1
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
2
|
Vaelli P, Fujita A, Jo S, Zhang HXB, Osorno T, Ma X, Bean BP. State-Dependent Inhibition of Nav1.8 Sodium Channels by VX-150 and VX-548. Mol Pharmacol 2024; 106:298-308. [PMID: 39322410 PMCID: PMC11585256 DOI: 10.1124/molpharm.124.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Nav1.8 sodium channels (Nav1.8) are an attractive therapeutic target for pain because they are prominent in primary pain-sensing neurons with little expression in most other kinds of neurons. Recently, two Nav1.8-targeted compounds, VX-150 and VX-548, have shown efficacy in clinical trials for reducing pain. We examined the characteristics of Nav1.8 inhibition by these compounds. The active metabolite form of VX-150 (VX-150m) inhibited human Nav1.8 channels with an IC50 of 15 nM. VX-548 (suzetrigine) was even more potent (IC50 0.27 nM). Both VX-150m and VX-548 had the unusual property of "reverse use-dependence," whereby inhibition could be relieved by repetitive depolarizations, a property seen before with another Nav1.8 inhibitor, A-887826. The relief of VX-548 inhibition by large depolarizations occurred with a time constant of ∼40 milliseconds that was not concentration-dependent. Reinhibition at negative voltages occurred with a rate that was nearly proportional to drug concentration, consistent with the idea that relief of inhibition reflects dissociation of drug from the channel and reinhibition reflects rebinding. The relief of inhibition by depolarization suggests a remarkably strong and unusual state-dependence for both VX-150m and VX-548, with very weak binding to channels with fully activated voltage sensors despite very tight binding to channels with voltage sensors in the resting state. SIGNIFICANCE STATEMENT: The Nav1.8 sodium channel (Nav1.8) is a current target for new drugs for pain. This work describes the potency, selectivity, and state-dependent characteristics of inhibition of Nav1.8 channels by VX-150 and VX-548, compounds that have recently shown efficacy for relief of pain in clinical trials but whose mechanism of interaction with channels has not been described. The results show that the compounds share an unusual property whereby inhibition is relieved by depolarization, demonstrating a state-dependence different from most sodium channel inhibitors.
Collapse
Affiliation(s)
- Patric Vaelli
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Akie Fujita
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Sooyeon Jo
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Han-Xiong Bear Zhang
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Tomás Osorno
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Xiao Ma
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| | - Bruce P Bean
- Department of Neurobiology (P.V., A.F., S.J., H.-X.B.Z., T.O., B.P.B.) and Laboratory of Systems Pharmacology and Harvard Program in Therapeutics (X.M.), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Zurek NA, Thiyagarajan S, Ehsanian R, Goins AE, Goyal S, Shilling M, Lambert CG, Westlund KN, Alles SRA. Machine Learning Elucidates Electrophysiological Properties Predictive of Multi- and Single-Firing Human and Mouse Dorsal Root Ganglia Neurons. eNeuro 2024; 11:ENEURO.0248-24.2024. [PMID: 39299808 PMCID: PMC11457269 DOI: 10.1523/eneuro.0248-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG neurons exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, and if these properties could be used to predict multi-firing, we measured 22 electrophysiological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from six male and four female donors. We then analyzed the data using several machine learning models to determine if these properties could be used to predict multi-firing. We used 1,000 iterations of Monte Carlo cross-validation to split the data into different train and test sets and tested the logistic regression, k-nearest neighbors, random forest, support vector classifier, and XGBoost machine learning models. All models tested had a >80% accuracy on average, with support vector classifier, and XGBoost performing the best. We found that several properties correlated with multi-firing hDRG neurons and together could be used to predict multi-firing neurons in hDRG including a long decay time, a low rheobase, and long first spike latency. We also found that the hDRG models were able to predict multi-firing with 90% accuracy in mDRG neurons. Understanding these properties could be beneficial in the elucidation of targets on peripheral sensory neurons related to pain.
Collapse
Affiliation(s)
- Nesia A Zurek
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Sherwin Thiyagarajan
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Reza Ehsanian
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Aleyah E Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Mark Shilling
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Christophe G Lambert
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Karin N Westlund
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| | - Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106
| |
Collapse
|
4
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
5
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
6
|
Zurek NA, Thiyagarajan S, Ehsanian R, Goins AE, Goyal S, Shilling M, Lambert CG, Westlund KN, Alles SRA. Machine learning elucidates electrophysiological properties predictive of multi- and single-firing human and mouse dorsal root ganglia neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597213. [PMID: 38895314 PMCID: PMC11185744 DOI: 10.1101/2024.06.03.597213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, and if these properties could be used to predict multi-firing, we measured 22 electrophysiological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from 6 male and 4 female donors. We then analyzed the data using several machine learning models to determine if these properties could be used to predict multi-firing. We used 1000 iterations of Monte Carlo Cross Validation to split the data into different train and test sets and tested the Logistic Regression, k-Nearest Neighbors, Random Forest, Supported Vector Classification, and XGBoost machine learning models. All models tested had a greater than 80% accuracy on average, with Supported Vector Classification and XGBoost performing the best. We found that several properties correlated with multi-firing hDRG neurons and together could be used to predict multi-firing neurons in hDRG including a long decay time, a low rheobase, and long first spike latency. We also found that the hDRG models were able to predict multi-firing with 90% accuracy in mDRG. Targeting the neuronal properties that lead to multi-firing could elucidate better targets for treatment of chronic pain.
Collapse
|
7
|
Hartmann N, Knierim M, Maurer W, Dybkova N, Zeman F, Hasenfuß G, Sossalla S, Streckfuss-Bömeke K. Na V1.8 as Proarrhythmic Target in a Ventricular Cardiac Stem Cell Model. Int J Mol Sci 2024; 25:6144. [PMID: 38892333 PMCID: PMC11172914 DOI: 10.3390/ijms25116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.
Collapse
Affiliation(s)
- Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Maria Knierim
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Clinic for Cardio-Thoracic and Vascular Surgery, University Medical Center, 37075 Göttingen, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Florian Zeman
- Center for Clinicial Trials, University of Regensburg, 93042 Regensburg, Germany
| | - Gerd Hasenfuß
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Medical Clinic I, Cardiology and Angiology, Giessen and Department of Cardiology at Kerckhoff Heart and Lung Center, Justus-Liebig-University, 61231 Bad Nauheim, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen and Rhein Main, 61231 Bad Nauheim, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
8
|
Heinle JW, Dalessio S, Janicki P, Ouyang A, Vrana KE, Ruiz-Velasco V, Coates MD. Insights into the voltage-gated sodium channel, Na V1.8, and its role in visceral pain perception. Front Pharmacol 2024; 15:1398409. [PMID: 38855747 PMCID: PMC11158627 DOI: 10.3389/fphar.2024.1398409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.
