1
|
Pyrshev K, Allemand F, Rabani V, Yesylevskyy S, Davani S, Ramseyer C, Lagoutte-Renosi J. Ticagrelor increases its own potency at the P2Y 12 receptor by directly changing the plasma membrane lipid order in platelets. Br J Pharmacol 2024; 181:4369-4380. [PMID: 39014887 DOI: 10.1111/bph.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Although the amphiphilic nature of the widely used antithrombotic drug Ticagrelor is well known, it was never considered as a membranotropic agent capable of interacting with the lipid bilayer in a receptor-independent way. In this study, we investigated the influence of Ticagrelor on plasma membrane lipid order in platelets and if this modulates the potency of Ticagrelor at the P2Y12 receptor. EXPERIMENTAL APPROACH We combined fluorescent in situ, in vitro and in silico approaches to probe the interactions between the plasma membrane of platelets and Ticagrelor. The influence of Ticagrelor on the lipid order of the platelet plasma membrane and large unilamellar vesicles was studied using the advanced fluorescent probe NR12S. Furthermore, the properties of model lipid bilayers in the presence of Ticagrelor were characterized by molecular dynamics simulations. Finally, the influence of an increased lipid order on the dose-response of platelets to Ticagrelor was studied. KEY RESULTS Ticagrelor incorporates spontaneously into lipid bilayers and affects the lipid order of the membranes of model vesicles and isolated platelets, in a nontrivial composition and concentration-dependent manner. We showed that higher plasma membrane lipid order in platelets leads to a lower IC50 value for Ticagrelor. It is shown that membrane incorporation of Ticagrelor increases its potency at the P2Y12 receptor, by increasing the order of the platelet plasma membrane. CONCLUSION AND IMPLICATIONS A novel dual mechanism of Ticagrelor action is suggested that combines direct binding to P2Y12 receptor with simultaneous modulation of receptor-lipid microenvironment.
Collapse
Affiliation(s)
- Kyrylo Pyrshev
- Department of Neurochemistry, Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv, Ukraine
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Florentin Allemand
- SINERGIES, Université de Franche-Comté, Besançon, France
- CNRS, Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Vahideh Rabani
- SINERGIES, Université de Franche-Comté, Besançon, France
| | - Semen Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
- Receptor.AI Inc, London, UK
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Siamak Davani
- Université de Franche-Comté, CHU Besançon, SINERGIES, Besançon, France
| | | | | |
Collapse
|
2
|
Pasupathy S, Tavella R, Zeitz C, Edwards S, Worthley M, Arstall M, Beltrame JF. Randomised Placebo-Controlled Pilot Trial Evaluating the Anti-Anginal Efficacy of Ticagrelor in Patients with Angina with Nonobstructive Coronary Arteries and Coronary Slow Flow Phenomenon. J Clin Med 2024; 13:5235. [PMID: 39274447 PMCID: PMC11395883 DOI: 10.3390/jcm13175235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: The coronary slow flow phenomenon (CSFP) is an angiographic finding characterised by the delayed passage of contrast through the coronary arteries, despite the absence of obstructive coronary artery disease (defined as less than 50% narrowing of the vessel lumen). Patients with the CSFP experience recurrent angina, for which there are limited evidence-based therapies. Ticagrelor may serve as an effective anti-anginal therapy for these patients by increasing adenosine levels, which could alleviate coronary microvascular dysfunction and its associated angina due to its vasodilatory properties. This study aimed to determine the anti-anginal efficacy of ticagrelor 90 mg taken twice daily on spontaneous angina episodes in patients with refractory angina (i.e., episodes ≥3/week despite two anti-anginals) and documented CSFP. Methods: In a randomised, double-blind, placebo-controlled, cross-over trial, the anti-anginal efficacy of a 4-week ticagrelor therapy regimen was evaluated in 20 patients with refractory angina (mean age 61.5 ± 10.5 years; 40% women) who had documented slow coronary flow. The primary endpoint was the frequency of angina episodes, recorded using an angina diary. Secondary endpoints included the duration and severity of angina episodes, consumption of short-acting nitrates, and health status evaluations using the Seattle Angina Questionnaire (SAQ) and the Short Form-36 (SF-36) indices. Results: During the four weeks of therapy, ticagrelor did not significantly improve angina symptoms compared to the placebo (placebo 25.7 (16.7)) vs. ticagrelor 19.8 (18.1), p > 0.05). Furthermore, it did not impact other patient-related outcome measures, including angina severity, duration, frequency of prolonged angina episodes, nitrate consumption, or the SAQ/SF-36 health outcome indices. No serious adverse events related to the study drug were observed. Conclusions: In patients with documented CSFP who were unresponsive to standard anti-anginal therapy, ticagrelor did not reduce the frequency of spontaneous angina episodes or the consumption of nitrates. Further confirmation of the potential benefits of this therapy may be obtained through a larger clinical trial.
Collapse
Affiliation(s)
- Sivabaskari Pasupathy
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
- Flinders University, Adelaide, SA 5042, Australia
| | - Rosanna Tavella
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Christopher Zeitz
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Suzanne Edwards
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Matthew Worthley
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
| | - Margaret Arstall
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia
| | - John F Beltrame
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| |
Collapse
|
3
|
Tsiafoutis I, Zografos T, Karelas D, Varelas P, Manousopoulos K, Nenekidis I, Koutouzis M, Lagadinos P, Koudounis P, Agelaki M, Katsanou K, Oikonomou E, Siasos G, Katsivas A. Ticagrelor potentiates cardioprotection by remote ischemic preconditioning: the ticagrelor in remote ischemic preconditioning (TRIP) randomized clinical trial. Hellenic J Cardiol 2024:S1109-9666(24)00133-7. [PMID: 38950885 DOI: 10.1016/j.hjc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Remote ischemic preconditioning (RIPC) reduces periprocedural myocardial injury (PMI) after percutaneous coronary intervention (PCI) through various pathways, including an adenosine-triggered pathway. Ticagrelor inhibits adenosine uptake, thus may potentiate the effects of RIPC. This randomized trial tested the hypothesis that ticagrelor potentiates the effect of RIPC and reduces PMI, assessed by post-procedural troponin release. METHODS Patients undergoing PCI for non-ST elevation acute coronary syndromes were 1:1 randomized to ticagrelor (TG-Group) or clopidogrel (CL-Group). Within each treatment, patients were 1:1 randomized to a RIPC (RIPC-Group) or a control group (CTRL-Group). The primary endpoint was the difference between post- and pre-procedural troponin at 24 h following PCI, termed deltaTnI. RESULTS During a 12-month period, 138 patients were included in the study (34 in the CL-CTRL group, 34 in the TG-CTRL group, 35 in the CL-RIPC group, and 35 in the TG-CTRL group). There was a significant difference in deltaTnI between the study groups [ TG-RIPC:0.04 (0-0.16), CL-CTRL:0.10 (0.03-0.43), CLRIPC:0.11 (0.03-0.89), and TG-CTRL:0.24 (0.06-0.47); p = 0.007]. Eight patients (22.9%) in the TG-RIPC group developed type 4a myocardial infarction (MI), compared to 14 (40%) in the CL-RIPC group, 13 (38.2%) in the CL-CTRL group, and 19 (55.9%) in the TG-CTRL group (p = 0.048). A significant interaction between antiplatelet group allocation and RIPC on deltaTnI was observed [F (1,134) = 7.509; p = 0.007]. In multivariate analysis, the interaction between RIPC and ticagrelor treatment was independently associated with a lower incidence of Type 4a MI. CONCLUSION Our results demonstrate an interaction between ticagrelor and RIPC, which may potentiate the cardioprotective effects of RIPC during PCI by reducing PMI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | |
Collapse
|
4
|
D'Amario D, Galli M, Restivo A, Canonico F, Vergallo R, Migliaro S, Trani C, Burzotta F, Aurigemma C, Laborante R, Romagnoli E, Francese F, Ceccarelli I, Borovac JA, Angiolillo DJ, Tavazzi B, Leone AM, Crea F, Patti G, Porto I. Ticagrelor enhances the cardioprotective effects of ischemic preconditioning in stable patients undergoing percutaneous coronary intervention: the TAPER-S randomized study. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:190-200. [PMID: 38006237 DOI: 10.1093/ehjcvp/pvad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Ticagrelor improves clinical outcomes in patients with acute coronary syndromes compared with clopidogrel. Ticagrelor also inhibits cell uptake of adenosine and has been associated with cardioprotective effects in animal models. We sought to investigate the potential cardioprotective effects of ticagrelor, as compared with clopidogrel, in stable patients undergoing percutaneous coronary intervention (PCI). METHODS AND RESULTS This was a Prospective Randomized Open Blinded End-points (PROBE) trial enrolling stable patients with coronary artery disease (CAD) requiring fractional flow reserve-guided PCI of intermediate epicardial coronary lesions. ST-segment elevation at intracoronary electrocardiogram (IC-ECG) during a two-step sequential coronary balloon inflations in the reference vessel during PCI was used as an indirect marker of cardioprotection induced by ischemic preconditioning (IPC). The primary endpoint of the study was the comparison of the delta (Δ) (difference) ST-segment elevation measured by IC-ECG during two-step sequential coronary balloon inflations. RESULTS Fifty-three patients were randomized to either clopidogrel or ticagrelor. The study was stopped earlier because the primary endpoint was met at a pre-specified interim analysis. ΔST-segment elevation was significantly higher in ticagrelor as compared to clopidogrel arms (P < 0.0001). Ticagrelor was associated with lower angina score during coronary balloon inflations. There was no difference in coronary microvascular resistance between groups. Adenosine serum concentrations were increased in patients treated with ticagrelor as compared to those treated with clopidogrel. CONCLUSIONS Ticagrelor enhances the cardioprotective effects of IPC compared with clopidogrel in stable patients with CAD undergoing PCI. Further studies are warranted to fully elucidate the mechanisms through which ticagrelor may exert cardioprotective effects in humans. CLINICAL TRIAL REGISTRATION http://www.clinicaltrials.gov. Unique Identifier: NCT02701140.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di MedicinaTraslazionale, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, 48032 Cotignola, Italy
| | - Attilio Restivo
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Canonico
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Stefano Migliaro
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Burzotta
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Cristina Aurigemma
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Renzo Laborante
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Enrico Romagnoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Francese
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Ceccarelli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine (USSM) and Cardiovascular Diseases Department, University Hospital of Split (KBC Split), 2100 Split, Croatia
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, 32211 Jacksonville, FL, USA
| | - Barbara Tavazzi
- UniCamillus - Saint Camillus International University of Health Sciences, 00100 Rome, Italy
| | - Antonio M Leone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Patti
- Dipartimento di MedicinaTraslazionale, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Italo Porto
- IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiovascular Network, 16132 Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università di Genova, 16132 Genova, Italy
| |
Collapse
|
5
|
Lee EJ, Lee SM, Oh JH, Kim HY, Saeed WK, Kim HS, Jun DW. Ticagrelor, but Not Clopidogrel, Attenuates Hepatic Steatosis in a Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:920. [PMID: 38612954 PMCID: PMC11013111 DOI: 10.3390/nu16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Previous studies have suggested that platelets are associated with inflammation and steatosis and may play an important role in liver health. Therefore, we evaluated whether antiplatelet agents can improve metabolic disorder-related fatty liver disease (MASLD). METHODS The mice used in the study were fed a high-fat-diet (HFD) and were stratified through liver biopsy at 18 weeks. A total of 22 mice with NAFLD activity scores (NAS) ≥ 4 were randomly divided into three groups (HFD-only, clopidogrel (CLO; 35 mg/kg/day), ticagrelor (TIC; 40 mg/kg/day) group). And then, they were fed a feed mixed with the respective drug for 15 weeks. Blood and tissue samples were collected and used in the study. RESULTS The TIC group showed a significantly lower degree of NAS and steatosis than the HFD group (p = 0.0047), but no effect on the CLO group was observed. Hepatic lipogenesis markers' (SREBP1c, FAS, SCD1, and DGAT2) expression and endoplasmic reticulum (ER) stress markers (CHOP, Xbp1, and GRP78) only reduced significantly in the TIC treatment group. Inflammation genes (MCP1 and TNF-α) also decreased significantly in the TIC group, but not in the CLO group. Nile red staining intensity and hepatic lipogenesis markers were reduced significantly in HepG2 cells following TIC treatment. CONCLUSION Ticagrelor attenuated NAS and hepatic steatosis in a MASLD mice model by attenuating lipogenesis and inflammation, but not in the CLO group.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women’s Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Hye Young Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Austria Fachhochschule—Institute of Applied Sciences and Technology, Mang 22621, Pakistan;
| | - Hyun Sung Kim
- Department of Pathology, Hanyang University School of Medicine, Seoul 04763, Republic of Korea;
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; (E.J.L.); (S.M.L.); (H.Y.K.)
