1
|
Tang H, Zhang T, Feng J, Zhang M, Xu B, Zhang Q, Li N, Zhang N, Fang Q. Neuropeptide FF prevented histamine- or chloroquine-induced acute itch behavior through non-NPFF receptors mechanism in male mice. Neuropeptides 2024; 108:102481. [PMID: 39504659 DOI: 10.1016/j.npep.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.d.) injection of histamine or chloroquine in male mice. Our results indicated that intracerebroventricular (i.c.v.) administration of NPFF dose-dependently prevented histamine- or chloroquine-induced acute itch behaviors. In addition, the modulatory effect of NPFF was not affected by the selective NPFF receptor antagonist RF9. Furthermore, we investigated the effects of NPVF and dNPA, the selective agonists of NPFF1 and NPFF2 receptors respectively, on the acute itch. The results demonstrated that both NPFF agonists effectively prevented acute itch induced by histamine or chloroquine in a manner similar to NPFF, and their effects were also not modified by RF9. To further investigate the possible mechanism of the NPFF receptors agonists, the NPFF-derived analogues [Phg8]-NPFF and NPFF(1-7)-NH2 that could not activate NPFF receptors in cAMP assays were subsequently tested in the acute itch model. Interestingly, [Phg8]-NPFF, but not NPFF(1-7)-NH2, prevented acute itch behavior after i.c.v. administration. In conclusion, our findings reveal that NPFF and related peptides prevent histamine- and chloroquine-induced acute itch through a NPFF receptor-independent mechanism. And it was revealed that the C-terminal phenyl structure of NPFF may play a crucial role in these modulatory effects on acute itch.
Collapse
Affiliation(s)
- Honghai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China; ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jiamin Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
3
|
Mei C, Zhang J, Niu Z, Simon JP, Yang T, Huang M, Zhang Z, Zhou L, Dong S. MP-13, a novel chimeric peptide of morphiceptin and pepcan-9, produces potent antinociception with limited side effects. Neuropeptides 2024; 107:102440. [PMID: 38875739 DOI: 10.1016/j.npep.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Pharmacological investigations have substantiated the potential of bifunctional opioid/cannabinoid agonists in delivering potent analgesia while minimizing adverse reactions. Peptide modulators of cannabinoid receptors, known as pepcans, have been investigated before. In this study, we designed a series of chimeric peptides based on pepcans and morphiceptin (YPFP-NH2). Here, we combined injections of pepcans and morphiceptin to investigate the combination treatment of opioids and cannabis and compared the analgesic effect with chimeric compounds. Subsequently, we employed computational docking to screen the compounds against opioid and cannabinoid receptors, along with an acute pain model, to identify the most promising peptide. Among these peptides, MP-13, a morphiceptin and pepcan-9 (PVNFKLLSH) construct, exhibited superior supraspinal analgesic efficacy in the tail-flick test, with an ED50 value at 1.43 nmol/mouse, outperforming its parent peptides and other chimeric analogs. Additionally, MP-13 displayed potent analgesic activity mediated by mu-opioid receptor (MOR), delta-opioid receptor (DOR), and cannabinoid type 1 (CB1) receptor pathways. Furthermore, MP-13 did not induce psychological dependence and gastrointestinal motility inhibition at the effective analgesic doses, and it maintained non-tolerance-forming antinociception throughout a 7-day treatment regimen, with an unaltered count of microglial cells in the periaqueductal gray region, supporting this observation. Moreover, intracerebroventricular administration of MP-13 demonstrated dose-dependent antinociception in murine models of neuropathic, inflammatory, and visceral pain. Our findings provide promising insights for the development of opioid/cannabinoid peptide agonists, addressing a crucial gap in the field and holding significant potential for future research and development. PERSPECTIVE: This article offers insights into the combination treatment of pepcans with morphiceptin. Among the chimeric peptides, MP-13 exhibited potent analgesic effects in a series of preclinical pain models with a favorable side-effect profile.
Collapse
Affiliation(s)
- Chenxi Mei
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jing Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Mingmin Huang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, the First Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
4
|
Zhao Y, Zhang Z, Gou D, Li P, Yang T, Niu Z, Simon JP, Guan X, Li X, He C, Dong S. Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects. Biomed Pharmacother 2024; 179:117389. [PMID: 39243426 DOI: 10.1016/j.biopha.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.
