lei Huan
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Wei-liang Ye
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Dao-zhou Liu
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zeng-hui Teng
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Qi-Bing Mei
- Key
Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica
of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, 710032, China
| | - Si-yuan Zhou
- Department
of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
- Key
Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica
of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
29
|
Abstract
The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.
Collapse
Affiliation(s)
- Pu Duann
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Li C, Ge Y, Peng A, Gong R. The redox sensitive glycogen synthase kinase 3β suppresses the self-protective antioxidant response in podocytes upon oxidative glomerular injury. Oncotarget 2016; 6:39493-506. [PMID: 26567873 PMCID: PMC4741841 DOI: 10.18632/oncotarget.6303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/30/2015] [Indexed: 01/13/2023] Open
Abstract
The redox sensitive glycogen synthase kinase (GSK) 3 has been recently implicated in the pathogenesis of proteinuric glomerulopathy. However, prior studies are less conclusive because they relied solely on chemical inhibitors of GSK3, which provide poor discrimination between the isoforms of GSK3 apart from potential off target activities. In murine kidneys, the β rather than the α isoform of GSK3 was predominantly expressed in glomeruli and distributed intensely in podocytes. By employing the doxycycline-activated Cre-loxP site specific gene targeting system, GSK3β was successfully knocked out (KO) selectively in podocytes in adult mice, resulting in a phenotype no different from control littermates. Electron microscopy of glomeruli in KO mice demonstrated more glycogen accumulation in podocytes but otherwise normal ultrastructures. Upon oxidative glomerular injury induced by protein overload, KO mice excreted significantly less albuminuria and had much attenuated podocytopathy and glomerular damage. The anti-proteinuric and glomerular protective effect was concomitant with diminished accumulation of reactive oxygen species in glomeruli in KO mice, which was likely secondary to a reinforced Nrf2 antioxidant response in podocytes. Collectively, our data suggest that GSK3β is dispensable for glomerular function and histology under normal circumstances but may serve as a therapeutic target for protecting from oxidative glomerular injuries.
Collapse
Affiliation(s)
- Changbin Li
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Ai Peng
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
31
|
Gong R, Wang P, Dworkin L. What we need to know about the effect of lithium on the kidney. Am J Physiol Renal Physiol 2016; 311:F1168-F1171. [PMID: 27122541 DOI: 10.1152/ajprenal.00145.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023] Open
Abstract
Lithium has been a valuable treatment for bipolar affective disorders for decades. Clinical use of lithium, however, has been problematic due to its narrow therapeutic index and concerns for its toxicity in various organ systems. Renal side effects associated with lithium include polyuria, nephrogenic diabetes insipidus, proteinuria, distal renal tubular acidosis, and reduction in glomerular filtration rate. Histologically, chronic lithium nephrotoxicity is characterized by interstitial nephritis with microcyst formation and occasional focal segmental glomerulosclerosis. Nevertheless, this type of toxicity is uncommon, with the strongest risk factors being high serum levels of lithium and longer time on lithium therapy. In contrast, in experimental models of acute kidney injury and glomerular disease, lithium has antiproteinuric, kidney protective, and reparative effects. This paradox may be partially explained by lower lithium doses and short duration of therapy. While long-term exposure to higher psychiatric doses of lithium may be nephrotoxic, short-term low dose of lithium may be beneficial and ameliorate kidney and podocyte injury. Mechanistically, lithium targets glycogen synthase kinase-3β, a ubiquitously expressed serine/threonine protein kinase implicated in the processes of tissue injury, repair, and regeneration in multiple organ systems, including the kidney. Future studies are warranted to discover the exact "kidney-protective dose" of lithium and test the effects of low-dose lithium on acute and chronic kidney disease in humans.
Collapse
Affiliation(s)
- Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lance Dworkin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| |
Collapse
|
32
|
Li C, Ge Y, Dworkin L, Peng A, Gong R. The β isoform of GSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy. J Pathol 2016; 239:23-35. [PMID: 26876299 DOI: 10.1002/path.4692] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/20/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Converging evidence points to glycogen synthase kinase (GSK) 3 as a key player in the pathogenesis of podocytopathy and proteinuria. However, it remains unclear if GSK3 is involved in podocyte autonomous injury in glomerular disease. In normal kidneys, the β isoform of GSK3 was found to be the major GSK3 expressed in glomeruli and intensely stained in podocytes. GSK3β expression in podocytes was markedly elevated in experimental or human proteinuric glomerulopathy. Podocyte-specific somatic ablation of GSK3β in adult mice attenuated proteinuria and ameliorated podocyte injury and glomerular damage in experimental adriamycin (ADR) nephropathy. Mechanistically, actin cytoskeleton integrity in podocytes was largely preserved in GSK3β knockout mice following ADR insult, concomitant with a correction of podocyte hypermotility and lessened phosphorylation and activation of paxillin, a focal adhesion-associated adaptor protein. In addition, GSK3β knockout diminished ADR-induced NFκB RelA/p65 phosphorylation selectively at serine 467; suppressed de novo expression by podocytes of NFκB-dependent podocytopathic mediators, including B7-1, cathepsin L, and MCP-1; but barely affected the induction of NFκB target pro-survival factors, such as Bcl-xL. Moreover, the ADR-elicited podocytopenia and podocyte death were significantly attenuated in GSK3β knockout mice, associated with protection against podocyte mitochondrial damage and reduced phosphorylation and activation of cyclophilin F, a structural component of mitochondria permeability transition pores. Overall, our findings suggest that the β isoform of GSK3 mediates autonomous podocyte injury in glomerulopathy by integrating multiple podocytopathic signalling pathways.