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Lofrumento F, Irrera N, Licordari R, Perfetti S, Nasso E, Liotta P, Isgrò G, Garcia-Ruiz V, Squadrito F, Carerj S, Di Bella G, Micari A, Costa F. Off-Target Effects of P2Y12 Receptor Inhibitors: Focus on Early Myocardial Fibrosis Modulation. Int J Mol Sci 2023; 24:17546. [PMID: 38139379 PMCID: PMC10743395 DOI: 10.3390/ijms242417546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have demonstrated that, beyond their antithrombotic effects, P2Y12 receptor inhibitors may provide additional off-target effects through different mechanisms. These effects range from the preservation of endothelial barrier function to the modulation of inflammation or stabilization of atherosclerotic plaques, with an impact on different cell types, including endothelial and immune cells. Many P2Y12 inhibitors have been developed, from ticlopidine, the first thienopyridine, to the more potent non-thienopyridine derivatives such as ticagrelor which may promote cardioprotective effects following myocardial infarction (MI) by inhibiting adenosine reuptake through sodium-independent equilibrative nucleoside transporter 1 (ENT1). Adenosine may affect different molecular pathways involved in cardiac fibrosis, such as the Wnt (wingless-type)/beta (β)-catenin signaling. An early pro-fibrotic response of the epicardium and activation of cardiac fibroblasts with the involvement of Wnt1 (wingless-type family member 1)/β-catenin, are critically required for preserving cardiac function after acute ischemic cardiac injury. This review discusses molecular signaling pathways involved in cardiac fibrosis post MI, focusing on the Wnt/β-catenin pathway, and the off-target effect of P2Y12 receptor inhibition. A potential role of ticagrelor was speculated in the early modulation of cardiac fibrosis, thanks to its off-target effect.
Collapse
Affiliation(s)
- Francesca Lofrumento
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Roberto Licordari
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Silvia Perfetti
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Enrica Nasso
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Paolo Liotta
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Giovanni Isgrò
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | | | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (F.L.); (R.L.); (S.P.); (E.N.); (P.L.); (G.I.); (F.S.); (S.C.); (G.D.B.)
| | - Antonio Micari
- BIOMORF Department, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (A.M.); (F.C.)
| | - Francesco Costa
- BIOMORF Department, Policlinic “G. Martino”, University of Messina, 98122 Messina, Italy; (A.M.); (F.C.)
| |
Collapse
|
7
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Lieder HR, Tsoumani M, Andreadou I, Schrör K, Heusch G, Kleinbongard P. Platelet-Mediated Transfer of Cardioprotection by Remote Ischemic Conditioning and Its Abrogation by Aspirin But Not by Ticagrelor. Cardiovasc Drugs Ther 2023; 37:865-876. [PMID: 35595877 PMCID: PMC10517043 DOI: 10.1007/s10557-022-07345-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The role of platelets during myocardial ischemia/reperfusion (I/R) is ambivalent. They contribute to injury but also to cardioprotection. Repeated blood flow restriction and reperfusion in a tissue/organ remote from the heart (remote ischemic conditioning, RIC) reduce myocardial I/R injury and attenuate platelet activation. Whether or not platelets mediate RIC's cardioprotective signal is currently unclear. METHODS AND RESULTS Venous blood from healthy volunteers (without or with pretreatment of 500/1000 mg aspirin or 180 mg ticagrelor orally, 2-3 h before the study, n = 18 each) was collected before and after RIC (3 × 5 min blood pressure cuff inflation at 200 mmHg on the left upper arm/5 min deflation). Washed platelets were isolated. Platelet-poor plasma was used to prepare plasma-dialysates. Platelets (25 × 103/µL) or plasma-dialysates (1:10) prepared before and after RIC from untreated versus aspirin- or ticagrelor-pretreated volunteers, respectively, were infused into isolated buffer-perfused rat hearts. Hearts were subjected to global 30 min/120 min I/R. Infarct size was stained. Infarct size was less with infusion of platelets/plasma-dialysate after RIC (18 ± 7%/23 ± 9% of ventricular mass) than with platelets/plasma-dialysate before RIC (34 ± 7%/33 ± 8%). Aspirin pretreatment abrogated the transfer of RIC's cardioprotection by platelets (after/before RIC, 34 ± 7%/33 ± 7%) but only attenuated that by plasma-dialysate (after/before RIC, 26 ± 8%/32 ± 5%). Ticagrelor pretreatment induced an in vivo formation of cardioprotective factor(s) per se (platelets/plasma-dialysate before RIC, 26 ± 7%/26 ± 7%) but did not impact on RIC's cardioprotection by platelets/plasma-dialysate (20 ± 7%/21 ± 5%). CONCLUSION Platelets serve as carriers for RIC's cardioprotective signal through an aspirin-sensitive and thus cyclooxygenase-dependent mechanism. The P2Y12 inhibitor ticagrelor per se induces a humoral cardioprotective signal.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany
| | - Maria Tsoumani
- Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Karsten Schrör
- Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
9
|
Kutryb-Zając B, Kawecka A, Nasadiuk K, Braczko A, Stawarska K, Caiazzo E, Koszałka P, Cicala C. Drugs targeting adenosine signaling pathways: A current view. Biomed Pharmacother 2023; 165:115184. [PMID: 37506580 DOI: 10.1016/j.biopha.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Khrystyna Nasadiuk
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Lancellotti P, Aqil A, Musumeci L, Jacques N, Ditkowski B, Debuisson M, Thiry M, Dupont J, Gougnard A, Sandersen C, Cheramy-Bien JP, Sakalihasan N, Nchimi A, Detrembleur C, Jérôme C, Oury C. Bioactive surface coating for preventing mechanical heart valve thrombosis. J Thromb Haemost 2023; 21:2485-2498. [PMID: 37196847 DOI: 10.1016/j.jtha.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prosthetic heart valves are the only treatment for most patients with severe valvular heart disease. Mechanical valves, made of metallic components, are the most long-lasting type of replacement valves. However, they are prone to thrombosis and require permanent anticoagulation and monitoring, which leads to higher risk of bleeding and impacts the patient's quality of life. OBJECTIVES To develop a bioactive coating for mechanical valves with the aim to prevent thrombosis and improve patient outcomes. METHODS We used a catechol-based approach to produce a drug-releasing multilayer coating adherent to mechanical valves. The hemodynamic performance of coated Open Pivot valves was verified in a heart model tester, and coating durability in the long term was assessed in a durability tester producing accelerated cardiac cycles. Coating antithrombotic activity was evaluated in vitro with human plasma or whole blood under static and flow conditions and in vivo after surgical valve implantation in a pig's thoracic aorta. RESULTS We developed an antithrombotic coating consisting of ticagrelor- and minocycline-releasing cross-linked nanogels covalently linked to polyethylene glycol. We demonstrated the hydrodynamic performance, durability, and hemocompatibility of coated valves. The coating did not increase the contact phase activation of coagulation, and it prevented plasma protein adsorption, platelet adhesion, and thrombus formation. Implantation of coated valves in nonanticoagulated pigs for 1 month efficiently reduced valve thrombosis compared with noncoated valves. CONCLUSION Our coating efficiently inhibited mechanical valve thrombosis, which might solve the issues of anticoagulant use in patients and the number of revision surgeries due to valve thrombosis despite anticoagulation.
Collapse
Affiliation(s)
- Patrizio Lancellotti
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Lucia Musumeci
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Bartosz Ditkowski
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Margaux Debuisson
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology, University of Liège, Liège, Belgium
| | - Julien Dupont
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alexandra Gougnard
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Charlotte Sandersen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jean-Paul Cheramy-Bien
- Department of Cardiovascular and Thoracic Surgery, Centre Hospitalier Universitaire of Liège, University of Liège, Liège, Belgium; Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Centre Hospitalier Universitaire of Liège, University of Liège, Liège, Belgium; Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Alain Nchimi
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium.
| |
Collapse
|
11
|
Qiu X, Li X, Fu K, Chen W, Chen W. The effect of ticagrelor on coronary microvascular function after PCI in patients with ACS compared to clopidogrel: A systematic review and meta-analysis. PLoS One 2023; 18:e0289243. [PMID: 37643179 PMCID: PMC10464986 DOI: 10.1371/journal.pone.0289243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The function of coronary microcirculation is an important factor in predicting the prognosis of patients with acute coronary syndrome (ACS) who receive percutaneous coronary intervention (PCI) therapy. Ticagrelor, a type of oral P2Y12 inhibitor, is widely prescribed to ACS patients and can improve prognosis compared to clopidogrel. However, the efficacy of ticagrelor on coronary microcirculation, compared to clopidogrel, remains unclear. The objective of this meta-analysis was to determine the efficacy of ticagrelor on coronary microcirculation. METHODS The PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov databases were comprehensively searched to identify studies until November 2022. Data was pooled using the fixed effects model or random effects model based on the level of heterogeneity. Sensitivity analyses were performed to measure the effects of potential confounders. RESULTS After screening, 16 trials with a total of 3676 participants were ultimately included in the analysis. The meta-analysis revealed that compared to clopidogrel, patients receiving ticagrelor exhibited a more significant reduction in the IMR (WMD: -6.23, 95% CI: -8.41 to -4.04), a reduction in the cTFC (WMD: -1.88; 95% CI: -3.32 to -0.45), and greater increases in CFR (WMD: 0.38; 95% CI: 0.18 to 0.57), MBG (RR 1.29, 95% CI 1.12 to 1.48), and TIMI (RR 1.03, 95% CI 1.00 to 1.06). CONCLUSION Our findings suggest that, compared to clopidogrel, ticagrelor has a significant effect in reducing coronary microcirculatory resistance, enhancing coronary blood flow reserve, and improving myocardial perfusion.
Collapse
Affiliation(s)
- Xiaohan Qiu
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohui Li
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Kang Fu
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wentao Chen
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqiang Chen
- Department of Cardiology, National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Wang CC, Zhao Q, Guo BY, Hao J, Zhao JJ, Ren JL, Sun YQ, Zhang XR, Yang XL, Liu JM. The Plasma Concentration of Ticagrelor and Aspirin as a Predictor of Bleeding Complications in Chinese Acute Coronary Syndrome Patients With Dual Antiplatelet Therapy: A Prospective Observational Study. J Cardiovasc Pharmacol 2023; 82:148-156. [PMID: 37295072 DOI: 10.1097/fjc.0000000000001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE This study evaluated the association among the plasma concentration of ticagrelor, ARC124910XX, aspirin, and salicylic acid with the risk of recent bleeding in patients with the acute coronary syndrome. To this end, we developed an accurate model to predict bleeding. METHODS A total of 84 patients included in this study cohort between May 2021 and November 2021. The risk factors were identified by univariate and multivariate analyses, and statistically significant risk factors identified in the multivariate analysis were included in the nomogram. We used the calibration curve and the receiver operating characteristic curve to verify the accuracy of the prediction model. RESULTS Multivariable logistic analysis showed that ticagrelor concentration (odds ratio [OR]: 2.47, 95% confidence interval [CI], 1.51-4.75, P = 0.002), ST-segment elevation acute myocardial infarction (OR: 32.2, 95% CI, 2.37-780, P = 0.016), and lipid-lowering drugs (OR: 11.52, 95% CI, 1.91-110, P = 0.015) were positively correlated with bleeding. However, angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker (OR: 0.04, 95% CI, 0.004-0.213, P < 0.001) was negatively correlated with bleeding. The receiver operating characteristic curve analysis showed that ticagrelor concentration and these factors together predict the occurrence of bleeding (area under receiver operating characteristic curve = 0.945, 95% CI, 0.896-0.994) and that ticagrelor concentration >694.90 ng/mL is the threshold of bleeding concentration (area under receiver operating characteristic curve = 0.696, 95% CI, 0.558-0.834). CONCLUSION In patients with acute coronary syndrome treated with dual antiplatelet therapy, ticagrelor concentration >694.90 ng/mL was an independent risk factor for bleeding (OR: 2.47, 95% CI, 1.51-4.75, P = 0.002), but ARC124910XX and salicylic acid concentration did not affect bleeding risk ( P > 0.05).