Collapse
MESH Headings
- Animals
- Injections, Spinal
- Chronic Pain/drug therapy
- Receptors, Opioid, mu/metabolism
- Mice
- Male
- Inflammation/drug therapy
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Mice, Inbred C57BL
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Morphine/administration & dosage
- Morphine/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Hyperalgesia/drug therapy
- Humans
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
Collapse
Affiliation(s)
- Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xuyan Guan
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xinyu Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
5
|
Wang SY, Zhang YZ, Liu XH, Guo XC, Wang XF, Wang JR, Liu BJ, Han FT, Zhang Y, Wang CL. BNT12, a novel hybrid peptide of opioid and neurotensin pharmacophores, produces potent central antinociception with limited side effects. Eur J Pharmacol 2024; 978:176775. [PMID: 38925288 DOI: 10.1016/j.ejphar.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by μ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.
Collapse
Affiliation(s)
- Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | | | - Jia-Ran Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Bing-Jie Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
6
|
Wu B, Cheng S, Liu F, Wei J, Liu Y, Qian T, Ding J, Xu B, Wei J. Novel chimeric peptides based on endomorphins and ghrelin receptor antagonist produced supraspinal antinociceptive effects with reduced acute tolerance in mice. Biochimie 2024:S0300-9084(24)00198-6. [PMID: 39147011 DOI: 10.1016/j.biochi.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
It is widely recognized that developing bi- or multifunctional opioid compounds could offer a valuable approach to pain management with fewer side effects compared to single-target compounds. In this study, we designed and characterized two novel chimeric peptides, EM-1-DLS and EM-2-DLS, incorporating endomorphins (EMs) and the ghrelin receptor antagonist [D-Lys3]-GHRP-6 (DLS). Functional assays demonstrated that EM-1-DLS and EM-2-DLS acted as κ-opioid receptor (κ-OR)-preferring agonists, weak μ-opioid receptors (μ-OR) and ghrelin receptor (GHSR) agonists. Upon intracerebroventricular (i.c.v.) administration in mice, both EM-1-DLS and EM-2-DLS exhibited dose- and time-dependent antinociceptive effects in the tail withdrawal test. EM-1-DLS demonstrated the highest antinociceptive potency among the peptides, with an ED50 approximately 8-fold greater than EM-1, while EM-2-DLS showed comparable effects to EM-2. The antinociceptive actions of EM-1-DLS involved activation of GHS-R1α, μ-OR, and κ-OR, whereas EM-2-DLS acted via GHS-R1α, δ-OR, and κ-OR pathways. Additionally, acute antinociceptive tolerance was investigated, revealing that EM-1-DLS induced a tolerance ratio of 2.33-fold, significantly lower than the 5.19-fold ratio induced by EM-1. Cross-tolerance ratios between the chimeric peptides and EMs ranged from 0.92 to 1.76, indicating reduced tolerance compared to EMs alone. These findings highlight the potential of these chimeric peptides to mitigate pain with diminished tolerance development, suggesting a promising strategy for the development of new analgesic therapies with improved safety profiles.
Collapse
Affiliation(s)
- Bing Wu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Songxia Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Fuyan Liu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China; Department of Anatomy, Basic Medical Teaching and Research Section of Nanchang Health School, Nanchang, Jiangxi Province, 330006, PR China
| | - Jia Wei
- Department of Gynaecology and Obstetrics, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Cheng Du, Sichuan Province, 610017, PR China
| | - Yongling Liu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Teng Qian
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Jiali Ding
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, PR China.
| | - Jie Wei
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China.