Collapse
Affiliation(s)
- J. Westley Heinle
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Ann Ouyang
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D. Coates
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
10
|
Liu PW, Zhang H, Werley CA, Pichler M, Ryan SJ, Lewarch CL, Jacques J, Grooms J, Ferrante J, Li G, Zhang D, Bremmer N, Barnett A, Chantre R, Elder AE, Cohen AE, Williams LA, Dempsey GT, McManus OB. A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology. Pain 2024; 165:922-940. [PMID: 37963235 PMCID: PMC10950549 DOI: 10.1097/j.pain.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/30/2023] [Indexed: 11/16/2023]
Abstract
ABSTRACT Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. We present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC. Osteoarthritis-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo. To measure the effect of OA-SPARC on neural firing in a scalable format, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell and single action potential resolution and a throughput of up to 500,000 neurons per day. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology. We screened ∼3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of functional OA-SPARC phenotype rescue and orthogonal "off-target" effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including ion channel modulators and other mechanisms including MEK inhibitors and tyrosine kinase modulators. Our results suggest that the Raf-MEK-ERK axis in DRG neurons may integrate the inputs from multiple upstream inflammatory mediators found in osteoarthritis patient joints, and MAPK pathway activation in DRG neurons may contribute to chronic pain in patients with osteoarthritis.
Collapse
Affiliation(s)
- Pin W. Liu
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | | | | | | | | | - Guangde Li
- Quiver Bioscience, Cambridge, MA, United States
| | - Dawei Zhang
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | | | | | | |
Collapse
|
11
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
12
|
Nagaraja S, Tewari SG, Reifman J. Predictive analytics identifies key factors driving hyperalgesic priming of muscle sensory neurons. Front Neurosci 2023; 17:1254154. [PMID: 37942142 PMCID: PMC10629345 DOI: 10.3389/fnins.2023.1254154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Hyperalgesic priming, a form of neuroplasticity induced by inflammatory mediators, in peripheral nociceptors enhances the magnitude and duration of action potential (AP) firing to future inflammatory events and can potentially lead to pain chronification. The mechanisms underlying the development of hyperalgesic priming are not well understood, limiting the identification of novel therapeutic strategies to combat chronic pain. In this study, we used a computational model to identify key proteins whose modifications caused priming of muscle nociceptors and made them hyperexcitable to a subsequent inflammatory event. First, we extended a previously validated model of mouse muscle nociceptor sensitization to incorporate Epac-mediated interaction between two G protein-coupled receptor signaling pathways commonly activated by inflammatory mediators. Next, we calibrated and validated the model simulations of the nociceptor's AP response to both innocuous and noxious levels of mechanical force after two subsequent inflammatory events using literature data. Then, by performing global sensitivity analyses that simulated thousands of nociceptor-priming scenarios, we identified five ion channels and two molecular processes (from the 18 modeled transmembrane proteins and 29 intracellular signaling components) as potential regulators of the increase in AP firing in response to mechanical forces. Finally, when we simulated specific neuroplastic modifications in Kv1.1 and Nav1.7 alone as well as with simultaneous modifications in Nav1.7, Nav1.8, TRPA1, and Kv7.2, we observed a considerable increase in the fold change in the number of triggered APs in primed nociceptors. These results suggest that altering the expression of Kv1.1 and Nav1.7 might regulate the neuronal hyperexcitability in primed mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
13
|
Huang J, Fan X, Jin X, Teng L, Yan N. Dual-pocket inhibition of Na v channels by the antiepileptic drug lamotrigine. Proc Natl Acad Sci U S A 2023; 120:e2309773120. [PMID: 37782796 PMCID: PMC10576118 DOI: 10.1073/pnas.2309773120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs' mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Liming Teng
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province518107, China
| |
Collapse
|
14
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Jo S, Zhang HXB, Bean BP. Use-Dependent Relief of Inhibition of Nav1.8 Channels by A-887826. Mol Pharmacol 2023; 103:221-229. [PMID: 36635052 PMCID: PMC10029820 DOI: 10.1124/molpharm.122.000593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Sodium channel inhibitors used as local anesthetics, antiarrhythmics, or antiepileptics typically have the property of use-dependent inhibition, whereby inhibition is enhanced by repetitive channel activation. For targeting pain, Nav1.8 channels are an attractive target because they are prominent in primary pain-sensing neurons, with little or no expression in most other kinds of neurons, and a number of Nav1.8-targeted compounds have been developed. We examined the characteristics of Nav1.8 inhibition by one of the most potent Nav1.8 inhibitors so far described, A-887826, and found that when studied with physiologic resting potentials and physiologic temperatures, inhibition had strong "reverse use dependence", whereby inhibition was relieved by repetitive short depolarizations. This effect was much stronger with A-887826 than with A-803467, another Nav1.8 inhibitor. The use-dependent relief from inhibition was seen in both human Nav1.8 channels studied in a cell line and in native Nav1.8 channels in mouse dorsal root ganglion (DRG) neurons. In native Nav1.8 channels, substantial relief of inhibition occurred during repetitive stimulation by action potential waveforms at 5 Hz, suggesting that the phenomenon is likely important under physiologic conditions. SIGNIFICANCE STATEMENT: Nav1.8 sodium channels are expressed in primary pain-sensing neurons and are a prime current target for new drugs for pain. This work shows that one of the most potent Nav1.8 inhibitors, A-887826, has the unusual property that inhibition is relieved by repeated short depolarizations. This "reverse use dependence" may reduce inhibition during physiological firing and should be selected against in drug development.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | | | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Sun PY, Li HG, Xu QY, Zhang Z, Chen JW, Shen YH, Qi X, Lu JF, Tan YD, Wang XX, Li CX, Yang MY, Ma YZ, Lu Y, Xu TL, Shen JW, Li WG, Guo YF, Yao ZR. Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons. Br J Pharmacol 2022; 180:1339-1361. [PMID: 36521846 DOI: 10.1111/bph.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis is a common chronic pruritic inflammatory disease of the skin involving neuro-immune communication. Neuronal mechanism-based therapeutic treatments remain lacking. We investigated the efficacy of intravenous lidocaine therapy on atopic dermatitis and the underlying neuro-immune mechanism. EXPERIMENTAL APPROACH Pharmacological intervention, immunofluorescence, RNA-sequencing, genetic modification and immunoassay were performed to dissect the neuro-immune basis of itch and inflammation in atopic dermatitis-like mouse model and in patients. KEY RESULTS Lidocaine alleviated skin lesions and itch in both atopic dermatitis patients and calcipotriol (MC903)-induced atopic dermatitis model by blocking subpopulation of sensory neurons. QX-314, a charged NaV blocker that enters through pathologically activated large-pore ion channels and selectivity inhibits a subpopulation of sensory neurons, has the same effects as lidocaine in atopic dermatitis model. Genetic silencing NaV 1.8-expressing sensory neurons was sufficient to restrict cutaneous inflammation and itch in the atopic dermatitis model. However, pharmacological blockade of TRPV1-positive nociceptors only abolished persistent itch but did not affect skin inflammation in the atopic dermatitis model, indicating a difference between sensory neuronal modulation of skin inflammation and itch. Inhibition of activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons by lidocaine largely accounts for the therapeutic effect of lidocaine in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS NaV 1.8+ sensory neurons play a critical role in pathogenesis of atopic dermatitis and lidocaine is a potential anti-inflammatory and anti-pruritic agent for atopic dermatitis. A dissociable difference for sensory neuronal modulation of skin inflammation and itch contributes to further understanding of pathogenesis in atopic dermatitis.