Collapse
Affiliation(s)
- Cui-Cui Wang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Qing Zhao
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Bing-Yan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang City, China; and
| | - Jie Hao
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang City, China; and
| | - Jia-Jia Zhao
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang City, China; and
| | | | - Ya-Qing Sun
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Xiao-Rui Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Xiu-Ling Yang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Jin-Ming Liu
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang City, China; and
| |
Collapse
|
13
|
Naramreddy S, Varma A, Taksande A, Meshram RJ. The Role of Antiplatelet in the Management of Sickle Cell Disease Patients. Cureus 2023; 15:e42058. [PMID: 37602132 PMCID: PMC10434724 DOI: 10.7759/cureus.42058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by abnormal hemoglobin, leading to red blood cell deformities and subsequent vaso-occlusive events. Platelet activation and adhesion play a significant role in the pathophysiology of SCD, contributing to the development of complications such as vaso-occlusive events, stroke, acute chest syndrome, and other manifestations. Antiplatelet therapy has emerged as a potential strategy to mitigate these complications by modulating the platelet function and reducing thrombotic events. This review article provides an overview of antiplatelet therapy's role in managing SCD patients. It discusses the pathophysiological abnormalities in the platelet function in SCD, the rationale for antiplatelet therapy, and the evidence supporting its use in various clinical scenarios. The article explores aspirin as the primary antiplatelet agent in SCD, including its mechanism of action, dosing considerations, and efficacy and safety data. Additionally, it highlights other antiplatelet agents, such as clopidogrel, prasugrel, ticagrelor, and emerging therapies under investigation. Clinical applications of antiplatelet therapy in primary and secondary prevention and the management of acute chest syndrome and other SCD complications are also discussed. Safety considerations are emphasized, including bleeding risk assessment, monitoring, and patient selection for antiplatelet therapy. Finally, the review highlights future research and clinical practice directions, including the development of novel antiplatelet agents, combination therapies, and the integration of antiplatelet therapy with other SCD treatments. Overall, this review provides a comprehensive understanding of the current role of antiplatelet therapy in SCD management, the challenges faced, and future directions for improving patient outcomes.
Collapse
Affiliation(s)
- Sudheeshreddy Naramreddy
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Varma
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Krake E, Backer L, Andres B, Baumann W, Handler N, Buschmann H, Holzgrabe U, Bolm C, Beweries T. Mechanochemical Oxidative Degradation of Thienopyridine Containing Drugs: Toward a Simple Tool for the Prediction of Drug Stability. ACS CENTRAL SCIENCE 2023; 9:1150-1159. [PMID: 37396854 PMCID: PMC10311657 DOI: 10.1021/acscentsci.3c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 07/04/2023]
Abstract
The long-term stability of an active-pharmaceutical ingredient and its drug products plays an important role in the licensing process of new pharmaceuticals and for the application of the drug at the patient. It is, however, difficult to predict degradation profiles at early stages of the development of new drugs, making the entire process very time-consuming and costly. Forced mechanochemical degradation under controlled conditions can be used to realistically model long-term degradation processes naturally occurring in drug products, avoiding the use of solvents, thus excluding irrelevant solution-based degradation pathways. We present the forced mechanochemical oxidative degradation of three platelet inhibitor drug products, where the drug products contain thienopyridine. Model studies using clopidogrel hydrogen sulfate (CLP) and its drug formulation Plavix show that the controlled addition of excipients does not affect the nature of the main degradants. Experiments using drug products Ticlopidin-neuraxpharm and Efient show that significant degradation occurs after short reaction times of only 15 min. These results highlight the potential of mechanochemistry for the study of degradation processes of small molecules relevant to the prediction of degradation profiles during the development of new drugs. Furthermore, these data provide exciting insights into the role of mechanochemistry for chemical synthesis in general.
Collapse
Affiliation(s)
- Everaldo
F. Krake
- Leibniz-Institut
für Katalyse, e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Laura Backer
- Institut
für Pharmazie und Lebensmittelchemie,Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Benjamin Andres
- Leibniz-Institut
für Katalyse, e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Wolfgang Baumann
- Leibniz-Institut
für Katalyse, e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Norbert Handler
- RD&C
Research, Development & Consulting GmbH, Neuwaldegger Strasse 35/2/3, 1170 Vienna, Austria
| | - Helmut Buschmann
- RD&C
Research, Development & Consulting GmbH, Neuwaldegger Strasse 35/2/3, 1170 Vienna, Austria
| | - Ulrike Holzgrabe
- Institut
für Pharmazie und Lebensmittelchemie,Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Carsten Bolm
- Institut
für Organische Chemie, RWTH Aachen
University, Landoltweg 1, 52074 Aachen, Germany
| | - Torsten Beweries
- Leibniz-Institut
für Katalyse, e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
15
|
Schüngel MS, Hoffmann KT, Weber E, Maybaum J, Bailis N, Scheer M, Nestler U, Schob S. Distal Flow Diversion with Anti-Thrombotically Coated and Bare Metal Low-Profile Flow Diverters—A Comparison. J Clin Med 2023; 12:jcm12072700. [PMID: 37048781 PMCID: PMC10095446 DOI: 10.3390/jcm12072700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Background and purpose: The establishment of low-profile flow diverting stents (FDS), for example, the Silk Vista Baby (SVB) and the p48MW, facilitated endovascular treatment of peripheral cerebral aneurysms. This study therefore aims to compare the performance and outcomes of the SVB with those of the p48MW HPC, with a special focus on hemodynamic aspects of peripheral segments and bifurcations. Materials and methods: The study cohort comprises 108 patients, who were either treated with the SVB or the p48MW HPC between June 2018 and April 2021. Results: Sixty patients received a SVB and forty-eight patients a p48MW HPC. The SVB was used predominantly in the AcomA-complex, and the p48MW HPC in the MCA bifurcation. Immediately after implantation, significant hemodynamic downgrading (OKM A2-A3, B1-B3, C3) was achieved in 60% in the SVB group vs. 75.1% in the p48MW HPC group. At the second follow-up, after an average of 8.8 and 10.9 months, respectively, OKM D1 was observed in 64.4% of the SVB group vs. 27.3% in the p48MW HPC group. Only 1.7% vs. 6.8% of the aneurysms remained morphologically unaltered (OKM A1). Adverse events with persisting neurologic sequalae at last follow-up were largely comparable in both groups (5.0% vs. 4.2%). Conclusion: Immediately after implantation, the p48MW HPC had a more profound hemodynamic impact than the SVB; however, early complete occlusions were achieved in a greater proportion of lesions after implantation of the uncoated SVB.
Collapse
Affiliation(s)
- Marie-Sophie Schüngel
- Abteilung für Neuroradiologie, Klinik & Poliklinik für Radiologie, Universitätsklinikum Halle, 06120 Halle (Saale), Germany
| | - Karl-Titus Hoffmann
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Erik Weber
- Klinik für Anästhesie und Notfallmedizin, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Jens Maybaum
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Nikolaos Bailis
- Institut für Neuroradiologie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Maximilian Scheer
- Abteilung für Neurochirurgie, Universitätsklinikum Halle, 06120 Halle (Saale), Germany
| | - Ulf Nestler
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Stefan Schob
- Abteilung für Neuroradiologie, Klinik & Poliklinik für Radiologie, Universitätsklinikum Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Heib A, Chang H, Rockman C, Patel V, Jacobowitz G, Barfield M, Siracuse JJ, Faries P, Lamparello PJ, Cayne N, Maldonado T, Garg K. Periprocedural P2Y 12 inhibitors improve perioperative outcomes after carotid stenting by primarily decreasing strokes. J Vasc Surg 2023; 77:795-803. [PMID: 36328140 DOI: 10.1016/j.jvs.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The continuation of antiplatelet agents in the periprocedural period around carotid stenting (CAS) procedures is felt to be mandatory to minimize the risk of periprocedural stroke. However, the optimal antiplatelet regimen is unclear, with some advocating dual antiplatelet therapy, and others supporting the use of P2Y12 inhibitors alone. The objective of this study was to evaluate the periprocedural effect of P2Y12 inhibitors for CAS. METHODS The Vascular Quality Initiative was used from years 2007 to 2020. All transcarotid artery revascularization (TCAR) and transfemoral carotid artery stenting (TF-CAS) procedures were included. Patients were stratified based on perioperative use of P2Y12 inhibitors as well as symptomatic status. Primary end points were perioperative neurological events (strokes and transient ischemic attacks). Secondary end points were mortality and myocardial infarction. RESULTS A total of 31,036 CAS procedures were included for analysis, with 49.8% TCAR and 50.2% TF-CAS cases; 63.8% of patients were male and 82.3% of patients were on a P2Y12 inhibitor. P2Y12 inhibitor use was more common in males, asymptomatic patients, those older than 70 years, and concurrent statin use. P2Y12 inhibitors were more likely to be used in TCAR cases than in TF-CAS cases (87.3% vs 76.8%; P < .001). The rate of periprocedural neurological events in the whole cohort was 2.6%. Patients on P2Y12 inhibitors were significantly less likely to experience a periprocedural neurological event (2.3% vs 3.9%; P < .001) and mortality (0.6% vs 2.1%; P < .001) than those who were not on a P2Y12 inhibitor. There was no effect on the rates of myocardial infarction. On multivariate analysis, both symptomatic and asymptomatic patients on P2Y12 inhibitors were significantly less likely to develop perioperative neurological events. Additionally, the use of P2Y12 inhibitors demonstrated an independent significant effect in reducing of the rate of perioperative stroke (odds ratio, 0.29; 95% confidence interval, 0.25-0.33). Finally, additional analysis of the types of P2Y12 inhibitors used revealed that all seemed to be equally effective in decreasing the periprocedural neurological event rate. CONCLUSIONS The use of perioperative P2Y12 inhibitors seems to markedly decrease the perioperative neurological event rate with TCAR and TF-CAS in both symptomatic and asymptomatic patients and should be strongly considered. Patients with contraindications to P2Y12 inhibitors may not be appropriate candidates for any CAS procedure. Additionally, alternative types of P2Y12 inhibitors seem to be equally effective as clopidogrel. Finally, an analysis of the Vascular Quality Initiative demonstrates that, even for TCAR cases, only 87.3% of patients seem to be on P2Y12 inhibitors in the periprocedural period, leaving room for significant improvement.