| |
Collapse
|
7
|
Chen D, Zhang M, Zhang Q, Wu S, Yu B, Zhang X, Hu X, Zhang S, Yang Z, Kuang J, Xu B, Fang Q. The blockade of neuropeptide FF receptor 1 and 2 differentially contributed to the modulating effects on fentanyl-induced analgesia and hyperalgesia in mice. Eur J Pharmacol 2024; 969:176457. [PMID: 38395375 DOI: 10.1016/j.ejphar.2024.176457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Neuropeptide FF (NPFF) plays a critical role in various physiological processes through the activation of neuropeptide FF receptor 1 and 2 (NPFFR1 and NPFFR2). Numerous evidence has indicated that NPFF exhibits opposite opioid-modulating effects on opioid-induced analgesia after supraspinal and spinal administrations, while the detailed role of NPFFR1 and NPFFR2 remains unclear. In this study, we employed pharmacological and genetic inhibition of NPFFR to investigate the modulating roles of central NPFFR1 and NPFFR2 in opioid-induced analgesia and hyperalgesia, using a male mouse model of acute fentanyl-induced analgesia and secondary hyperalgesia. Our findings revealed that intrathecal (i.t.) injection of the nonselective NPFFR antagonist RF9 significantly enhanced fentanyl-induced analgesia, whereas intracerebroventricular (i.c.v.) injection did not show the same effect. Moreover, NPFFR2 deficient (npffr2-/-) mice exhibited stronger analgesic responses to fentanyl compared to wild type (WT) or NPFFR1 knockout (npffr1-/-) mice. Intrathecal injection of RF9 in npffr1-/- mice also significantly enhanced fentanyl-induced analgesia. These results indicate a crucial role of spinal NPFFR2 in the enhancement of opioid analgesia. Contrastingly, hyperalgesia induced by fentanyl was markedly reversed in npffr1-/- mice but remained unaffected in npffr2-/- mice. Similarly, i.c.v. injection of the selective NPFFR1 antagonist RF3286 effectively prevented fentanyl-induced hyperalgesia in WT or npffr2-/- mice. Notably, co-administration of i.c.v. RF3286 and i.t. RF9 augmented fentanyl-induced analgesia while reducing hyperalgesia. Collectively, these findings highlight the modulating effects of blocking spinal NPFFR2 and supraspinal NPFFR1 on fentanyl-induced analgesia and hyperalgesia, respectively, which shed a light on understanding the pharmacological function of NPFF system in future studies.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junzhe Kuang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
8
|
Zhang YZ, Wang SY, Guo XC, Liu XH, Wang XF, Wang MM, Qiu TT, Han FT, Zhang Y, Wang CL. Novel endomorphin analogues CEMR-1 and CEMR-2 produce potent and long-lasting antinociception with a favourable side effect profile at the spinal level. Br J Pharmacol 2024; 181:1268-1289. [PMID: 37990825 DOI: 10.1111/bph.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endomorphins have shown great promise as pharmaceutics for the treatment of pain. We have previously confirmed that novel endomorphin analogues CEMR-1 and CEMR-2 behaved as potent μ agonists and displayed potent antinociceptive activities at the supraspinal and peripheral levels. The present study was undertaken to evaluate the antinociceptive properties of CEMR-1 and CEMR-2 following intrathecal (i.t.) administration. Furthermore, their antinociceptive tolerance and opioid-like side effects were also determined. EXPERIMENTAL APPROACH The spinal antinociceptive effects of CEMR-1 and CEMR-2 were determined in a series of pain models, including acute radiant heat paw withdrawal test, spared nerve injury-induced neuropathic pain, complete Freund's adjuvant-induced inflammatory pain, visceral pain and formalin pain. Antinociceptive tolerance was evaluated in radiant heat paw withdrawal test. KEY RESULTS Spinal administration of CEMR-1 and CEMR-2 produced potent and prolonged antinociceptive effects in acute pain. CEMR-1 and CEMR-2 may produce their antinociception through distinct μ receptor subtypes. These two analogues also exhibited significant analgesic activities in neuropathic, inflammatory, visceral and formalin pain at the spinal level. It is noteworthy that CEMR-1 showed non-tolerance-forming analgesic properties, while CEMR-2 exhibited substantially reduced antinociceptive tolerance. Furthermore, both analogues displayed no or reduced side effects on conditioned place preference response, physical dependence, locomotor activity and gastrointestinal transit. CONCLUSIONS AND IMPLICATIONS The present investigation demonstrated that CEMR-1 and CEMR-2 displayed potent and long-lasting antinociception with a favourable side effect profile at the spinal level. Therefore, CEMR-1 and CEMR-2 might serve as promising analgesic compounds with minimal opioid-like side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | | | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ting-Ting Qiu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| |
Collapse
|
9
|
Zhang Q, Xu B, Chen D, Wu S, Hu X, Zhang X, Yu B, Zhang S, Yang Z, Zhang M, Fang Q. Structure-Activity Relationships of a Novel Cyclic Hexapeptide That Exhibits Multifunctional Opioid Agonism and Produces Potent Antinociceptive Activity. J Med Chem 2024; 67:272-288. [PMID: 38118143 DOI: 10.1021/acs.jmedchem.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The cyclic peptide c[d-Lys2, Asp5]-DN-9 has recently been identified as a multifunctional opioid/neuropeptide FF receptor agonist, displaying potent analgesic activity with reduced side effects. This study utilized Tyr-c[d-Lys-Gly-Phe-Asp]-d-Pro-NH2 (0), a cyclic hexapeptide derived from the opioid pharmacophore of c[d-Lys2, Asp5]-DN-9, as a chemical template. We designed, synthesized, and characterized 22 analogs of 0 with a single amino acid substitution to investigate its structure-activity relationship. Most of these cyclic hexapeptide analogs exhibited multifunctional activity at μ and δ opioid receptors (MOR and DOR, respectively) and produced antinociceptive effects following subcutaneous administration. The lead compound analog 15 showed potent agonistic activities at the MOR, κ opioid receptor (KOR), and DOR in vitro and produced a strong and long-lasting analgesic effect through peripheral MOR and KOR in the tail-flick test. Further biological evaluation identified that analog 15 did not cause significant side effects such as tolerance, withdrawal, or reward liability.