Collapse
Affiliation(s)
- Pei-Yi Sun
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hua-Guo Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qian-Yue Xu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhen Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Wen Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi-Hang Shen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Qi
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Fei Lu
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi-Dong Tan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiao-Xiao Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chun-Xiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Meng-Ying Yang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Zhi Ma
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Lu
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tian-Le Xu
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Wen Shen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wei-Guang Li
- Centre for Brain Science of Shanghai Children's Medical Centre, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Centre for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yi-Feng Guo
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhi-Rong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
17
|
Lebek S, Hegner P, Hultsch R, Rohde J, Rupprecht L, Schmid C, Sossalla S, Maier LS, Arzt M, Wagner S. Voltage-Gated Sodium Channel Na V1.8 Dysregulates Na and Ca, Leading to Arrhythmias in Patients with Sleep-Disordered Breathing. Am J Respir Crit Care Med 2022; 206:1428-1431. [PMID: 35944144 DOI: 10.1164/rccm.202205-0981le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Simon Lebek
- University Hospital Regensburg Regensburg, Germany.,University of Texas Southwestern Medical Center Dallas, Texas
| | | | - Rosa Hultsch
- University Hospital Regensburg Regensburg, Germany
| | - Jonas Rohde
- University Hospital Regensburg Regensburg, Germany
| | | | | | - Samuel Sossalla
- University Hospital Regensburg Regensburg, Germany.,Georg-August University Göttingen Göttingen, Germany
| | | | - Michael Arzt
- University Hospital Regensburg Regensburg, Germany
| | | |
Collapse
|
18
|
Structural basis for high-voltage activation and subtype-specific inhibition of human Na v1.8. Proc Natl Acad Sci U S A 2022; 119:e2208211119. [PMID: 35858452 PMCID: PMC9335304 DOI: 10.1073/pnas.2208211119] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pain management represents an unmet healthcare need in many countries. Nav1.8 represents a potential target for developing nonaddictive analgesics. Here we present the cryogenic electron microscopy (cryo-EM) structures of human Nav1.8 alone and bound to a selective pore blocker, A-803467. Unlike reported structures of eukaryotic Nav channels wherein the first voltage-sensing domain (VSDI) is well-resolved in one stable conformation, different conformations of VSDI are observed in the cryo-EM maps of Nav1.8. An extracellular interface between VSDI and the pore domain was identified to be a determinant for Nav1.8’s dependence on higher voltage for activation. A-803467 clenches S6IV within the central cavity. Unexpectedly, the channel selectivity for A-803467 is determined by nonligand coordinating residues through an allosteric mechanism. The dorsal root ganglia–localized voltage-gated sodium (Nav) channel Nav1.8 represents a promising target for developing next-generation analgesics. A prominent characteristic of Nav1.8 is the requirement of more depolarized membrane potential for activation. Here we present the cryogenic electron microscopy structures of human Nav1.8 alone and bound to a selective pore blocker, A-803467, at overall resolutions of 2.7 to 3.2 Å. The first voltage-sensing domain (VSDI) displays three different conformations. Structure-guided mutagenesis identified the extracellular interface between VSDI and the pore domain (PD) to be a determinant for the high-voltage dependence of activation. A-803467 was clearly resolved in the central cavity of the PD, clenching S6IV. Our structure-guided functional characterizations show that two nonligand binding residues, Thr397 on S6I and Gly1406 on S6III, allosterically modulate the channel’s sensitivity to A-803467. Comparison of available structures of human Nav channels suggests the extracellular loop region to be a potential site for developing subtype-specific pore-blocking biologics.
Collapse
|
19
|
Ling HQ, Chen ZH, He L, Feng F, Weng CG, Cheng SJ, Rong LM, Xie PG. Comparative Efficacy and Safety of 11 Drugs as Therapies for Adults With Neuropathic Pain After Spinal Cord Injury: A Bayesian Network Analysis Based on 20 Randomized Controlled Trials. Front Neurol 2022; 13:818522. [PMID: 35386408 PMCID: PMC8977449 DOI: 10.3389/fneur.2022.818522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To provide an updated analysis of the efficacy and safety of drugs for the management of neuropathic pain (NP) after spinal cord injury (SCI) based on Bayesian network analysis. Methods A Bayesian network meta-analysis of literature searches within PubMed, Cochrane Library, Embase, and Web of Science databases from their inception to February 21 2021 was conducted without language restrictions. Paired and network meta-analyses of random effects were used to estimate the total standardized mean deviations (SMDs) and odds ratios (ORs). Results A total of 1,133 citations were identified and 20 RCTs (including 1,198 patients) involving 11 drugs and placebos for post-SCI NP selected. The 5 outcomes from all 11 drugs and placebos had no inconsistencies after Bayesian network analysis. BTX-A gave the most effective pain relief for the 4 weeks, following a primary outcome. No significant differences were found among drugs with regard to adverse events of the primary outcome. Gabapentin, BTX-A, and pregabalin were found to be the most helpful in relieving secondary outcomes of mental or sleep-related symptoms with differences in SMDs, ranging from −0.63 to −0.86. Tramadol triggered more serious adverse events than any of the other drugs with differences in ORs ranging from 0.09 to 0.11. Conclusion BTX-A, gabapentin, pregabalin, amitriptyline, ketamine, lamotrigine, and duloxetine were all effective for NP management following SCI. Lamotrigine and gabapentin caused fewer side effects and had better efficacy in relieving mental or sleep-related symptoms caused by SCI-related NP. Tramadol, levetiracetam, carbamazepine, and cannabinoids could not be recommended due to inferior safety or efficacy. Systematic Review Registration [https://inplasy.com/inplasy-2020-7-0061/], identifier [INPLASY202070061].