Collapse
Affiliation(s)
- Adele Heib
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Heepeel Chang
- Division of Vascular and Endovascular Surgery, Westchester Medical Center/New York Medical College, Valhalla, NY
| | - Caron Rockman
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Virendra Patel
- Division of Cardiac, Thoracic, and Vascular Surgery, New York Presbyterian/Columbia University Irving Medical Center/Columbia University College of Physicians and Surgeons, New York, NY
| | - Glenn Jacobowitz
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Michael Barfield
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Jeffrey J Siracuse
- Division of Vascular and Endovascular Surgery, Department of Surgery, Boston Medical Center, Boston, MA
| | - Peter Faries
- Division of Vascular and Endovascular Surgery, Department of Surgery, The Mount Sinai Hospital, New York, NY
| | - Patrick J Lamparello
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Neal Cayne
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Thomas Maldonado
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY
| | - Karan Garg
- Division of Vascular and Endovascular Surgery, Department of Surgery, NYU Langone Medical Center, New York, NY.
| |
Collapse
|
17
|
Chyrchel B, Kruszelnicka O, Surdacki A. Endothelial biomarkers and platelet reactivity on ticagrelor versus clopidogrel in patients after acute coronary syndrome with and without concomitant type 2 diabetes: a preliminary observational study. Cardiovasc Diabetol 2022; 21:249. [PMID: 36397167 PMCID: PMC9670560 DOI: 10.1186/s12933-022-01685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pleiotropic effects have been implicated in clinical benefits of ticagrelor compared to thienopyridine P2Y12 antagonists. There are conflicting data regarding effects of ticagrelor vs. thienopyridine P2Y12 blockers on endothelial function. Our aim was to compare endothelial biomarkers and their relations with platelet reactivity in real-world patients after acute coronary syndrome (ACS) on maintenance dual antiplatelet therapy (DAPT) with ticagrelor or clopidogrel stratified by diabetes status. METHODS Biochemical indices of endothelial dysfunction/activation and platelet reactivity by multiple electrode aggregometry were compared in 126 stable post-ACS subjects (mean age: 65 ± 10 years, 92 men and 34 women), including patients with (n = 61) or without (n = 65) coexistent type 2 diabetes (T2DM) on uneventful maintenance DAPT with either ticagrelor (90 mg b.d.) or clopidogrel (75 mg o.d.) in addition to low-dose aspirin. Exclusion criteria included a complicated in-hospital course, symptomatic heart failure, left ventricular ejection fraction < 40% and relevant coexistent diseases except for well-controlled diabetes, mild renal insufficiency or hypertension. RESULTS Clinical characteristics were similar in patients on ticagrelor (n = 62) and clopidogrel (n = 64). The adenosine diphosphate-induced platelet aggregation and circulating soluble P-selectin (sP-selectin) were decreased in ticagrelor users irrespective of T2DM status (p < 0.001 and p < 0.01 for platelet reactivity and sP-selectin, respectively). Plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) were lower in T2DM subjects on ticagrelor vs. clopidogrel (758 ± 162 vs. 913 ± 217 µg/L, p < 0.01). In contrast, plasma sVCAM-1 was similar in non-diabetic patients on ticagrelor and clopidogrel (872 ± 203 vs. 821 ± 210 µg/L, p > 0.7). The concentrations of sE-selectin, monocyte chemoattractant protein-1 and asymmetric dimethylarginine did not differ according to the type of P2Y12 antagonist regardless of T2DM status. Platelet reactivity was unrelated to any endothelial biomarker in subjects with or without T2DM. CONCLUSIONS Our preliminary findings may suggest an association of ticagrelor-based maintenance DAPT with favorable endothelial effects compared to clopidogrel users in stable post-ACS patients with T2DM. If proven, this could contribute to more pronounced clinical benefits of ticagrelor in diabetic subjects.
Collapse
Affiliation(s)
- Bernadeta Chyrchel
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland ,grid.412700.00000 0001 1216 0093Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Olga Kruszelnicka
- grid.5522.00000 0001 2162 9631Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 80 Prądnicka Street, 31-202 Cracow, Poland
| | - Andrzej Surdacki
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland ,grid.412700.00000 0001 1216 0093Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| |
Collapse
|
18
|
Pons V, Garcia C, Tidten-Luksch N, Mac Sweeney A, Caroff E, Galés C, Riederer MA. Inverse agonist efficacy of selatogrel blunts constitutive P2Y12 receptor signaling by inducing the inactive receptor conformation. Biochem Pharmacol 2022; 206:115291. [DOI: 10.1016/j.bcp.2022.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
19
|
Petousis S, Hamilos M, Pagonidis K, Vardas P, Lazopoulos G, Anastasiou I, Zacharis E, Kochiadakis G, Skalidis E. Assessment of myocardial salvage in patients with STEMI undergoing thrombolysis: ticagrelor versus clopidogrel. BMC Cardiovasc Disord 2022; 22:301. [PMID: 35780089 PMCID: PMC9250208 DOI: 10.1186/s12872-022-02735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the setting of ST-segment elevation myocardial infarction (STEMI), the faster and stronger antiplatelet action of ticagrelor compared to clopidogrel, as well as its pleiotropic effects, could result in a greater degree of cardioprotection and final infarct size (FIS) limitation. The aim of our study was to comparatively evaluate the effect of ticagrelor and clopidogrel on myocardial salvage index (MSI) in STEMI patients undergoing thrombolysis. Methods Forty-two STEMI patients treated with thrombolysis were randomized to receive clopidogrel (n = 21) or ticagrelor (n = 21), along with aspirin. Myocardial area at risk (AAR) was calculated according to the BARI and the APPROACH jeopardy scores. FIS was quantified by cardiac magnetic resonance imaging (CMR) performed 5–6 months post-randomization. MSI was calculated as (AAR-FIS)/AAR × 100%. Primary endpoint of our study was MSI. Secondary endpoints were FIS and CMR-derived left ventricular ejection fraction (LVEF) at 5 –6 months post-randomization. Results By using the BARI score for AAR calculation, mean MSI was 52.25 ± 30.5 for the clopidogrel group and 54.29 ± 31.08 for the ticagrelor group (p = 0.83), while mean MSI using the APPROACH score was calculated at 51.94 ± 30 and 53.09 ± 32.39 (p = 0.9), respectively. Median CMR-derived FIS—as a percentage of LV—was 10.7% ± 8.25 in the clopidogrel group and 12.09% ± 8.72 in the ticagrelor group (p = 0.6). Mean LVEF at 5–6 months post-randomization did not differ significantly between randomization groups. Conclusions Our results suggest that the administration of ticagrelor in STEMI patients undergoing thrombolysis offer a similar degree of myocardial salvage, compared to clopidogrel. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02735-1.
Collapse
Affiliation(s)
- Stylianos Petousis
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece. .,School of Medicine, University of Crete, Heraklion, Greece.
| | - Michalis Hamilos
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece
| | - Konstantinos Pagonidis
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece
| | - Panos Vardas
- School of Medicine, University of Crete, Heraklion, Greece.,Hellenic Cardiovascular Research Society, Athens, Greece
| | - Georgios Lazopoulos
- School of Medicine, University of Crete, Heraklion, Greece.,Division of Cardiac Surgery, University Hospital of Heraklion, Heraklion, Greece
| | - Ioannis Anastasiou
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece
| | - Evangelos Zacharis
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece
| | - George Kochiadakis
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece.,School of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Skalidis
- Cardiology Department, University Hospital of Heraklion, Voutes and Stavrakia, 71110, Heraklion, Crete, Greece.,School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
Singam NSV, AlAdili B, Amraotkar AR, Coulter AR, Singh A, Kulkarni S, Mitra R, Daham ON, Smith AE, DeFilippis AP. In-vivo platelet activation and aggregation during and after acute atherothrombotic myocardial infarction in patients with and without Type-2 diabetes mellitus treated with ticagrelor. Vascul Pharmacol 2022; 145:107000. [PMID: 35623547 DOI: 10.1016/j.vph.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Patients with type-2 diabetes are twice as likely to suffer from acute myocardial infarction (AMI) and have a higher incidence of recurrent events than their non-diabetic counterparts. Ticagrelor is a platelet inhibitor known to reduce major adverse cardiovascular events (MACE) in AMI patients. This study measures the level and change in platelet activation and aggregation at the time of and following an AMI in patients with and without diabetes treated with ticagrelor. MATERIALS/METHODS P2Y12 receptor inhibitor naïve patients presenting with AMI were prospectively enrolled. Blood collection occurred before coronary angiography (baseline: T0), 2, 4, 24, 48 h after baseline, and at a three-month follow-up. Ticagrelor was administered within five minutes of T0. We assessed platelet activation via measurements of surface P-selectin and platelet activated glycoprotein IIb/IIIa-1 (PAC-1) and assessed platelet aggregation via monocyte, lymphocyte, and granulocyte aggregates. We hypothesize that platelet activation and aggregation will be proportionally impacted to the same degree by ticagrelor, regardless of diabetes status. RESULTS Ninety-seven patients were prospectively enrolled (diabetes, N = 33; no diabetes, N = 64). No difference was observed in the expression of P-selectin and PAC-1 at any given point between diabetes and non-diabetes groups (p > 0.05). No difference was observed in the percentage of platelet bound to leukocytes at any measured timepoint between patients with and without diabetes (p > 0.05). Platelet leukocyte aggregation was suppressed during the acute phase compared to quiescence equally among both groups. DISCUSSION Ticagrelor demonstrated similar in-vivo effects on platelet activation and aggregation regardless of diabetes status in patients presenting with AMI.
Collapse
Affiliation(s)
- Narayana Sarma V Singam
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Bahjat AlAdili
- Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Alok R Amraotkar
- Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States of America
| | - Amanda R Coulter
- Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States of America
| | - Ayesha Singh
- Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States of America
| | - Siddhesh Kulkarni
- Division of Bioinformatics and Biostatistics, University of Louisville, United States of America
| | - Riten Mitra
- Division of Bioinformatics and Biostatistics, University of Louisville, United States of America
| | - Omar Noori Daham
- Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States of America
| | - Allison E Smith
- Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States of America
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, KY, United States of America
| |
Collapse
|
21
|
Wang J, Zheng B, Yang S, Fan J, Sun H, Wang J. Mesoporous Silica Nanoparticles Carrying MicroRNA-124 to Target P2Y 12 Facilitates Cerebral Angiogenesis in Lacunar Cerebral Infarction Through Stem Cell Factor/c-Kit Signaling Pathway. J Biomed Nanotechnol 2022; 18:218-224. [PMID: 35180915 DOI: 10.1166/jbn.2022.3240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA (miRNA)-124 inhibitor may enhance cerebral blood vessel formation in lacunar cerebral infarction (LCI) and mesoporous silica nanoparticles are highlighted as a drug carrier which improves patients' outcome. This study explored the impact of miR-124 and its promising targeted gene P2Y12 encapsulated by mesoporous silica nanoparticles (MSNs) on progression of LCI, and its interaction between SCF/c-kit signaling pathway. After establishment of animal models, the animals were divided into 6 groups, namely: model group, blank group, empty carrier group, carrier + miR-124 inhibitor group, SCF/c-kit inhibitor group, and P2Y12 agonist group. Western blot analysis and microscope determined the expression level of miR-124 in the rat brain tissue slices. MVD, SCF and c-kit P2Y12 protein expression levels were detected and their targeting relationship was verified. miR-124 was poorly expressed in the cells of rats with LCI upon injection of MSNs carrying miR-124-inhibitor. The LCI model group had the highest number of VEGF-positive. Compared with the model group, the number in the carrier + miR-124 inhibitor group was lowest. Moreover, treatment with SCF/c-kit inhibitor and P2Y12 agonist also obtained reduction in the number of VEGF-positive cells with less prominent effect (P < 0.05). With elevation of MVD in the LCI rats, injection of P2Y12 agonist or SCF/c-kit inhibitor significantly decreased the amount of MVD, while miR-124 inhibitor-loaded MSNs better reduced the MVD level. Besides, the LCI rats exhibited up-regulated level of P2Y12 protein. Injection of P2Y12 agonist or SCF/c-kit inhibitor dramatically decreased the level of P2Y12, where the level was still higher than that of carrier + miR-124 inhibitor group. Moreover, administration of miR-124 inhibitor-loaded MSNs resulted in increased SCF and c-kit protein level, and SCF/c-kit inhibitor group and P2Y12 agonist group also had increased SCF and c-kit protein level, compared to the model group. Mechanistically, the miR-124 was indicated to target P2Y12 with stronger fluorescence intensity in mutant plasmid (P < 0.05). MSN-encapsulated miR-124 inhibitor increased the expression of SCF/c-kit protein by targeting P2Y12, thereby enhancing regeneration of cerebral blood vessels in LCI.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, Sichuan, 625000, China
| | - Bo Zheng
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, Sichuan, 625000, China
| | - Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610000, China
| | - Jian Fan
- Department of Neurology, The First People's Hospital of Shuangliu District, Chengdu, Sichuan, 610299, China
| | - Hao Sun
- Department of Neurology, The First People's Hospital of Shuangliu District, Chengdu, Sichuan, 610299, China
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610000, China
| |
Collapse
|
22
|
Olgar Y, Durak A, Degirmenci S, Tuncay E, Billur D, Ozdemir S, Turan B. Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum-mitochondria miscommunication. Mol Cell Biochem 2021; 476:3827-3844. [PMID: 34114148 DOI: 10.1007/s11010-021-04205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is associated with additional cardiovascular risk in mammalians while there are relationships between hyperglycemia-associated cardiovascular dysfunction and increased platelet P2Y12 receptor activation. Although P2Y12 receptor antagonist ticagrelor (Tica) plays roles in reduction of cardiovascular events, its beneficial mechanism remains poorly understood. Therefore, we aimed to clarify whether Tica can exert a direct protective effect in ventricular cardiomyocytes from high-carbohydrate diet-induced MetS rats, at least, through affecting sarcoplasmic reticulum (SR)-mitochondria (Mit) miscommunication. Tica treatment of MetS rats (150 mg/kg/day for 15 days) significantly reversed the altered parameters of action potentials by reversing sarcolemmal ionic currents carried by voltage-dependent Na+ and K+ channels, and Na+/Ca2+-exchanger in the cells, expressed P2Y12 receptors. The increased basal-cytosolic Ca2+ level and depressed SR Ca2+ load were also reversed in Tica-treated cells, at most, though recoveries in the phosphorylation levels of ryanodine receptors and phospholamban. Moreover, there were marked recoveries in Mit structure and function (including increases in both autophagosomes and fragmentations) together with recoveries in Mit proteins and the factors associated with Ca2+ transfer between SR-Mit. There were further significant recoveries in markers of both ER stress and oxidative stress. Taken into consideration the Tica-induced prevention of ER stress and mitochondrial dysfunction, our data provided an important document on the pleiotropic effects of Tica in the electrical activity of the cardiomyocytes from MetS rats. This protective effect seems through recoveries in SR-Mit miscommunication besides modulation of different sarcolemmal ion-channel activities, independent of P2Y12 receptor antagonism.