Collapse
Affiliation(s)
- Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
10
|
Zhang M, Xu B, Li N, Zhang Q, Chen D, Wu S, Yu B, Zhang X, Hu X, Zhang S, Jing Y, Yang Z, Jiang J, Fang Q. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects. J Med Chem 2023; 66:17138-17154. [PMID: 38095323 DOI: 10.1021/acs.jmedchem.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[D-Cys2, Cys5]-DN-9 and c[D-Lys2, Asp5]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9. In vitro calcium mobilization assays revealed that most of the stapled peptides, except 3, displayed multifunctional agonistic activities at opioid and neuropeptide FF receptors. Subcutaneous administration of all stapled peptides resulted in effective and long-lasting antinociceptive activities lasting up to 360 min. Among these stapled peptides, 1a and 1b emerged as the optimized compounds, producing potent central antinociception following subcutaneous, intracerebroventricular, and oral administrations. Additionally, subcutaneous administration of 1a and 1b caused nontolerance antinociception, with limited occurrence of constipation and addiction. Furthermore, 1a was selected as the final optimized compound due to its wider safety window compared to 1b.
Collapse
Affiliation(s)
- Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yuhong Jing
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
11
|
Li N, Xiao J, Niu J, Zhang M, Shi Y, Yu B, Zhang Q, Chen D, Zhang N, Fang Q. Synergistic interaction between DAMGO-NH 2 and NOP01 in peripherally acting antinociception in two mouse models of formalin pain. Peptides 2023; 161:170943. [PMID: 36621672 DOI: 10.1016/j.peptides.2023.170943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The most commonly used opioid analgesics are limited by their severe side-effects in the clinical treatment of pain. Preliminary reports indicate that the combination of classical opioids and N/OFQ receptor (NOP) ligands may be an effective strategy to reduce unwanted side-effects and improve antinociception. But the interaction of these two receptor ligands in pain regulation at the peripheral level remains unclear. In this study, the antinociception of a designed amide analogue of the mu opioid receptor (MOP) peptide agonist DAMGO, DAMGO-NH2, and its antinociceptive interaction with the peripherally limited NOP peptide agonist NOP01 was investigated in two mouse models of formalin pain. Our results showed that DAMGO-NH2 acted as a MOP agonist in in vitro functional assays. Moreover, local subcutaneous or intraplantar injection of DAMGO-NH2 exerted dose-related antinociception in both phases of the formalin orofacial and intraplantar pain, which could be mediated by the classical opioid receptor. Peripheral but not central pretreatment with the peripherally restricted opioid antagonist naloxone methiodide inhibited local DAMGO-NH2-induced antinociception, supporting the involvement of the peripheral opioid receptor in local DAMGO-NH2-induced antinociception. Furthermore, co-administration of the inactive doses of DAMGO-NH2 and NOP01 produced effective antinociception. More importantly, isobolographic analysis indicates that the combination of DAMGO-NH2 and NOP01 elicited supra-additive antinociception in these two models of formalin pain. In addition, the combination of DAMGO-NH2 and NOP01 did not change motor function of mice in rotarod test. In conclusion, these data suggest that peripheral DAMGO-NH2 and particularly its combination therapy with NOP01 may be effective for pain management.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
12
|
Xu B, Zhang Q, Chen D, Zhang M, Zhang R, Zhao W, Qiu Y, Xu K, Xiao J, Niu J, Shi Y, Li N, Fang Q. OCP002, a Mixed Agonist of Opioid and Cannabinoid Receptors, Produces Potent Antinociception With Minimized Side Effects. Anesth Analg 2023; 136:373-386. [PMID: 36638515 DOI: 10.1213/ane.0000000000006266] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increasing attention has been attracted to the development of bifunctional compounds to minimize the side effects of opioid analgesics. Pharmacological studies have verified the functional interaction between opioid and cannabinoid systems in pain management, suggesting that coactivation of the opioid and cannabinoid receptors may provide synergistic analgesia with fewer adverse reactions. Herein, we developed and characterized a novel bifunctional compound containing the pharmacophores of the mu-opioid receptor agonist DALDA and the cannabinoid peptide VD-Hpα-NH2, named OCP002. METHODS The opioid and cannabinoid agonistic activities of OCP002 were investigated in calcium mobilization and western blotting assays, respectively. Moreover, the central and peripheral antinociceptive effects of OCP002 were evaluated in mouse preclinical models of tail-flick test, carrageenan-induced inflammatory pain, and acetic acid-induced visceral pain, respectively. Furthermore, the