Collapse
Affiliation(s)
- Hai-Qian Ling
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.,Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, China
| | - Zi-Hao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Chuang-Gui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Si-Jin Cheng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Li-Min Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Pei-Gen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
20
|
Martínez AL, Brea J, Domínguez E, Varela MJ, Allegue C, Cruz R, Monroy X, Merlos M, Burgueño J, Carracedo Á, Loza MI. Identification of Sodium Transients Through NaV1.5 Channels as Regulators of Differentiation in Immortalized Dorsal Root Ganglia Neurons. Front Cell Neurosci 2022; 16:816325. [PMID: 35465610 PMCID: PMC9018981 DOI: 10.3389/fncel.2022.816325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation is a complex process through which newborn neurons acquire the morphology of mature neurons and become excitable. We employed a combination of functional and transcriptomic approaches to deconvolute and identify key regulators of the differentiation process of a DRG neuron-derived cell line, and we focused our study on the NaV1.5 ion channel (encoded by Scn5a) as a channel involved in the acquisition of DRG neuronal features. Overexpression of Scn5a enhances the acquisition of neuronal phenotypic features and increases the KCl-elicited hyperexcitability response in a DRG-derived cell line. Moreover, pharmacologic inhibition of the NaV1.5 channel during differentiation hinders the acquisition of phenotypic features of neuronal cells and the hyperexcitability increase in response to changes in the extracellular medium ionic composition. Taken together, these data highlight the relevance of sodium transients in regulating the neuronal differentiation process in a DRG neuron-derived cell line.
Collapse
Affiliation(s)
- Antón L. Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J. Varela
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Catarina Allegue
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xavier Monroy
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Javier Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- *Correspondence: Javier Burgueño,
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- María Isabel Loza,
| |
Collapse
|
21
|
Nguyen PT, Yarov-Yarovoy V. Towards Structure-Guided Development of Pain Therapeutics Targeting Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:842032. [PMID: 35153801 PMCID: PMC8830516 DOI: 10.3389/fphar.2022.842032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are critical molecular determinants of action potential generation and propagation in excitable cells. Normal NaV channel function disruption can affect physiological neuronal signaling and lead to increased sensitivity to pain, congenital indifference to pain, uncoordinated movement, seizures, or paralysis. Human genetic studies have identified human NaV1.7 (hNaV1.7), hNaV1.8, and hNaV1.9 channel subtypes as crucial players in pain signaling. The premise that subtype selective NaV inhibitors can reduce pain has been reinforced through intensive target validation and therapeutic development efforts. However, an ideal therapeutic has yet to emerge. This review is focused on recent progress, current challenges, and future opportunities to develop NaV channel targeting small molecules and peptides as non-addictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Phuong T Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Britton OJ, Rodriguez B. A population of in silico models identifies the interplay between Nav 1.8 conductance and potassium currents as key in regulating human dorsal root ganglion neuron excitability. F1000Res 2022; 11:104. [PMID: 39290372 PMCID: PMC11406138 DOI: 10.12688/f1000research.74551.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 09/19/2024] Open
Abstract
Background: The Nav 1.8 sodium channel has a key role in generating repetitive action potentials in nociceptive human dorsal root ganglion neurons. Nav 1.8 is differentiated from other voltage-gated sodium channels by its unusually slow inactivation kinetics and depolarised voltage-dependence of activation. These features are particularly pronounced in the human Nav 1.8 channel and allow the channel to remain active during repolarisation. Gain-of-function mutations in Nav 1.8 have been linked to neuropathic pain and selective blockers of Nav 1.8 have been developed as potential new analgesics. However, it is not well understood how modulating the Nav 1.8 conductance alters neuronal excitability and how this depends on the balance of other ion channels expressed by nociceptive neurons. Methods: To investigate this, we developed a novel computational model of the human dorsal root ganglion neuron and used it to construct a population of models that mimicked inter-neuronal heterogeneity in ionic conductances and action potential morphology Results: By simulating changes to the Nav 1.8 conductance in the population of models, we found that moderately increasing the Nav 1.8 conductance led to increased firing rate, as expected, but increasing Nav 1.8 conductance beyond an inflection point caused firing rate to decrease. We found that the delayed rectifier and M-type potassium conductances were also critical for determining neuronal excitability. In particular, altering the delayed rectifier potassium conductance shifted the position of the Nav 1.8 inflection point and therefore the relationship between Nav 1.8 conductance and firing rate. Conclusions: Our results suggest that the effects of modulating Nav 1.8 in a nociceptive neuron can depend significantly on other conductances, particularly potassium conductances.
Collapse
Affiliation(s)
- Oliver J Britton
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| |
Collapse
|
23
|
Deuis JR, Ragnarsson L, Robinson SD, Dekan Z, Chan L, Jin AH, Tran P, McMahon KL, Li S, Wood JN, Cox JJ, King GF, Herzig V, Vetter I. The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel Na V1.8 to Enhance Activation. Front Pharmacol 2022; 12:789570. [PMID: 35095499 PMCID: PMC8795738 DOI: 10.3389/fphar.2021.789570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of β-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 μM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lerena Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Li
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - James J. Cox
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
24
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Detrimental proarrhythmogenic interaction of Ca 2+/calmodulin-dependent protein kinase II and Na V1.8 in heart failure. Nat Commun 2021; 12:6586. [PMID: 34782600 PMCID: PMC8593192 DOI: 10.1038/s41467-021-26690-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
An interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.