Collapse
Affiliation(s)
- Yusuf Olgar
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Sinan Degirmenci
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Faculty of Medicine, Department of Histology and Embryology, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey.
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
23
|
Rabouel Y, Magnenat S, Delabranche X, Gachet C, Hechler B. Platelet P2Y 12 Receptor Deletion or Pharmacological Inhibition does not Protect Mice from Sepsis or Septic Shock. TH OPEN 2021; 5:e343-e352. [PMID: 34447900 PMCID: PMC8384481 DOI: 10.1055/s-0041-1733857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction
Platelets are increasingly appreciated as key effectors during sepsis, raising the question of the usefulness of antiplatelet drugs to treat patients with sepsis.
Objective
Evaluate the potential contribution of the platelet P2Y
12
receptor in the pathogenesis of polymicrobial-induced sepsis and septic shock in mice.
Methods
The effects of P2Y
12
inhibition using clopidogrel treatment and of platelet-specific deletion of the P2Y
12
receptor in mice were examined in two severity grades of cecal ligation and puncture (CLP) leading to mild sepsis or septic shock.
Results
Twenty hours after induction of the high grade CLP, clopidogrel- and vehicle-treated mice displayed a similar 30% decrease in mean arterial blood pressure (MAP) characteristic of shock. Septic shock-induced thrombocytopenia was not modified by clopidogrel treatment. Plasma concentrations of inflammatory cytokines and myeloperoxidase (MPO) were similarly increased in clopidogrel- and vehicle-treated mice, indicating comparable increase in systemic inflammation. Thrombin-antithrombin (TAT) complexes and the extent of organ damage were also similar. In mild-grade CLP, clopidogrel- and vehicle-treated mice did not display a significant decrease in MAP, while thrombocytopenia and plasma concentrations of TNFα, IL6, IL10, MPO, TAT and organ damage reached similar levels in both groups, although lower than those reached in the high grade CLP. Similarly, mice with platelet-specific deletion of the P2Y
12
receptor were not protected from CLP-induced sepsis or septic shock.
Conclusion
The platelet P2Y
12
receptor does not contribute to the pathogenesis of sepsis or septic shock in mice, suggesting that P2Y
12
receptor antagonists may not be beneficial in patients with sepsis or septic shock.
Collapse
Affiliation(s)
- Yannick Rabouel
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Stéphanie Magnenat
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Xavier Delabranche
- Hôpitaux Universitaires de Strasbourg, Anesthésie, Réanimation et Médecine périopératoire, Nouvel Hôpital Civil, F-67000 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Beatrice Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| |
Collapse
|
24
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
25
|
Gölöncsér F, Baranyi M, Iring A, Hricisák L, Otrokocsi L, Benyó Z, Sperlágh B. Involvement of P2Y 12 receptors in an NTG-induced model of migraine in male mice. Br J Pharmacol 2021; 178:4626-4645. [PMID: 34363208 DOI: 10.1111/bph.15641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y12 receptors (P2Y12 Rs) are known to regulate different forms of pain and inflammation. In this study we investigated the participation of P2Y12 Rs in an animal model of migraine. EXPERIMENTAL APPROACH We tested the effect of the centrally administered selective P2Y12 R antagonist PSB-0739, and P2Y12 R gene deficiency in acute nitroglycerin (NTG)-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 Rs during migraine-like pain. KEY RESULTS NTG induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice, accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis (TNC). Similar changes were also observed in P2Y12 R gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice; furthermore, it was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and TNC, and decrease C1-C2 levels of dopamine and serotonin in wild-type mice. NTG treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P upregulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated NTG-induced thermal hypersensitivity and head grooming time in mice. CONCLUSION AND IMPLICATIONS Taken together, our findings show that acute inhibition of P2Y12 Rs alleviates migraine-like pain in mice, by modulating the expression of c-fos, and platelet P2Y12 Rs might contribute to this effect. Hence, it is suggested that the blockade of P2Y12 Rs may have therapeutic potential against migraine.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
26
|
Mencarini T, Roka-Moiia Y, Bozzi S, Redaelli A, Slepian MJ. Electrical impedance vs. light transmission aggregometry: Testing platelet reactivity to antiplatelet drugs using the MICELI POC impedance aggregometer as compared to a commercial predecessor. Thromb Res 2021; 204:66-75. [PMID: 34147831 PMCID: PMC11416791 DOI: 10.1016/j.thromres.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Patients' responses to antiplatelet therapy significantly vary, with individuals showing high residual platelet reactivity associated with thrombosis. To personalize thrombosis management, platelet function testing has been suggested as a promising tool able to monitor the antithrombotic effect of antiplatelet agents in real-time. We have prototyped the MICELI, a miniature and easy-to-use electrical impedance aggregometer (EIA), measuring platelet aggregation in whole blood. Here, we tested the capability of the MICELI aggregometer to quantify platelet reactivity on antiplatelet agents, as compared with conventional light-transmission aggregometry (LTA). METHODS Platelet aggregation in ACD-anticoagulated whole blood and platelet-rich plasma of healthy donors (n = 30) was evaluated. The effect of clopidogrel, ticagrelor, cangrelor, cilostazol, and tirofiban on ADP-induced aggregation was tested, while aspirin was evaluated with arachidonic acid and collagen. Platelet aggregation was recorded using the MICELI or BioData PAP-8E (Bio/Data Corp.) aggregometers. RESULTS The MICELI aggregometer detected an adequate and comparable dose-dependent decrease of platelet aggregation in response to increments of drugs' concentrations, as compared to LTA (the inter-device R2 = 0.79-0.93). Platelet aggregation in platelet-rich plasma recorded by LTA showed higher sensitivity to antiplatelet agents, but it couldn't distinguish between different drug doses as indicated by saturation of the aggregatory response. CONCLUSION Platelet aggregation in whole blood as recorded by EIA represents a better model system for evaluation of platelet reactivity as compared with platelet aggregation in platelet-rich plasma as recorded by LTA, since EIA takes into consideration the modulatory effect of other blood cells on platelet hemostatic function and pharmacodynamics of antiplatelet drugs in vivo. As such, the MICELI impedance aggregometer could be potentially employed for the point-of-care monitoring of platelet function in patients on-treatment for personalized tailoring of their antiplatelet regimen.
Collapse
Affiliation(s)
- Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America
| | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America; Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
27
|
Luo Q, Liu R, Qu K, Liu G, Hang M, Chen G, Xu L, Jin Q, Guo D, Kang Q. Cangrelor ameliorates CLP-induced pulmonary injury in sepsis by inhibiting GPR17. Eur J Med Res 2021; 26:70. [PMID: 34229761 PMCID: PMC8262027 DOI: 10.1186/s40001-021-00536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a common complication of severe wound injury and infection, with a very high mortality rate. The P2Y12 receptor inhibitor, cangrelor, is an antagonist anti-platelet drug. METHODS In our study, we investigated the protective mechanisms of cangrelor in CLP-induced pulmonary injury in sepsis, using C57BL/6 mouse models. RESULTS TdT-mediated dUTP Nick-End Labeling (TUNEL) and Masson staining showed that apoptosis and fibrosis in lungs were alleviated by cangrelor treatment. Cangrelor significantly promoted surface expression of CD40L on platelets and inhibited CLP-induced neutrophils in Bronchoalveolar lavage fluid (BALF) (p < 0.001). We also found that cangrelor decreased the inflammatory response in the CLP mouse model and inhibited the expression of inflammatory cytokines, IL-1β (p < 0.01), IL-6 (p < 0.05), and TNF-α (p < 0.001). Western blotting and RT-PCR showed that cangrelor inhibited the increased levels of G-protein-coupled receptor 17 (GPR17) induced by CLP (p < 0.001). CONCLUSION Our study indicated that cangrelor repressed the levels of GPR17, followed by a decrease in the inflammatory response and a rise of neutrophils in BALF, potentially reversing CLP-mediated pulmonary injury during sepsis.
Collapse
Affiliation(s)
- Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Rui Liu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Kaili Qu
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
| | - Guorong Liu
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Min Hang
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Guo Chen
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Lei Xu
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Qinqin Jin
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Dongfeng Guo
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China.
| | - Qi Kang
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
28
|
Kleinbongard P, Andreadou I, Vilahur G. The platelet paradox of injury versus protection in myocardial infarction-has it been overlooked? Basic Res Cardiol 2021; 116:37. [PMID: 34037862 PMCID: PMC8150149 DOI: 10.1007/s00395-021-00876-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Gemma Vilahur
- CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
29
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
30
|
Influence of Antiplatelet Agents on the Lipid Composition of Platelet Plasma Membrane: A Lipidomics Approach with Ticagrelor and Its Active Metabolite. Int J Mol Sci 2021; 22:ijms22031432. [PMID: 33572690 PMCID: PMC7866994 DOI: 10.3390/ijms22031432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Lipids contained in the plasma membrane of platelets play an important role in platelet function. Modifications in the lipid composition can fluidify or rigidify the environment around embedded receptors, in order to facilitate the access of the receptor by the drug. However, data concerning the lipid composition of platelet plasma membrane need to be updated. In addition, data on the impact of drugs on plasma membrane composition, in particular antiplatelet agents, remain sparse. After isolation of platelet plasma membrane, we assessed, using lipidomics, the effect of ticagrelor, a P2Y12 antagonist, and its active metabolite on the lipid composition of these plasma membranes. We describe the exact lipid composition of plasma membrane, including all sub-species. Ticagrelor and its active metabolite significantly increased cholesterol and phosphatidylcholine ether with short saturated acyl chains 16:0/16:0, and decreased phosphatidylcholine, suggesting overall rigidification of the membrane. Furthermore, ticagrelor and its active metabolite decreased some arachidonylated plasmalogens, suggesting a decrease in availability of arachidonic acid from the membrane phospholipids for synthesis of biologically active mediators. To conclude, ticagrelor and its active metabolite seem to influence the lipid environment of receptors embedded in the lipid bilayer and modify the behavior of the plasma membrane.