potential opioid and cannabinoid side effects of OCP002 were systematically investigated in mice after intracerebroventricular (ICV) and subcutaneous (SC) administrations. RESULTS OCP002 functioned as a mixed agonist toward mu-opioid, kappa-opioid, and cannabinoid CB1 receptors in vitro. ICV and SC injections of OCP002 produced dose-dependent antinociception in mouse models of nociceptive (the median effective dose [ED50] values with 95% confidence interval [CI] are 0.14 [0.12-0.15] nmol and 0.32 [0.29-0.35] μmol/kg for ICV and SC injections, respectively), inflammatory (mechanical stimulation: ED50 values [95% CI] are 0.76 [0.64-0.90] nmol and 1.23 [1.10-1.38] μmol/kg for ICV and SC injections, respectively; thermal stimulation: ED50 values [95% CI] are 0.13 [0.10-0.17] nmol and 0.23 [0.08-0.40] μmol/kg for ICV and SC injections, respectively), and visceral pain (ED50 values [95% CI] are 0.0069 [0.0050-0.0092] nmol and 1.47 [1.13-1.86] μmol/kg for ICV and SC injections, respectively) via opioid and cannabinoid receptors. Encouragingly, OCP002 cannot cross the blood-brain barrier and exerted nontolerance-forming analgesia over 6-day treatment at both supraspinal and peripheral levels. Consistent with these behavioral results, repeated OCP002 administration did not elicit microglial hypertrophy and proliferation, the typical features of opioid-induced tolerance, in the spinal cord. Furthermore, at the effective analgesic doses, SC OCP002 exhibited minimized opioid and cannabinoid side effects on motor performance, body temperature, gastric motility, physical and psychological dependence, as well as sedation in mice. CONCLUSIONS This study demonstrates that OCP002 produces potent and nontolerance-forming antinociception in mice with reduced opioid- and cannabinoid-related side effects, which strengthen the candidacy of bifunctional drugs targeting opioid/cannabinoid receptors for translational-medical development to replace or assist the traditional opioid analgesics.
Collapse
Affiliation(s)
- Biao Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Dan Chen
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Run Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- School of Medicine' Shanghai Jiao Tong University' Shanghai, China
| | - Kangtai Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yonghang Shi
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Ning Li
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Quan Fang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Zhang M, Xu B, Li N, Zhang R, Zhang Q, Chen D, Rizvi SFA, Xu K, Shi Y, Yu B, Fang Q. OFP011 Cyclic Peptide as a Multifunctional Agonist for Opioid/Neuropeptide FF Receptors with Improved Blood-Brain Barrier Penetration. ACS Chem Neurosci 2022; 13:3078-3092. [PMID: 36262082 DOI: 10.1021/acschemneuro.2c00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through in vitro cyclic adenosine monophosphate (cAMP) functional assays and in vivo behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the μ-opioid and the NPFF1 and NPFF2 receptors and partial agonistic effects at the δ- and κ-opioid in vitro, as determined via the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity via the central μ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Syed Faheem Askari Rizvi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Differential Effects of a Novel Opioid Ligand UTA1003 on Antinociceptive Tolerance and Motor Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15070789. [PMID: 35890089 PMCID: PMC9318816 DOI: 10.3390/ph15070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Analgesic tolerance is a major problem in the clinic for the maintenance of opioid-induced long-term pain relief. Opioids with mixed activity on multiple opioid receptors promise reduced antinociceptive tolerance in preclinical studies, but these compounds typically show poor bioavailability upon oral, subcutaneous, intraperitoneal, or intravenous administration. We designed UTA1003 as a novel opioid that acts as a mu (MOP) and kappa (KOP) opioid receptor agonist and a partial agonist for delta (DOP) opioid receptor. In the present study, its antinociceptive effects, as well as its effects on antinociceptive tolerance and motor behaviour, were investigated in male rats. Acute antinociception was measured before (basal) and at different time points after subcutaneous injection of UTA1003 or morphine using the tail flick and hot plate assays. Various motor behavioural activities, including horizontal locomotion, rearing, and turning, were automatically measured in an open-field arena. The antinociceptive and behavioural effects of repeated administration of UTA1003 and morphine were determined over eight days. UTA1003 induced mild antinociceptive effects after acute administration but induced no tolerance after repeated treatment. Importantly, UTA1003 co-treatment with morphine prevented antinociceptive tolerance compared to morphine alone. UTA1003 showed less motor suppression than morphine in both acute and sub-chronic treatment regimens, while it did not affect morphine-induced motor suppression or hyper-excitation. Based on these activities, we speculate that UTA1003 crosses the blood-brain barrier after subcutaneous administration and, therefore, could be developed as a lead molecule to avoid opioid-induced antinociceptive tolerance and motor suppression. Further structural modifications to improve its antinociceptive effects, toxicity profile, and ADME parameters are nevertheless required.