Collapse
|
26
|
Hadley S, Patil MJ, Pavelkova N, Kollarik M, Taylor-Clark TE. Contribution of tetrodotoxin-sensitive, voltage-gated sodium channels (Na V1) to action potential discharge from mouse esophageal tension mechanoreceptors. Am J Physiol Regul Integr Comp Physiol 2021; 321:R672-R686. [PMID: 34523364 PMCID: PMC8616622 DOI: 10.1152/ajpregu.00199.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Action potentials depend on voltage-gated sodium channels (NaV1s), which have nine α subtypes. NaV1 inhibition is a target for pathologies involving excitable cells such as pain. However, because NaV1 subtypes are widely expressed, inhibitors may inhibit regulatory sensory systems. Here, we investigated specific NaV1s and their inhibition in mouse esophageal mechanoreceptors-non-nociceptive vagal sensory afferents that are stimulated by low threshold mechanical distension, which regulate esophageal motility. Using single fiber electrophysiology, we found mechanoreceptor responses to esophageal distension were abolished by tetrodotoxin. Single-cell RT-PCR revealed that esophageal-labeled TRPV1-negative vagal neurons expressed multiple tetrodotoxin-sensitive NaV1s: NaV1.7 (almost all neurons) and NaV1.1, NaV1.2, and NaV1.6 (in ∼50% of neurons). Inhibition of NaV1.7, using PF-05089771, had a small inhibitory effect on mechanoreceptor responses to distension. Inhibition of NaV1.1 and NaV1.6, using ICA-121341, had a similar small inhibitory effect. The combination of PF-05089771 and ICA-121341 inhibited but did not eliminate mechanoreceptor responses. Inhibition of NaV1.2, NaV1.6, and NaV1.7 using LSN-3049227 inhibited but did not eliminate mechanoreceptor responses. Thus, all four tetrodotoxin-sensitive NaV1s contribute to action potential initiation from esophageal mechanoreceptors terminals. This is different to those NaV1s necessary for vagal action potential conduction, as demonstrated using GCaMP6s imaging of esophageal vagal neurons during electrical stimulation. Tetrodotoxin-sensitive conduction was abolished in many esophageal neurons by PF-05089771 alone, indicating a critical role of NaV1.7. In summary, multiple NaV1 subtypes contribute to electrical signaling in esophageal mechanoreceptors. Thus, inhibition of individual NaV1s would likely have minimal effect on afferent regulation of esophageal motility.
Collapse
Affiliation(s)
- Stephen Hadley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mayur J Patil
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Nikoleta Pavelkova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Marian Kollarik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
27
|
Hijma HJ, Siebenga PS, de Kam ML, Groeneveld GJ. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Crossover Study to Evaluate the Pharmacodynamic Effects of VX-150, a Highly Selective NaV1.8 Inhibitor, in Healthy Male Adults. PAIN MEDICINE 2021; 22:1814-1826. [PMID: 33543763 PMCID: PMC8346919 DOI: 10.1093/pm/pnab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the analgesic potential, safety, tolerability, and pharmacokinetics of VX-150, a pro-drug of a highly selective NaV1.8 inhibitor, in healthy subjects. Design This was a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Subjects Twenty healthy male subjects with an age of 18–55 years, inclusive, were enrolled. Eligibility was based on general fitness, absence of current or previous medical conditions that could compromise subject safety, and a training assessment of pain tolerance across pain tests to exclude highly tolerant individuals whose tolerance could compromise the ability to detect analgesic responses. All dosed subjects completed the study. Methods Subjects were randomized 1:1 to one of two sequences receiving a single VX-150 dose and subsequently placebo, or vice versa, with at least 7 days between dosing. A battery of pain tests (pressure, electrical stair, [capsaicin-induced] heat, and cold pressor) was administered before dosing and repetitively up to 10 h after dosing, with blood sampling up to 24 h after dosing. Safety was monitored throughout the study. Data were analyzed with a repeated-measures mixed-effects model. Results VX-150 induced analgesia in a variety of evoked pain tests, without affecting subject safety. Significant effects were reported for the cold pressor and heat pain thresholds. Maximum median concentration for the active moiety was 4.30 µg/mL at 4 h after dosing. Conclusion Results of this proof-of-mechanism study are supportive of the potential of VX-150, a highly selective NaV1.8 channel inhibitor, to treat various pain indications.
Collapse
Affiliation(s)
- Hemme J Hijma
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Siebenga
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Lin W, Zhang WW, Lyu N, Cao H, Xu WD, Zhang YQ. Growth Differentiation Factor-15 Produces Analgesia by Inhibiting Tetrodotoxin-Resistant Nav1.8 Sodium Channel Activity in Rat Primary Sensory Neurons. Neurosci Bull 2021; 37:1289-1302. [PMID: 34076854 PMCID: PMC8423960 DOI: 10.1007/s12264-021-00709-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily. It is widely distributed in the central and peripheral nervous systems. Whether and how GDF-15 modulates nociceptive signaling remains unclear. Behaviorally, we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats. Electrophysiologically, we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia (DRG) neurons. Furthermore, GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents, and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction. GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels, suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel. Immunohistochemistry results showed that activin receptor-like kinase-2 (ALK2) was widely expressed in DRG medium- and small-diameter neurons, and some of them were Nav1.8-positive. Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors. Inhibition of PKA and ERK, but not PKC, blocked the inhibitory effect of GDF-15 on Nav1.8 currents. These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK, which mediate the peripheral analgesia of GDF-15.
Collapse
Affiliation(s)
- Wei Lin
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning Lyu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Dong Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Hijma HJ, Groeneveld GJ. Analgesic drug development: proof-of-mechanism and proof-of-concept in early phase clinical studies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci 2021; 22:263-274. [PMID: 33782571 DOI: 10.1038/s41583-021-00444-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
Evidence from human genetic pain disorders shows that voltage-gated sodium channel α-subtypes Nav1.7, Nav1.8 and Nav1.9 are important in the peripheral signalling of pain. Nav1.7 is of particular interest because individuals with Nav1.7 loss-of-function mutations are congenitally insensitive to acute and chronic pain, and there is considerable hope that phenocopying these effects with a pharmacological antagonist will produce a new class of analgesic drug. However, studies in these rare individuals do not reveal how and where voltage-gated sodium channels contribute to pain signalling, which is of critical importance for drug development. More than a decade of research utilizing rodent genetic models and pharmacological tools to study voltage-gated sodium channels in pain has begun to unravel the role of different subtypes. Here, we review the contribution of individual channel subtypes in three key physiological processes necessary for transmission of sensory information to the CNS: transduction of stimuli at peripheral nerve terminals, axonal transmission of action potentials and neurotransmitter release from central terminals. These data suggest that drugs seeking to recapitulate the analgesic effects of loss of function of Nav1.7 will need to be brain-penetrant - which most of those developed to date are not.