Collapse
|
31
|
Simard T, Jung RG, Di Santo P, Ramirez FD, Labinaz A, Gaudet C, Motazedian P, Parlow S, Joseph J, Moreland R, Marbach J, Boland P, Promislow S, Russo JJ, Chong AY, So D, Froeschl M, Le May M, Hibbert B. Performance of Plasma Adenosine as a Biomarker for Predicting Cardiovascular Risk. Clin Transl Sci 2020; 14:354-361. [PMID: 33264483 PMCID: PMC7877863 DOI: 10.1111/cts.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022] Open
Abstract
Adenosine boasts promising preclinical and clinical data supporting a vital role in modulating vascular homeostasis. Its widespread use as a diagnostic and therapeutic agent have been limited by its short half-life and complex biology, though adenosine-modulators have shown promise in improving vascular healing. Moreover, circulating adenosine has shown promise in predicting cardiovascular (CV) events. We sought to delineate whether circulating plasma adenosine levels predict CV events in patients undergoing invasive assessment for coronary artery disease. Patients undergoing invasive angiography had clinical data prospectively recorded in the Cardiovascular and Percutaneous ClInical TriALs (CAPITAL) revascularization registry and blood samples collected in the CAPITAL Biobank from which adenosine levels were quantified. Tertile-based analysis was used to assess prediction of major adverse cardiovascular events (MACE; composite of death, myocardial infarction, unplanned revascularization, and cerebrovascular accident). Secondary analyses included MACE subgroups, clinical subgroups and adenosine levels. There were 1,815 patients undergoing angiography who had blood collected with adenosine quantified in 1,323. Of those quantified, 51.0% were revascularized and 7.3% experienced MACE in 12 months of follow-up. Tertile-based analysis failed to demonstrate any stratification of MACE rates (log rank, P = 0.83), when comparing low-to-middle (hazard ratio (HR) 1.10, 95% confidence interval (CI) 0.68-1.78, P = 0.70) or low-to-high adenosine tertiles (HR 0.95, 95% CI 0.56-1.57, P = 0.84). In adjusted analysis, adenosine similarly failed to predict MACE. Finally, adenosine did not predict outcomes in patients with acute coronary syndrome nor in those revascularized or treated medically. Plasma adenosine levels do not predict subsequent CV outcomes or aid in patient risk stratification.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard G Jung
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pietro Di Santo
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - F Daniel Ramirez
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, Bordeaux-Pessac, France.,L'Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux-Pessac, France
| | - Alisha Labinaz
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Chantal Gaudet
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Pouya Motazedian
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon Parlow
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Joanne Joseph
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert Moreland
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Jeffrey Marbach
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paul Boland
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Steven Promislow
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Juan J Russo
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aun-Yeong Chong
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Derek So
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael Froeschl
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michel Le May
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benjamin Hibbert
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
33
|
Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev 2020; 101:545-567. [PMID: 33124941 PMCID: PMC8238137 DOI: 10.1152/physrev.00035.2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Evolving information has identified disease mechanisms and dysregulation of host biology that might be targeted therapeutically in coronavirus disease 2019 (COVID-19). Thrombosis and coagulopathy, associated with pulmonary injury and inflammation, are emerging clinical features of COVID-19. We present a framework for mechanisms of thrombosis in COVID-19 that initially derive from interaction of SARS-CoV-2 with ACE2, resulting in dysregulation of angiotensin signaling and subsequent inflammation and tissue injury. These responses result in increased signaling by thrombin (proteinase-activated) and purinergic receptors, which promote platelet activation and exert pathological effects on other cell types (e.g., endothelial cells, epithelial cells, and fibroblasts), further enhancing inflammation and injury. Inhibitors of thrombin and purinergic receptors may, thus, have therapeutic effects by blunting platelet-mediated thromboinflammation and dysfunction in other cell types. Such inhibitors include agents (e.g., anti-platelet drugs) approved for other indications, and that could be repurposed to treat, and potentially improve the outcome of, COVID-19 patients. COVID-19, caused by the SARS-CoV-2 virus, drives dysregulation of angiotensin signaling, which, in turn, increases thrombin-mediated and purinergic-mediated activation of platelets and increase in inflammation. This thromboinflammation impacts the lungs and can also have systemic effects. Inhibitors of receptors that drive platelet activation or inhibitors of the coagulation cascade provide opportunities to treat COVID-19 thromboinflammation.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology and Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
34
|
Fakhrudin N, Pertiwi KK, Takubessi MI, Susiani EF, Nurrochmad A, Widyarini S, Sudarmanto A, Nugroho AA, Wahyuono S. A geranylated chalcone with antiplatelet activity from the leaves of breadfruit (Artocarpus altilis). PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e56788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Platelet plays a crucial role in cardiovascular diseases (CVDs) development. Abnormalities in platelet aggregation provokes thromboembolism, eventually leading to death. In Indonesia, breadfruit (Artocarpus altilis) leaf is traditionally used to treat CVDs. This study aimed to evaluate the antiplatelet activity of A. altilis leaf extract (AAE) and to identify its active compound. A. altilis leaves were extracted with ethanol, and the antiplatelet activity was assessed using ADP-induced platelet aggregation. The major compound was isolated with column chromatography followed by preparative TLC, and the structure was determined on the basis of UV, MS, IR, and NMR spectra. The binding mode of the active compound to platelet receptors was characterized in in silico study. AAE exhibited an antiplatelet activity (IC50 of 252.23 µg/mL). A geranylated chalcone, 2-geranyl-2ʹ,3,3,4ʹ-tetrahydroxydihydrochalcone (GTDC) was identified as the antiplatelet compound (IC50 of 9.09 µM). GTDC actions with P2Y12 platelet receptor involving three amino acid residues.
Collapse
|
35
|
Ribeiro-Filho J, Yahouédéhou SCMA, Pitanga TN, Santana SS, Adorno EV, Barbosa CG, Ferreira JRD, Pina ETG, Neres JSDS, Leite IPR, Lyra IM, Goncalves MS. An evaluation of ticagrelor for the treatment of sickle cell anemia. Expert Rev Hematol 2020; 13:1047-1055. [PMID: 32972255 DOI: 10.1080/17474086.2020.1817736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Ticagrelor is an antiplatelet agent approved for the treatment of patients with an acute coronary syndrome or a history of myocardial infarction. Considering the evidence demonstrating that ticagrelor-mediated inhibition of platelet activation and aggregation have beneficial effects in the treatment of thrombotic conditions, clinical studies have been conducted to evaluate the use of this drug for the treatment of sickle cell disease (SCD), demonstrating satisfactory tolerability and safety. AREAS COVERED Clinical investigation has characterized the pharmacokinetic and pharmacodynamical profile, as well as the efficacy and safety of ticagrelor to prevent painful vaso-occlusive crisis (painful episodes and acute chest syndrome) in SCD patients. EXPERT OPINION While phase 1 and 2 clinical trials demonstrated satisfactory tolerability and safety, the conclusion of phase 3 clinical trials is crucial to prove the efficacy of ticagrelor as a therapeutic option for the treatment of SCD. Thus, it is expected that ticagrelor, especially in combination with other drugs, will improve the clinical profile and quality of life of patients with SCD.
Collapse
Affiliation(s)
- Jaime Ribeiro-Filho
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil
| | - Sètondji Cocou Modeste Alexandre Yahouédéhou
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil.,Laboratório de Pesquisa em Anemia, Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| | - Thassila Nogueira Pitanga
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil.,Faculdade de Biomedicina, Universidade Católica de Salvador , Salvador, Bahia, Brasil
| | - Sânzio Silva Santana
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil.,Faculdade de Biomedicina, Universidade Católica de Salvador , Salvador, Bahia, Brasil
| | - Elisângela Vitória Adorno
- Laboratório de Pesquisa em Anemia, Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| | - Cynara Gomes Barbosa
- Laboratório de Pesquisa em Anemia, Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| | - Júnia Raquel Dutra Ferreira
- Laboratório de Pesquisa em Anemia, Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| | - Eugênia Terra Granado Pina
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil
| | | | - Ivana Paula Ribeiro Leite
- Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| | - Isa Menezes Lyra
- Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia , Salvador, Bahia, Brasil.,Ambulatório, Fundação de Hematologia e Hemoterapia da Bahia , Salvador, Bahia, Brasil.,Curso de Medicina, Escola de Ciências da Saúde e Bem-Estar, Universidade Salvador , Salvador, Bahia, Brasil
| | - Marilda Souza Goncalves
- Laboratóriode Investigaçãoem Genéticae Hematologia Translacional, Instituto Gonçalo Moniz , Salvador, Bahia, Brasil.,Laboratório de Pesquisa em Anemia, Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia , Salvador, Bahia, Brasil
| |
Collapse
|
36
|
Abu Sharar H, Helfert S, Vafaie M, Pleger ST, Chorianopoulos E, Bekeredjian R, Katus HA, Giannitsis E. Identification of patients at higher risk for myocardial injury following elective coronary artery intervention. Catheter Cardiovasc Interv 2020; 96:578-585. [PMID: 31638330 DOI: 10.1002/ccd.28549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To evaluate myocardial injury and infarction (MI) following elective percutaneous coronary intervention (PCI). BACKGROUND The substantially higher analytical power of high-sensitivity troponin (hsTn) assays allows detection of minor cardiac troponin (cTn) levels, which may be useful in monitoring myocardial injury and guiding therapies. METHODS Serial hsTnT measurements were conducted in patients undergoing elective PCI and were related to the extent of coronary artery disease (CAD) as reflected by the SYNTAX score risk categories and American College of Cardiology/American Heart Association classification of coronary lesions. Myocardial injury and MI were diagnosed according to the second and third versions of universal MI definition. RESULTS The study population consisted of 530 patients, who were grouped into low (41.3%), intermediate (35.4%), and high (23.3%) SYNTAX risk categories. The treated coronary lesions were classified into A 7.8%, B1 24.1%, B2 21.1%, C1 24.6%, and C2 22.4%. Postprocedural hsTnT increases correlated significantly with the complexity of treated coronary lesions (p < .05) and CAD magnitude (p < .05). Rates of MI type 4a according to the second and third MI definition criteria were 98 (27.5%) and 15 (4.2%) cases in patients with normal baseline hsTnT values (N = 357, 67.4%), as well as 137 (79.2%) and 27 (15.6%) cases in those with elevated baseline hsTnT values (N = 173, 32.6%), respectively. CONCLUSIONS After elective PCI, cTn releases correlate significantly with lesion complexity and CAD extent. Use of hsTnT assay enables precise monitoring of PCI-related myocardial injury and may identify patients at higher risk for ischemic events, who may benefit from potent platelet inhibition, which needs to be investigated in randomized trials.
Collapse
Affiliation(s)
- Haitham Abu Sharar
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Helfert
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mehrshad Vafaie
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven T Pleger
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Emmanuel Chorianopoulos
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
37
|
Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9219825. [PMID: 32832010 PMCID: PMC7424511 DOI: 10.1155/2020/9219825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 μM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 μM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.
Collapse
|
38
|
Mansour A, Roussel M, Gaussem P, Nédelec-Gac F, Pontis A, Flécher E, Bachelot-Loza C, Gouin-Thibault I. Platelet Functions During Extracorporeal Membrane Oxygenation. Platelet-Leukocyte Aggregates Analyzed by Flow Cytometry as a Promising Tool to Monitor Platelet Activation. J Clin Med 2020; 9:jcm9082361. [PMID: 32718096 PMCID: PMC7464627 DOI: 10.3390/jcm9082361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an extracorporeal circulation used to manage patients with severe circulatory or respiratory failure. It is associated with both high bleeding and thrombosis risks, mainly as a result of biomaterial/blood interface phenomena, high shear stress, and complex inflammatory response involving the activation of coagulation and complement systems, endothelial cells, leukocytes, and platelets. Besides their critical role in hemostasis, platelets are important players in inflammatory reactions, especially due to their ability to bind and activate leukocytes. Hence, we reviewed studies on platelet function of ECMO patients. Moreover, we addressed the issue of platelet–leukocyte aggregates (PLAs), which is a key step in both platelet and leukocyte activation, and deserves to be investigated in these patients. A reduced expression of GPIb and GPVI was found under ECMO therapy, due to the shedding processes. However, defective platelet aggregation is inconsistently reported and is still not clearly defined. Due to the high susceptibility of PLAs to pre-analytical conditions, defining and strictly adhering to a rigorous laboratory methodology is essential for reliable and reproducible results, especially in the setting of complex inflammatory situations like ECMO. We provide results on sample preparation and flow cytometric whole blood evaluation of circulating PLAs.