Collapse
|
15
|
Zhou SB, Xue M, Shi W, Fan K, Chen YX, Chen QY, Wang J, Lu JS, Li XH, Zhuo M. Enhancement of behavioral nociceptive responses but not itching responses by viewing mirror images in adult mice. Mol Pain 2022; 18:17448069221111158. [PMID: 35712881 PMCID: PMC9248046 DOI: 10.1177/17448069221111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Can mice recognize themselves in a mirror? The answer is unclear. Previous studies have reported that adult mice - when shown itch-like videos - demonstrated itch empathy. However, this was proven to be unreproducible in other studies. In the present study, we wanted to examine whether adult mice were able to recognize their mirror image. In our testing, we found that mice spent more time in the central area in an open field with mirrors surrounding the chamber than those in a normal open field. In a similar open field test with four mice placed in four directions, mice showed similar behavioral responses to those with mirrors. These results indicate that mice are able to recognize images in the mirror, however, they cannot distinguish their own mirror images from the mirror images of other mice. To repeat the experiments of itch empathy, we compared the itch responses of mice in the mirrored environment, to those without. No significant difference in itching responses was detected. Differently, in the case of chemical pain (formalin injection), animals' nociceptive responses to formalin during Phase II were significantly enhanced in the mirrored open field. A new format of heat map was developed to help the analysis of the trace of mice in the open field. Our results suggest that mice do recognize the presence of mice in the mirror, and their nociceptive - but not itch - responses are enhanced.
Collapse
Affiliation(s)
- Si-Bo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China
| | - Kexin Fan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China
| | - Yu-Xin Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Shandong, China
| | - Jinjun Wang
- Institute of Artificial Intelligence and Robotics, 12480Xi'an Jiaotong University, Xi'an, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Shandong, China.,Oujiang Laboratory(Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 528996Xi'an Jiaotong University, Xi'an, China.,Institute of Brain Research, Qingdao International Academician Park, Shandong, China.,Oujiang Laboratory(Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, ON, Canada
| |
Collapse
|
16
|
Xiao J, Niu J, Xu B, Zhang R, Zhang M, Zhang N, Xu K, Zhang Q, Chen D, Shi Y, Fang Q, Li N. NOP01, a NOP receptor agonist, produced potent and peripherally restricted antinociception in a formalin-induced mouse orofacial pain model. Neuropeptides 2022; 91:102212. [PMID: 34826712 DOI: 10.1016/j.npep.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Orofacial pain is one of the most common medical challenges. A preliminary report indicates that the NOP receptor may act as a therapeutic target in orofacial pain. Previous studies have shown that [(pF)Phe4, Aib7, Aib11, Arg14, Lys15]N/OFQ-NH2 (NOP01) functions as a potent NOP receptor peptide agonist. This work aims to investigate the antinociception of NOP01 and its possible action mechanisms in a formalin-induced mouse orofacial pain model at different levels. Our results demonstrated that local, intraperitoneal (i.p.) or intrathecal (i.t.) injection of NOP01 produced dose-related antinociception in both phases of the formalin pain, which could be inhibited by the NOP receptor antagonist but not the classical opioid receptor antagonist. Furthermore, the antinociception induced by systemic NOP01 was blocked by local but not spinal pretreatment with the NOP receptor antagonist, suggesting the involvement of the peripheral NOP receptor in NOP01-induced systemic antinociception. Moreover, local injection of NOP01 markedly suppressed the expression of c-Fos protein induced by formalin in ipsilateral trigeminal ganglion (TG) neurons. In conclusion, this work suggests that NOP01 exerts significant antinociception on orofacial pain at both peripheral and spinal levels via the NOP receptor. Notably, NOP01 cannot readily penetrate the blood-brain barrier. Thus, NOP01 may behave as a potential compound for developing peripherally restricted analgesics.