Collapse
Affiliation(s)
- George Goodwin
- Pain and Neurorestoration Group, King's College London, London, UK.
| | | |
Collapse
|
31
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
32
|
Qiao LY, Madar J. An objective approach to assess colonic pain in mice using colonometry. PLoS One 2021; 16:e0245410. [PMID: 33711031 PMCID: PMC7954293 DOI: 10.1371/journal.pone.0245410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
The present study presents a non-surgical approach to assess colonic mechanical sensitivity in mice using colonometry, a technique in which colonic stretch-reflex contractions are measured by recording intracolonic pressures during saline infusion into the distal colon in a constant rate. Colonometrical recording has been used to assess colonic function in healthy individuals and patients with neurological disorders. Here we found that colonometry can also be implemented in mice, with an optimal saline infusion rate of 1.2 mL/h. Colonometrograms showed intermittent pressure rises that was caused by periodical colonic contractions. In the sceneries of colonic hypersensitivity that was generated post 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic inflammation, following chemogenetic activation of primary afferent neurons, or immediately after noxious stimulation of the colon by colorectal distension (CRD), the amplitude of intracolonic pressure (AICP) was markedly elevated which was accompanied by a faster pressure rising (ΔP/Δt). Colonic hypersensitivity-associated AICP elevation was a result of the enhanced strength of colonic stretch-reflex contraction which reflected the heightened activity of the colonic sensory reflex pathways. The increased value of ΔP/Δt in colonic hypersensitivity indicated a lower threshold of colonic mechanical sensation by which colonic stretch-reflex contraction was elicited by a smaller saline infusion volume during a shorter period of infusion time. Chemogenetic inhibition of primary afferent pathway that was governed by Nav1.8-expressing cells attenuated TNBS-induced up-regulations of AICP, ΔP/Δt, and colonic pain behavior in response to CRD. These findings support that colonometrograms can be used for analysis of colonic pain in mice.
Collapse
Affiliation(s)
- Liya Y. Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| | - Jonathan Madar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
33
|
Abstract
Metastasis formation is the major cause of death in most patients with cancer. Despite extensive research, targeting metastatic seeding and colonization is still an unresolved challenge. Only recently, attention has been drawn to the fact that metastasizing cancer cells selectively and dynamically adapt their metabolism at every step during the metastatic cascade. Moreover, many metastases display different metabolic traits compared with the tumours from which they originate, enabling survival and growth in the new environment. Consequently, the stage-dependent metabolic traits may provide therapeutic windows for preventing or reducing metastasis, and targeting the new metabolic traits arising in established metastases may allow their eradication.
Collapse
Affiliation(s)
- Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
- UCSF Comprehensive Cancer Center, Department of Neurological Surgery, UCSF, San Francisco, CA, USA.
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
34
|
Wang J, Liu Y, Hu F, Yang J, Guo X, Hou X, Ju C, Wang K. Activation of Neuronal Voltage-Gated Potassium Kv7/KCNQ/M-Current by a Novel Channel Opener SCR2682 for Alleviation of Chronic Pain. J Pharmacol Exp Ther 2021; 377:20-28. [DOI: 10.1124/jpet.120.000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
|
35
|
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol 2020; 16:689-705. [PMID: 33110213 DOI: 10.1038/s41582-020-00415-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
The effective and safe treatment of pain is an unmet health-care need. Current medications used for pain management are often only partially effective, carry dose-limiting adverse effects and are potentially addictive, highlighting the need for improved therapeutic agents. Most common pain conditions originate in the periphery, where dorsal root ganglion and trigeminal ganglion neurons feed pain information into the CNS. Voltage-gated sodium (NaV) channels drive neuronal excitability and three subtypes - NaV1.7, NaV1.8 and NaV1.9 - are preferentially expressed in the peripheral nervous system, suggesting that their inhibition might treat pain while avoiding central and cardiac adverse effects. Genetic and functional studies of human pain disorders have identified NaV1.7, NaV1.8 and NaV1.9 as mediators of pain and validated them as targets for pain treatment. Consequently, multiple NaV1.7-specific and NaV1.8-specific blockers have undergone clinical trials, with others in preclinical development, and the targeting of NaV1.9, although hampered by technical constraints, might also be moving ahead. In this Review, we summarize the clinical and preclinical literature describing compounds that target peripheral NaV channels and discuss the challenges and future prospects for the field. Although the potential of peripheral NaV channel inhibition for the treatment of pain has yet to be realized, this remains a promising strategy to achieve non-addictive analgesia for multiple pain conditions.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Grant P Higerd
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA. .,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
36
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
37
|
McMahon KL, Tay B, Deuis JR, Tanaka BS, Peigneur S, Jin AH, Tytgat J, Waxman SG, Dib-Hajj SD, Vetter I, Schroeder CI. Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochem Pharmacol 2020; 181:114082. [PMID: 32524995 DOI: 10.1016/j.bcp.2020.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
The role of voltage-gated sodium (NaV) channels in pain perception is indisputable. Of particular interest as targets for the development of pain therapeutics are the tetrodotoxin-resistant isoforms NaV1.8 and NaV1.9, based on animal as well as human genetic studies linking these ion channel subtypes to the pathogenesis of pain. However, only a limited number of inhibitors selectively targeting these channels have been reported. HSTX-I is a peptide toxin identified from saliva of the leech Haemadipsa sylvestris. The native 23-residue peptide, stabilised by two disulfide bonds, has been reported to inhibit rat NaV1.8 and mouse NaV1.9 with low micromolar activity, and may therefore represent a scaffold for development of novel modulators with activity at human tetrodotoxin-resistant NaV isoforms. We synthetically produced this hydrophobic peptide in high yield using a one-pot oxidation and single step purification and determined the three-dimensional solution structure of HSTX-I using NMR solution spectroscopy. However, in our hands, the synthetic HSTX-I displayed only very modest activity at human NaV1.8 and NaV1.9, and lacked analgesic efficacy in a murine model of inflammatory pain.