Collapse
Affiliation(s)
- Alexandre Mansour
- Department of Anesthesiology Critical Care Medicine and Perioperative Medicine, Rennes University Hospital, F-35000 Rennes, France;
- Rennes University Hospital, INSERM-CIC 1414, F-35000 Rennes, France
- Innovative Therapies in Haemostasis, Paris University, INSERM U1140, F-75006 Paris, France; (P.G.); (C.B.-L.)
| | - Mikael Roussel
- Department of Biological Hematology, Rennes University Hospital, F-35000 Rennes, France; (M.R.); (F.N.-G.); (A.P.)
- Microenvironment, Cell Differentiation, Immunology and Cancer, Rennes University, INSERM U1236, F-35000 Rennes, France
- Cytometrie Hematologique Francophone Association (CytHem), F-75013 Paris, France
| | - Pascale Gaussem
- Innovative Therapies in Haemostasis, Paris University, INSERM U1140, F-75006 Paris, France; (P.G.); (C.B.-L.)
- Department of Biological Hematology, AH-HP, Georges Pompidou European University Hospital, F-75015 Paris, France
| | - Fabienne Nédelec-Gac
- Department of Biological Hematology, Rennes University Hospital, F-35000 Rennes, France; (M.R.); (F.N.-G.); (A.P.)
| | - Adeline Pontis
- Department of Biological Hematology, Rennes University Hospital, F-35000 Rennes, France; (M.R.); (F.N.-G.); (A.P.)
| | - Erwan Flécher
- Cardio-Thoracic Surgery, Rennes University Hospital, INSERM U1099, F-35000 Rennes, France;
| | - Christilla Bachelot-Loza
- Innovative Therapies in Haemostasis, Paris University, INSERM U1140, F-75006 Paris, France; (P.G.); (C.B.-L.)
| | - Isabelle Gouin-Thibault
- Rennes University Hospital, INSERM-CIC 1414, F-35000 Rennes, France
- Department of Biological Hematology, Rennes University Hospital, F-35000 Rennes, France; (M.R.); (F.N.-G.); (A.P.)
- Correspondence:
| |
Collapse
|
39
|
Sulfonic Acid Derivative-Modified SBA-15, PHTS and MCM-41 Mesoporous Silicas as Carriers for a New Antiplatelet Drug: Ticagrelor Adsorption and Release Studies. MATERIALS 2020; 13:ma13132913. [PMID: 32610486 PMCID: PMC7372400 DOI: 10.3390/ma13132913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Three mesoporous, siliceous materials, i.e., SBA-15 (Santa Barbara Amorphous), PHTS (Plugged Hexagonal Templated Silica) and MCM-41 (Mobil Composition of Matter), functionalized with a sulfonic acid derivative, were successfully prepared and applied as the carriers for the poorly water-soluble drug, ticagrelor. The siliceous carriers were characterized using nitrogen sorption analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and elemental analysis. The adsorption studies were conducted in acetonitrile. At the highest equilibrium concentrations, the amount of ticagrelor Qe that adsorbed onto the examined silicas was in the range of 83 to 220 mg/g, increasing in the following order: PHTS-(CH2)3-SO3H < SBA-15-(CH2)3-SO3H < MCM-41-(CH2)3-SO3H. The equilibrium adsorption data were analyzed using the Freundlich, Jovanovich, Langmuir, Temkin, Dubinin-Radushkevich, Dubinin-Astakhov and Redlich-Peterson models. In order to find the best-fit isotherm for each model, a nonlinear fitting analysis was carried out. Based on the minimized values of the ARE function, the fit of the isotherms to the experimental points for ticagrelor adsorption onto the modified silicas can be ordered as follows: SBA-15-(CH2)3-SO3H (Redlich-Peterson > Dubinin-Astakhov > Temkin), PHTS-(CH2)3-SO3H (Redlich-Peterson > Temkin > Dubinin-Astakhov), MCM-41-(CH2)3-SO3H (Redlich-Peterson > Dubinin-Astakhov > Langmuir). The values of adsorption energy (above 8 kJ/mol) indicate the chemical nature of ticagrelor adsorption onto propyl-sulfonic acid-modified silicas. The results of release studies indicated that at pH 4.5, modified SBA-15 and MCM-41 carriers accelerate the drug dissolution process, compared to the dissolution rate of free crystalline ticagrelor. Intriguingly, modified PHTS silica provides prolonged drug release kinetics compared to other siliceous adsorbents and to the dissolution rate of crystalline ticagrelor. A Weibull release model was employed to describe the release profiles of ticagrelor from the prepared carriers. The time necessary to dissolve 50% and 90% of ticagrelor from mesoporous adsorbents at pH 4.5 increased in the following order: SBA-15-(CH2)3-SO3H < MCM-41-(CH2)3-SO3H < PHTS-(CH2)3-SO3H.
Collapse
|
40
|
Feliu C, Peyret H, Brassart-Pasco S, Oszust F, Poitevin G, Nguyen P, Millart H, Djerada Z. Ticagrelor Prevents Endothelial Cell Apoptosis through the Adenosine Signalling Pathway in the Early Stages of Hypoxia. Biomolecules 2020; 10:biom10050740. [PMID: 32397519 PMCID: PMC7277469 DOI: 10.3390/biom10050740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia-reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. METHOD By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. RESULTS Our results showed that 10 µM ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. CONCLUSION we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Hélène Peyret
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims University Hospital, SFR CAP-santé, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France;
| | - Floriane Oszust
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Gaël Poitevin
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Philippe Nguyen
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Hervé Millart
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Zoubir Djerada
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
- Correspondence: ; Tel.: +33-3-26-83-27-82; Fax: +33-3-26-78-84-56
| |
Collapse
|
41
|
Olgar Y, Tuncay E, Billur D, Durak A, Ozdemir S, Turan B. Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Mol Cell Biochem 2020; 469:97-107. [PMID: 32301059 DOI: 10.1007/s11010-020-03731-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Ticagrelor, a P2Y12-receptor inhibitor, and a non-thienopyridine agent are used to treat diabetic patients via its effects on off-target mechanisms. However, the exact sub-cellular mechanisms by which ticagrelor exerts those effects remains to be elucidated. Accordingly, the present study aimed to examine whether ticagrelor influences directly the cardiomyocytes function under insulin resistance through affecting mitochondria-sarco(endo)plasmic reticulum (SER) cross-talk. Therefore, we analyzed the function and ultrastructure of mitochondria and SER in insulin resistance-mimicked (50-μM palmitic acid for 24-h) H9c2 cardiomyocytes in the presence or absence of ticagrelor (1-µM for 24-h). We found that ticagrelor treatment significantly prevented depolarization of mitochondrial membrane potential and increases in reactive oxygen species with a marked increase in the ATP level in insulin-resistant H9c2 cells. Ticagrelor treatment also reversed the increases in the resting level of free Ca2+ and mRNA level of P2Y12 receptors as well as preserved ER stress and apoptosis in insulin-resistant H9c2 cells. Furthermore, we determined marked repression with ticagrelor treatment in the increased number of autophagosomes and degeneration of mitochondrion, including swelling and loss of crista besides recoveries in enlargement and irregularity seen in SER in insulin-resistant H9c2 cells. Moreover, ticagrelor treatment could prevent the altered mRNA levels of Becklin-1 and type 1 equilibrative nucleoside transporter (ENT1), which are parallel to the preservation of ultrastructural ones. Our overall data demonstrated that ticagrelor can directly affect cardiomyocytes and provide marked protection against ER stress and dramatic induction of autophagosomes, and therefore, can alleviate the ER stress-induced oxidative stress increase and cell apoptosis during insulin resistance.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Semir Ozdemir
- Departments of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Belma Turan
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
42
|
Ticagrelor Increases SIRT1 and HES1 mRNA Levels in Peripheral Blood Cells from Patients with Stable Coronary Artery Disease and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21051576. [PMID: 32106619 PMCID: PMC7084534 DOI: 10.3390/ijms21051576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticagrelor is a powerful P2Y12 inhibitor with pleiotropic effects in the cardiovascular system. Consistently, we have reported that in patients with stable coronary artery disease (CAD) and concomitant chronic obstructive pulmonary disease (COPD) who underwent percutaneous coronary intervention (PCI), 1-month treatment with ticagrelor was superior in improving biological markers of endothelial function, compared with clopidogrel. The objective of this study was to investigate the mechanisms underlying these beneficial effects of ticagrelor by conducting molecular analyses of RNA isolated from peripheral blood cells of these patients. We determined mRNAs levels of markers of inflammation and oxidative stress, such as RORγt (T helper 17 cells marker), FoxP3 (regulatory T cells marker), NLRP3, ICAM1, SIRT1, Notch ligands JAG1 and DLL4, and HES1, a Notch target gene. We found that 1-month treatment with ticagrelor, but not clopidogrel, led to increased levels of SIRT1 and HES1 mRNAs. In patients treated with ticagrelor or clopidogrel, we observed a negative correlation among changes in both SIRT1 and HES1 mRNA and serum levels of Epidermal Growth Factor (EGF), a marker of endothelial dysfunction found to be reduced by ticagrelor treatment in our previous study. In conclusion, we report that in stable CAD/COPD patients ticagrelor positively regulates HES1 and SIRT1, two genes playing a protective role in the context of inflammation and oxidative stress. Our observations confirm and expand previous studies showing that the beneficial effects of ticagrelor in stable CAD/COPD patients may be, at least in part, mediated by its capacity to reduce systemic inflammation and oxidative stress.
Collapse
|
43
|
Dost T. Cardioprotective properties of the platelet P2Y 12 receptor inhibitor prasugrel on cardiac ischemia/reperfusion injury. Pharmacol Rep 2020; 72:672-679. [PMID: 32048257 DOI: 10.1007/s43440-019-00046-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The effects of prasugrel, a third-generation thienopyridine, on myocardial infarction, and ischemia-induced ventricular arrhythmias was evaluated in open-chest anesthetized rats. The role of protein kinase C and phosphoinositide 3-kinase pathways in these effects was also examined. METHODS The effect of P2Y12 receptor inhibition by prasugrel (3-10 mg/kg, po) on infarct size after 30-min coronary artery occlusion and 120-min reperfusion or on arrhythmias after 7-min coronary occlusion and 7-min reperfusion was evaluated. RESULTS In the control group, 31.25 ± 3.01% of the risk zone infarcted. At both prasugrel doses, infarct size was significantly smaller than that in the control group: 5.03 ± 0.81% for 3 mg/kg (p < 0.0001), and 8.78 ± 2.04% for 10 mg/kg (p < 0.0001). The protein kinase C antagonist chelerythrine abolished the anti-infarct effect of prasugrel at 24.77 ± 1.73% as did the phosphoinositide 3-kinase antagonist wortmannin abolished the anti-infarct effect of prasugrel at 27.45 ± 2.74%. Ten mg/kg prasugrel reduced the duration of VT (p = 0.0152 vs control), and wortmannin, but not chelerythrine, reversed the effect of prasugrel on arrhythmias (p = 0.0295). CONCLUSION The selective P2Y12 inhibitor prasugrel provides effective protection against myocardial infarction and ischemia-induced ventricular arrhythmias in rats. As in ischemic postconditioning, protein kinase C and phosphoinositide 3-kinase signaling pathways play a role in this protection.