Collapse
Affiliation(s)
- Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Rahman MS, Kumari S, Esfahani SH, Nozohouri S, Jayaraman S, Kinarivala N, Kocot J, Baez A, Farris D, Abbruscato TJ, Karamyan VT, Trippier PC. Discovery of First-in-Class Peptidomimetic Neurolysin Activators Possessing Enhanced Brain Penetration and Stability. J Med Chem 2021; 64:12705-12722. [PMID: 34436882 DOI: 10.1021/acs.jmedchem.1c00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidase neurolysin (Nln) is an enzyme that functions to cleave various neuropeptides. Upregulation of Nln after stroke has identified the enzyme as a critical endogenous cerebroprotective mechanism and validated target for the treatment of ischemic stroke. Overexpression of Nln in a mouse model of stroke results in dramatic improvement of stroke outcomes, while pharmacological inhibition aggravates them. Activation of Nln has therefore emerged as an intriguing target for drug discovery efforts for ischemic stroke. Herein, we report the discovery and hit-to-lead optimization of first-in-class Nln activators based on histidine-containing dipeptide hits identified from a virtual screen. Adopting a peptidomimetic approach provided lead compounds that retain the pharmacophoric histidine moiety and possess single-digit micromolar potency over 40-fold greater than the hit scaffolds. These compounds exhibit 5-fold increased brain penetration, significant selectivity over highly homologous peptidases, greater than 65-fold increase in mouse brain stability, and 'drug-like' fraction unbound in the brain.
Collapse
Affiliation(s)
- Md Shafikur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Andrew Baez
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Delaney Farris
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Zhou J, Zhao L, Wei S, Wang Y, Zhang X, Ma M, Wang K, Liu X, Wang R. Contribution of the μ opioid receptor and enkephalin to the antinociceptive actions of endomorphin-1 analogs with unnatural amino acid modifications in the spinal cord. Peptides 2021; 141:170543. [PMID: 33794284 DOI: 10.1016/j.peptides.2021.170543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/20/2023]
Abstract
Endomorphin analogs containing unnatural amino acids have demonstrated potent analgesic effects in our previous studies. In the present study, the differences in antinociception and the mechanisms thereof for analogs 1-3 administered intracerebroventricularly and intrathecally were explored. All analogs at different routes of administration produced potent analgesia compared to the parent peptide endomorphin-1. Multiple antagonists and antibodies were used to explore the mechanisms of action of these analogs, and it was inferred that analogs 1-3 stimulated the μ opioid receptor to induce antinociception. Moreover, the antibody data suggested that analog 2 may induce the release of immunoreactive [Leu5]-enkephaline and [Met5]-enkephaline to produce a secondary component of antinociception at the spinal level and analog 3 may stimulate the the release of immunoreactive [Met5]-enkephaline at the spinal level. Finally, analogs 2 and 3 produced no acute tolerance in the spinal cord. We hypothesize that the unique characteristics of the endomorphin analogs result from their capacities to stimulate the release of endogenous antinociceptive substances.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Long Zhao
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuang Wei
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xianghui Zhang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Mengtao Ma
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Kairong Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
20
|
Xing Y, Liu Y, Deng M, Wang HP, Abdul M, Zhang FF, Zhang Z, Cao JL. The synergistic effects of opioid and neuropeptide B/W in rat acute inflammatory and neuropathic pain models. Eur J Pharmacol 2021; 898:173979. [PMID: 33639195 DOI: 10.1016/j.ejphar.2021.173979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