Collapse
Affiliation(s)
- Changbin Li
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Lance Dworkin
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Ai Peng
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
33
|
Zhou S, Wang P, Qiao Y, Ge Y, Wang Y, Quan S, Yao R, Zhuang S, Wang LJ, Du Y, Liu Z, Gong R. Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy. J Am Soc Nephrol 2015; 27:2289-308. [PMID: 26647425 DOI: 10.1681/asn.2015050565] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023] Open
Abstract
Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3β (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3β in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3β mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3β by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3β-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yingjin Qiao
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Yingzi Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songxia Quan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ricky Yao
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Shougang Zhuang
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| | - Li Juan Wang
- Department of Pathology, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island; and
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, and
| |
Collapse
|
34
|
Liu Z, Gong R. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action. Am J Kidney Dis 2015; 66:846-56. [PMID: 26271146 DOI: 10.1053/j.ajkd.2015.06.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
Preventing acute kidney injury (AKI) in high-risk patients following medical interventions is a paramount challenge for clinical practice. Recent data from animal experiments and clinical trials indicate that remote ischemic preconditioning, represented by limb ischemic preconditioning, confers a protective action on the kidney. Ischemic preconditioning is effective in reducing the risk for AKI following cardiovascular interventions and the use of iodinated radiocontrast media. Nevertheless, the underlying mechanisms for this protective effect are elusive. A protective signal is conveyed from the remote site undergoing ischemic preconditioning, such as the limb, to target organs, such as the kidney, by multiple potential communication pathways, which may involve humoral, neuronal, and systemic mechanisms. Diverse transmitting pathways trigger a variety of signaling cascades, including the reperfusion injury salvage kinase and survivor activating factor enhancement pathways, all of which converge on glycogen synthase kinase 3β (GSK3β). Inhibition of GSK3β subsequent to ischemic preconditioning reinforces the Nrf2-mediated antioxidant defense, diminishes the nuclear factor-κB-dependent proinflammatory response, and exerts prosurvival effects ensuing from the desensitized mitochondria permeability transition. Thus, therapeutic targeting of GSK3β by ischemic preconditioning or by pharmacologic preconditioning with existing US Food and Drug Administration-approved drugs having GSK3β-inhibitory activities might represent a pragmatic and cost-effective adjuvant strategy for kidney protection and prophylaxis against AKI.
Collapse
Affiliation(s)
- Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI.
| |
Collapse
|
35
|
Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud 2015; 12:134-56. [PMID: 26676666 DOI: 10.1900/rds.2015.12.134] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Runa Lindblom
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Higgins
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Abstract
Krüppel-like factors (KLFs) are zinc finger transcription factors that share homology in three C-terminal zinc finger domains. KLF family members are expressed in most if not all tissues and have diverse roles in organismal development and cell differentiation, function, and death. The glomerular podocyte is particularly sensitive to mitochondrial dysfunction, as seen in various genetic disorders manifesting as progressive glomerulosclerosis. In this issue of the JCI, Mallipattu and coworkers show that KLF6 expression is reduced in mouse and human glomerular disease. Podocyte-specific deletion of Klf6 expression in mice leads to mitochondrial dysfunction and apoptosis, followed by glomerulosclerosis. This is the first demonstration that defective transcriptional regulation of nuclear-encoded mitochondrial genes can result in experimental glomerular disease.
Collapse
|
37
|
Müller-Deile J, Schiffer M. The podocyte power-plant disaster and its contribution to glomerulopathy. Front Endocrinol (Lausanne) 2014; 5:209. [PMID: 25566185 PMCID: PMC4266017 DOI: 10.3389/fendo.2014.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022] Open
Abstract
Proper podocyte function within the glomerulus demands a high and continuous energy supply that is mainly derived from the respiratory chain of the inner mitochondrial membrane. Dysregulations in the metabolic homeostasis of podocytes may result in podocyte damage and glomerular disease. This article highlights the current knowledge about podocyte energy supply by the respiratory chain. We review the regulation of mitochondrial oxidative metabolism with regard to podocytopathy and discuss the latest understanding of different mitochondrial dysfunctions of the podocyte in diabetic nephropathy and focal segmental glomerulosclerosis (FSGS). We discuss genetic forms of mitochondriopathy of the podocyte and end with recent knowledge about crosstalk between NADH and NADPH and potential therapeutic options for podocyte mitochondriopathy. We aim to raise awareness for the complex and interesting mechanisms of podocyte damage by impaired energy supply that, despite of novel findings in recent years, is poorly understood so far.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
- *Correspondence: Mario Schiffer, Division of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany e-mail:
| |
Collapse
|