Collapse
Affiliation(s)
- Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bryan Tay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brian S Tanaka
- Center for Neuroscience and Regeneration Research, New Haven, CT, United States; Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, New Haven, CT, United States; Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, New Haven, CT, United States; Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4103, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| |
Collapse
|
38
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
39
|
Contribution of the neuronal sodium channel Na V1.8 to sodium- and calcium-dependent cellular proarrhythmia. J Mol Cell Cardiol 2020; 144:35-46. [PMID: 32418916 DOI: 10.1016/j.yjmcc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myocardial pathology such as heart failure a late sodium current (INaL) augmentation is known to be involved in conditions of arrhythmogenesis. However, the underlying mechanisms of the INaL generation are not entirely understood. By now evidence is growing that non-cardiac sodium channel isoforms could also be involved in the INaL generation. The present study investigates the contribution of the neuronal sodium channel isoform NaV1.8 to arrhythmogenesis in a clearly-defined setting of enhanced INaL by using anemone toxin II (ATX-II) in the absence of structural heart disease. METHODS Electrophysiological experiments were performed in order to measure INaL, action potential duration (APD), SR-Ca2+-leak and cellular proarrhythmic triggers in ATX-II exposed wild-type (WT) and SCN10A-/- mice cardiomyocytes. In addition, WT cardiomyocytes were stimulated with ATX-II in the presence or absence of NaV1.8 inhibitors. INCX was measured by using the whole cell patch clamp method. RESULTS In WT cardiomyocytes exposure to ATX-II augmented INaL, prolonged APD, increased SR-Ca2+-leak and induced proarrhythmic triggers such as early afterdepolarizations (EADs) and Ca2+-waves. All of them could be significantly reduced by applying NaV1.8 blockers PF-01247324 and A-803467. Both blockers had no relevant effects on cellular electrophysiology of SCN10A-/- cardiomyocytes. Moreover, in SCN10A-/--cardiomyocytes, the ATX-II-dependent increase in INaL, SR-Ca2+-leak and APD prolongation was less than in WT and comparable to the results which were obtained with WT cardiomyocytes being exposed to ATX-II and NaV1.8 inhibitors in parallel. Moreover, we found a decrease in reverse mode NCX current and reduced CaMKII-dependent RyR2-phosphorylation after application of PF-01247324 as an underlying explanation for the Na+-mediated Ca2+-dependent proarrhythmic triggers. CONCLUSION The current findings demonstrate that NaV1.8 is a significant contributor for INaL-induced arrhythmic triggers. Therefore, NaV1.8 inhibition under conditions of an enhanced INaL constitutes a promising antiarrhythmic strategy which merits further investigation.
Collapse
|
40
|
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29:259-271. [PMID: 32070160 DOI: 10.1080/13543784.2020.1728254] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neuropathic pain is a chronic condition that significantly affects the quality of life of millions of people globally. Most of the pharmacologic treatments currently in use demonstrate modest efficacy and over half of all patients do not respond to medical management. Hence, there is a need for new, efficacious drugs. Evidence points toward voltage-gated sodium channels as a key target for novel analgesics.Area covered: The role of voltage-gated sodium channels in pain pathophysiology is illuminated and the preclinical and clinical data for new sodium channel blockers and toxin-derived lead compounds are examined. The expansion of approved sodium channel blockers is discussed along with the limitations of current research, trends in drug development, and the potential of personalized medicine.Expert opinion: The transition from preclinical to clinical studies can be difficult because of the inherent inability of animal models to express the complexities of pain states. Pain pathways are notoriously intricate and may be pharmacologically modulated at a variety of targets; it is unlikely that action at a single target could completely abolish a pain response because pain is rarely unifactorial. Combination therapy may be necessary and this could further confound the discovery of novel agents.
Collapse
Affiliation(s)
- Mikhail Kushnarev
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Iulia Paula Pirvulescu
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
41
|
Li N, Liu B, Wu W, Hong Y, Zhang J, Liu Y, Zhang M, Zhang X, Duan G. Upregulation of transcription factor 4 downregulates Na V1.8 expression in DRG neurons and prevents the development of rat inflammatory and neuropathic hypersensitivity. Exp Neurol 2020; 327:113240. [PMID: 32045596 DOI: 10.1016/j.expneurol.2020.113240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The voltage sodium channel 1.8 (NaV1.8) in the dorsal root ganglion (DRG) neurons contributes to the initiation and development of chronic inflammatory and neuropathic pain. However, an effective intervention on NaV1.8 remains to be studied in pre-clinical research and clinical trials. In this study, we aimed to investigate whether transcription factor 4 (TCF4) overexpression represses NaV1.8 expression in DRG neurons, thus preventing the development of chronic pain. Using chromatin immunoprecipitation (CHIP), we verified the interaction of TCF4 and sodium voltage-gated channel alpha subunit 10A (SCN10A) enhancer in HEK293 cells and rat DRG neurons. Using a dual luciferase reporter assay, we confirmed the transcriptional inhibition of TCF4 on SCN10A promoter in vitro. To investigate the regulation of TCF4 on Nav1.8, we then upregulated TCF4 expression by intrathecally delivering an overexpression of recombinant adeno-associated virus (rAAV) in the Complete Freund's adjuvant (CFA)-induced inflammatory pain model and spared nerve injury (SNI)-induced neuropathic pain model. By using a quantitative polymerase chain reaction (qPCR), western blot, and immunostaining, we evaluated NaV1.8 expression after a noxious stimulation and the application of the TCF4 overexpression virus. We showed that the intrathecal delivery of TCF4 overexpression virus significantly repressed the increase of NaV1.8 and prevented the development of hyperalgesia in rats. Moreover, we confirmed the efficient role of an overexpressed TCF4 in preventing the CFA- and SNI-induced neuronal hyperexcitability by calcium imaging. Our results suggest that attenuating the dysregulation of NaV1.8 by targeting TCF4 may be a novel therapeutic strategy for chronic inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Ningbo Li
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China..
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China..
| |
Collapse
|
42
|
Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain 2019; 161:831-841. [DOI: 10.1097/j.pain.0000000000001774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Dybkova N, Ahmad S, Pabel S, Tirilomis P, Hartmann N, Fischer TH, Bengel P, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Ellenberger D, Wagner S, Frey N, Maier LS, Streckfuss-Bömeke K, Hasenfuss G, Sossalla S. Differential regulation of sodium channels as a novel proarrhythmic mechanism in the human failing heart. Cardiovasc Res 2019; 114:1728-1737. [PMID: 29931291 DOI: 10.1093/cvr/cvy152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Aims In heart failure (HF), enhanced persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. However, the underlying regulatory mechanisms remain unclear. Our aim was to potentially investigate the regulation and electrophysiological contribution of neuronal sodium channel NaV1.8 in failing human heart and eventually to reveal a novel anti-arrhythmic therapy. Methods and results By western blot, we found that NaV1.8 protein expression is significantly up-regulated, while of the predominant cardiac isoform NaV1.5 is inversely reduced in human HF. Furthermore, to investigate the relation of NaV1.8 regulation with the cellular proarrhythmic events, we performed comprehensive electrophysiology recordings and explore the effect of NaV1.8 on INaL, action potential duration (APD), Ca2+ spark frequency, and arrhythmia induction in human failing cardiomyocytes. NaV1.8 inhibition with the specific blockers A-803467 and PF-01247324 decreased INaL, abbreviated APD and reduced cellular-spontaneous Ca2+-release and proarrhythmic events in human failing cardiomyocytes. Consistently, in mouse cardiomyocytes stressed with isoproterenol, pharmacologic inhibition and genetically knockout of NaV1.8 (SCN10A-/-), were associated with reduced INaL and abbreviated APD. Conclusion We provide first evidence of differential regulation of NaV1.8 and NaV1.5 in the failing human myocardium and their contribution to arrhythmogenesis due to generation of INaL. We propose inhibition of NaV1.8 thus constitutes a promising novel approach for selective anti-arrhythmic therapy in HF.