Collapse
Affiliation(s)
- Turhan Dost
- Department of Medical Pharmacology, Medical School, Aydin Adnan Menderes University, Aydin, 09100, Turkey.
| |
Collapse
|
44
|
Olie RH, van der Meijden PEJ, Spronk HMH, Ten Cate H. Antithrombotic Therapy: Prevention and Treatment of Atherosclerosis and Atherothrombosis. Handb Exp Pharmacol 2020; 270:103-130. [PMID: 32776281 DOI: 10.1007/164_2020_357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a multifactorial vascular disease that develops in the course of a lifetime. Numerous risk factors for atherosclerosis have been identified, mostly inflicting pro-inflammatory effects. Vessel injury, such as occurring during erosion or rupture of atherosclerotic lesions triggers blood coagulation, in attempt to maintain hemostasis (protect against bleeding). However, thrombo-inflammatory mechanisms may drive blood coagulation such that thrombosis develops, the key process underlying myocardial infarction and ischemic stroke (not due to embolization from the heart). In the blood coagulation system, platelets and coagulation proteins are both essential elements. Hyperreactivity of blood coagulation aggravates atherosclerosis in preclinical models. Pharmacologic inhibition of blood coagulation, either with platelet inhibitors, or better documented with anticoagulants, or both, limits the risk of thrombosis and may potentially reverse atherosclerosis burden, although the latter evidence is still based on animal experimentation.Patients at risk of atherothrombotic complications should receive a single antiplatelet agent (acetylsalicylic acid, ASA, or clopidogrel); those who survived an atherothrombotic event will be prescribed temporary dual antiplatelet therapy (ASA plus a P2Y12 inhibitor) in case of myocardial infarction (6-12 months), or stroke (<6 weeks), followed by a single antiplatelet agent indefinitely. High risk for thrombosis patients (such as those with peripheral artery disease) benefit from a combination of an anticoagulant and ASA. The price of gained efficacy is always increased risk of (major) bleeding; while tailoring therapy to individual needs may limit the risks to some extent, new generations of agents that target less critical elements of hemostasis and coagulation mechanisms are needed to maintain efficacy while reducing bleeding risks.
Collapse
Affiliation(s)
- R H Olie
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands.,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P E J van der Meijden
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands. .,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Taus F, Meneguzzi A, Castelli M, Minuz P. Platelet-Derived Extracellular Vesicles as Target of Antiplatelet Agents. What Is the Evidence? Front Pharmacol 2019; 10:1256. [PMID: 31780927 PMCID: PMC6857039 DOI: 10.3389/fphar.2019.01256] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived large extracellular vesicles (often referred to as microparticles in the field of cardiovascular disease) have been identified as effector in the atherothrombotic process, therefore representing a target of pharmacological intervention of potential interest. Despite that, limited evidence is so far available concerning the effects of antiplatelet agents on the release of platelet-derived extracellular vesicles. In the present narrative review, the mechanisms leading to vesiculation in platelets and the pathophysiological processes implicated will be discussed. This will be followed by a summary of the present evidence concerning the effects of antiplatelet agents under experimental conditions and in clinical settings.
Collapse
Affiliation(s)
- Francesco Taus
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Marco Castelli
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Pietro Minuz
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| |
Collapse
|
46
|
Ticagrelor induces paraoxonase-1 (PON1) and better protects hypercholesterolemic mice against atherosclerosis compared to clopidogrel. PLoS One 2019; 14:e0218934. [PMID: 31242230 PMCID: PMC6594647 DOI: 10.1371/journal.pone.0218934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Ticagrelor (TIC), a P2Y purinoceptor 12 (P2Y12)-receptor antagonist, has been widely used to treat patients with acute coronary syndrome. Although animal studies suggest that TIC protects against atherosclerosis, it remains unknown whether it does so through its potent platelet inhibition or through other pathways. Here, we placed hypercholesterolemic Ldlr-/-Apobec1-/- mice on a high-fat diet and treated them with either 25 mg/kg/day of clopidogrel (CLO) or 180 mg/kg/day of TIC for 16 weeks and evaluated the extent of atherosclerosis. Both treatments equally inhibited platelets as determined by ex vivo platelet aggregation assays. The extent of atherosclerosis, however, was significantly less in the TIC group than in the CLO group. Immunohistochemical staining and ELISA showed that TIC treatment was associated with less macrophage infiltration to the atherosclerotic intima and lower serum levels of CCL4, CXCL10, and TNFα, respectively, than CLO treatment. Treatment with TIC, but not CLO, was associated with higher serum activity and tissue level of paraoxonase-1 (PON1), an anti-atherosclerotic molecule, suggesting that TIC might exert greater anti-atherosclerotic activity, compared with CLO, through its unique ability to induce PON1. Although further studies are needed, TIC may prove to be a viable strategy in the prevention and treatment of chronic stable human atherosclerosis.
Collapse
|
47
|
Vlachopoulos C, Georgakopoulos C, Pietri P, Ioakeimidis N, Koutouzis M, Vaina S, Aznaouridis K, Toutouzas K, Latsios G, Terentes-Printzios D, Rigatou A, Tousoulis D. Effect of Ticagrelor Versus Clopidogrel on Aortic Stiffness in Patients With Coronary Artery Disease. J Am Heart Assoc 2019; 8:e012521. [PMID: 31165663 PMCID: PMC6645640 DOI: 10.1161/jaha.119.012521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background We compared the acute and midterm effect of ticagrelor versus clopidogrel on aortic stiffness. Methods and Results We studied 117 patients in a randomized, assessor‐blinded, parallel‐group trial. The acute effect of ticagrelor was studied in 58 patients randomized (1:1) to receive a loading dose of clopidogrel (600 mg) or ticagrelor (180 mg). Carotid‐femoral pulse wave velocity (cfPWV) was measured before, 3, and 24 hours after the loading dose. The midterm effect (30‐day treatment period) was studied in 59 subjects who underwent percutaneous coronary intervention and were randomized to either clopidogrel (75 mg, OD) or ticagrelor (90 mg BID). cfPWV was measured before and at 30 days of treatment. Circulating markers of inflammation and endothelial function were measured at all study points. Repeated‐measures analysis showed a significant main effect for treatment (P=0.03), with the ticagrelor showing a reduction in cfPWV after treatment. cfPWV at 24 hours was significantly lower in the ticagrelor group compared with the clopidogrel group (P=0.017) (maximal response reduction by 0.42±0.26 m/s). At 30 days, cfPWV decreased in the ticagrelor group, whereas there was no change with clopidogrel (−0.43±0.57 versus 0.12±0.14 m/s, P=0.004). There were no significant changes in both the acute and midterm study period in the pro‐inflammatory and endothelial function parameters. Conclusions URL: https://www.clinicaltrials.gov. Unique identifier: NCT02071212. Ticagrelor decreases cfPWV for 24 hours after the loading dose and at 1 month post–percutaneous coronary intervention compared with clopidogrel. Considering that aortic stiffness is an independent predictor of cardiovascular events, this finding may have clinical implications regarding the beneficial effect of ticagrelor. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02071212.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Ioakeimidis
- 1 First Department of Cardiology Hippokration Hospital Athens Medical School Athens Greece
| | - Michael Koutouzis
- 3 Second Department of Cardiology Red Cross General Hospital Athens Greece
| | - Sophia Vaina
- 1 First Department of Cardiology Hippokration Hospital Athens Medical School Athens Greece
| | | | - Konstantinos Toutouzas
- 1 First Department of Cardiology Hippokration Hospital Athens Medical School Athens Greece
| | - George Latsios
- 1 First Department of Cardiology Hippokration Hospital Athens Medical School Athens Greece
| | | | - Aggeliki Rigatou
- 3 Second Department of Cardiology Red Cross General Hospital Athens Greece
| | - Dimitris Tousoulis
- 1 First Department of Cardiology Hippokration Hospital Athens Medical School Athens Greece
| |
Collapse
|
48
|
Davidson SM, Andreadou I, Barile L, Birnbaum Y, Cabrera-Fuentes HA, Cohen MV, Downey JM, Girao H, Pagliaro P, Penna C, Pernow J, Preissner KT, Ferdinandy P. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res 2019; 115:1156-1166. [PMID: 30590395 PMCID: PMC6529916 DOI: 10.1093/cvr/cvy314] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate review in this Spotlight series) as well as circulating cells and factors play important roles in this pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including sphingosine-1 phosphate (S1P), platelet activating factor, and cytokines that can all strongly influence the development of IR injury. This is particularly relevant given that most STEMI patients receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and detrimental effects on IR injury. Some of these effects are mediated by the transfer of microRNA (miRNA) to the heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR injury. We discuss these and other circulating factors, focussing on potential therapeutic targets relevant to IR injury. Given the prevalence of comorbidities such as diabetes in the target patient population, their influence will also be discussed. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Lucio Barile
- Cellular and Molecular Cardiology Laboratory, Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine and The Texas Heart Institute, Baylor St. Luke Medical Center, MS BCM620, One Baylor Plaza, Houston, TX77030, USA
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, Nuevo León, Mexico
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Michael V Cohen
- Department of Medicine, University of South Alabama, College of Medicine, Mobile, AL, USA
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Claudia Penna
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest 1089, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
49
|
Niazi M, Wissmar J, Berggren AR, Karlsson C, Johanson P. Development Strategy and Relative Bioavailability of a Pediatric Tablet Formulation of Ticagrelor. Clin Drug Investig 2019; 39:765-773. [PMID: 31140114 DOI: 10.1007/s40261-019-00800-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Ticagrelor is a P2Y12 receptor inhibitor approved as an antiplatelet drug for patients with acute coronary syndrome or a history of myocardial infarction. Ticagrelor is also being investigated for the reduction of vaso-occlusive crises in pediatric patients with sickle cell disease. A pediatric formulation suitable for this age range was developed; the development strategy is described. Primary objectives were determining the relative bioavailability of ticagrelor pediatric tablets and granules for oral suspension to the adult immediate-release tablet, and the pediatric tablets taken whole and dispersed/suspended in water to the granules for oral suspension. Bioequivalence between the pediatric tablet taken whole or suspended in water was also assessed. Secondary objectives were comparing the formulations' safety and tolerability. METHODS We conducted a randomized, four-period, cross-over, single-dose study. Pharmacokinetic parameters were assessed for ticagrelor and its active metabolite AR-C124910XX. Bioequivalence was concluded if the 90% confidence intervals of the maximum plasma concentration and area under the plasma concentration-time curve ratios were contained completely within the 80.00-125.00% limits for ticagrelor/AR-C124910XX. RESULTS Forty-four healthy adults (95% white; 57% male) were included. Similar bioavailability of ticagrelor (and AR-C124910XX) was demonstrated for all comparisons tested. Ticagrelor pediatric tablets taken whole were bioequivalent to pediatric tablets suspended in water. The plasma concentration-time profiles for ticagrelor and AR-C124910XX were similar, showing rapid ticagrelor absorption and AR-C124910XX formation. All formulations were well tolerated. CONCLUSION Similar bioavailability of a new pediatric dispersible tablet formulation of ticagrelor for use across a wide age range of pediatric patients was demonstrated compared with other oral ticagrelor formulations. CLINICALTRIALS. GOV IDENTIFIER NCT03126695. EUDRACT 2017-000371-93.
Collapse
Affiliation(s)
- Mohammad Niazi
- Quantitative Clinical Pharmacology, Early Clinical Development, AstraZeneca Gothenburg, Mölndal, Sweden.
| | - Jenny Wissmar
- Global Medicines Development, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anders R Berggren
- Global Medicines Development, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Christer Karlsson
- Pharmaceutical Technology and Development, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Per Johanson
- Global Medicines Development, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
50
|
Amilon C, Niazi M, Berggren A, Åstrand M, Hamrén B. Population Pharmacokinetics/Pharmacodynamics of Ticagrelor in Children with Sickle Cell Disease. Clin Pharmacokinet 2019; 58:1295-1307. [DOI: 10.1007/s40262-019-00758-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|