Collapse
Affiliation(s)
- Nataliya Dybkova
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Shakil Ahmad
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Steffen Pabel
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Petros Tirilomis
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nico Hartmann
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Thomas H Fischer
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Philipp Bengel
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Theodoros Tirilomis
- Department of Thoracic, Cardiac and Vascular Surgery, Georg-August University Goettingen, Germany
| | | | - André Renner
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jan Gummert
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - David Ellenberger
- Department of Medical Statistics, University Medical Center Goettingen, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Molecular Cardiology and Angiology, University Medical Center, Campus Kiel, Schleswig-Holstein, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Samuel Sossalla
- Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany.,Department of Internal Medicine II, University Medical Center Regensburg, Germany
| |
Collapse
|
44
|
Vysokov N, McMahon SB, Raouf R. The role of Na V channels in synaptic transmission after axotomy in a microfluidic culture platform. Sci Rep 2019; 9:12915. [PMID: 31501450 PMCID: PMC6733904 DOI: 10.1038/s41598-019-49214-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Voltage gated sodium channels are key players in aberrant pain signaling and sensitization of nociceptors after peripheral nerve injury. The extent to which sodium channel activity after injury contributes to synaptic transmission at the first pain synapse however remains unclear. To investigate the effect of axotomy on synaptic transmission between dorsal root ganglia neurons and dorsal horn neurons, we reconstructed the first pain synapse in a novel microfluidic based compartmentalized cell culture system, which recapitulates the connectivity of peripheral pain signaling. We show that following axotomy of the distal axons, inhibition of NaV1.7 and NaV1.8 sodium channels in incoming presynaptic DRG axons is no longer sufficient to block activation of these axons and the resulting synaptic transmission to dorsal horn neurons. We found that blockade of NaV1.6 activity is highly effective in reducing activation of incoming axons contributing to synaptic transmission after axotomy of DRG neurons. The microfluidic culture system described here offers an in vitro platform to recapitulate and study the first pain synapse.
Collapse
Affiliation(s)
- Nickolai Vysokov
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom
| | - Ramin Raouf
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
45
|
Abstract
Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| |
Collapse
|
46
|
Kaliyaperumal S, Wilson K, Aeffner F, Dean C. Animal Models of Peripheral Pain: Biology Review and Application for Drug Discovery. Toxicol Pathol 2019; 48:202-219. [PMID: 31269874 DOI: 10.1177/0192623319857051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pain is a complex constellation of cognitive, unpleasant sensory, and emotional experiences that primarily serves as a survival mechanism. Pain arises in the peripheral nervous system and pain signals synapse with nerve tracts extending into the central nervous system. Several different schemes are used to classify pain, including the underlying mechanism, tissues primarily affected, and time-course. Numerous animal models of pain, which should be employed with appropriate Institutional Animal Care and Use approvals, have been developed to elucidate pathophysiology mechanisms and aid in identification of novel therapeutic targets. The variety of available models underscores the observations that pain phenotypes are driven by several distinct mechanisms. Pain outcome measurement encompasses both reflexive (responses to heat, cold, mechanical and electrical stimuli) and nonreflexive (spontaneous pain responses to stimuli) behaviors. However, the question of translatability to human pain conditions and potential treatment outcomes remains a topic of continued scrutiny. In this review we discuss the different types of pain and their mechanisms and pathways, available rodent pain models with an emphasis on type of pain stimulations and pain outcome measures and discuss the role of pathologists in assessing and validating pain models.
Collapse
Affiliation(s)
| | | | | | - Charles Dean
- Amgen, Inc, Thousand Oaks, CA, USA *Both authors equally contributed to the manuscript
| |
Collapse
|
47
|
Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (Na V 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2019; 596:1419-1432. [PMID: 29435993 DOI: 10.1113/jp275698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (NaV 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective NaV 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing NaV 1 blocking drugs for topical application to the respiratory tract. ABSTRACT The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (NaV 1s). We evaluated the role of TTX-sensitive and TTX-resistant NaV 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel NaV 1.7 along with TTX-resistant NaV 1.8 and NaV 1.9. Tracheal nodose neurons also expressed NaV 1.7 but, less frequently, NaV 1.8 and NaV 1.9. NaV 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other NaV 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by NaV 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective NaV 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled NaV 1 blocking drugs.
Collapse
Affiliation(s)
- M Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathophysiology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Sun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Herbstsomer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kocmalova
- Department of Pharmacology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - S N Meeker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Undem
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
49
|
Zhang F, Zhang C, Xu X, Zhang Y, Gong X, Yang Z, Zhang H, Tang D, Liang S, Liu Z. Naja atra venom peptide reduces pain by selectively blocking the voltage-gated sodium channel Nav1.8. J Biol Chem 2019; 294:7324-7334. [PMID: 30804211 DOI: 10.1074/jbc.ra118.007370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Indexed: 01/14/2023] Open
Abstract
The voltage-gated sodium channel Nav1.8 is preferentially expressed in peripheral nociceptive neurons and contributes to inflammatory and neuropathic pain. Therefore, Nav1.8 has emerged as one of the most promising analgesic targets for pain relief. Using large-scale screening of various animal-derived toxins and venoms for Nav1.8 inhibitors, here we identified μ-EPTX-Na1a, a 62-residue three-finger peptide from the venom of the Chinese cobra (Naja atra), as a potent inhibitor of Nav1.8, exhibiting high selectivity over other voltage-gated sodium channel subtypes. Using whole-cell voltage-clamp recordings, we observed that purified μ-EPTX-Na1a blocked the Nav1.8 current. This blockade was associated with a depolarizing shift of activation and repolarizing shift of inactivation, a mechanism distinct from that of any other gating modifier toxin identified to date. In rodent models of inflammatory and neuropathic pain, μ-EPTX-Na1a alleviated nociceptive behaviors more potently than did morphine, indicating that μ-EPTX-Na1a has a potent analgesic effect. μ-EPTX-Na1a displayed no evident cytotoxicity and cardiotoxicity and produced no obvious adverse responses in mice even at a dose 30-fold higher than that producing a significant analgesic effect. Our study establishes μ-EPTX-Na1a as a promising lead for the development of Nav1.8-targeting analgesics to manage pain.
Collapse
Affiliation(s)
- Fan Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Changxin Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xunxun Xu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Yunxiao Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xue Gong
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zuqin Yang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Heng Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Dongfang Tang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Songping Liang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zhonghua Liu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| |
Collapse
|
50
|
|