The use of morphine is controversial due to the incidence of rewarding behavior, respiratory depression, and tolerance, leading to increased drug dose requirements, advancing to morphine addiction. To overcome these barriers, strategies have been taken to combine morphine with other analgesics. Neuropeptide B23 and neuropeptide W23 (NPB23 and NPW23) are commonly used to relieve inflammatory pain and neuropathic pain. As NPB23 and NPW23 system shares similar anatomical basis with opioid system at least in the spinal cord we hypothesized that NPB23 or NPW23 and morphine may synergistically relieve inflammatory pain and neuropathic pain. To test this hypothesis, we demonstrated that μ opioid receptor and NPBW1 receptor (receptor of NPB23 and NPW23) are colocalized in the superficial dorsal horn of the spinal cord. Secondly, co-administration of morphine witheitherNPB23 or NPW23 synergistically attenuated inflammatory and neuropathic pain. Furthermore, either NPB23 or NPW23 significantly reduced morphine-induced conditioned place preference (CPP) and constipation. We also found that phosphorylation of extracellular-regulated protein kinase (ERK1/2) following morphine was profoundly potentiated by the application of NPB23 or NPW23. Hence, combination of morphine with either NPB23 or NPW23 reduced dose of morphine required for pain relief in inflammatory and neuropathic pain, while effectively prevented some side-effects of morphine.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Formaldehyde
- HEK293 Cells
- Humans
- Male
- Mitogen-Activated Protein Kinases/metabolism
- Neuropeptides/chemical synthesis
- Neuropeptides/pharmacology
- Neuropeptides/therapeutic use
- Nociceptive Pain/chemically induced
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Nociceptive Pain/prevention & control
- Pain Threshold/drug effects
- Phosphorylation
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Sciatica/metabolism
- Sciatica/physiopathology
- Sciatica/prevention & control
- Spinal Cord Dorsal Horn/drug effects
- Spinal Cord Dorsal Horn/metabolism
- Spinal Cord Dorsal Horn/physiopathology
- Rats
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mengqiu Deng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hui-Ping Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mannan Abdul
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
21
|
He C, Wang X, Zhang J, Wang H, Zhao Y, Shah JN, Ma C, Li H, Su W, Zhang Z, Chen S, Zhou L, Dong S. MCRT, a multifunctional ligand of opioid and neuropeptide FF receptors, attenuates neuropathic pain in spared nerve injury model. Basic Clin Pharmacol Toxicol 2021; 128:731-740. [PMID: 33533572 DOI: 10.1111/bcpt.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Chimeric peptide MCRT (YPFPFRTic-NH2 ) was a multifunctional ligand of opioid and neuropeptide FF (NPFF) receptors and reported to be potentially antalgic in acute tail-flick test. Here, we developed spared nerve injury (SNI) model to explore its efficacy in chronic neuropathic pain. Analgesic tolerance, opioid-induced hyperalgesia and gastrointestinal transit were measured for safety evaluation. Intracerebroventricular (i.c.v.) and intraplantar (i.pl.) injections were conducted as central and peripheral routes, respectively. Results demonstrated that MCRT alleviated neuropathic pain effectively and efficiently, with the ED50 values of 4.93 nmol/kg at the central level and 3.11 nmol/kg at the peripheral level. The antagonist blocking study verified the involvement of mu-, delta-opioid and NPFF receptors in MCRT produced anti-allodynia. Moreover, the separation of analgesia from unwanted effects was preliminarily achieved and that MCRT caused neither analgesic tolerance nor hyperalgesia after chronic i.c.v. administration, nor constipation after i.pl. administration. Notably, the local efficacy of MCRT in SNI mice was about one thousandfold higher than morphine and ten thousandfold higher than pregabalin, indicating a great promise in the future treatment of neuropathic pain.
Collapse
Affiliation(s)
- Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoli Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chan Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hailan Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenting Su
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lanxia Zhou
- The Central Laboratory, The First Hospital, Lanzhou University, Lanzhou, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Zhang M, Xu B, Li N, Liu H, Shi X, Zhang Q, Shi Y, Xu K, Xiao J, Chen D, Zhu H, Sun Y, Zhang T, Zhang R, Fang Q. Synthesis and Biological Characterization of Cyclic Disulfide-Containing Peptide Analogs of the Multifunctional Opioid/Neuropeptide FF Receptor Agonists That Produce Long-Lasting and Nontolerant Antinociception. J Med Chem 2020; 63:15709-15725. [PMID: 33271020 DOI: 10.1021/acs.jmedchem.0c01367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a previously described chimeric peptide, we reported that the multifunctional opioid/neuropeptide FF (NPFF) receptor agonist 0 (BN-9) produced antinociception for 1.5 h after supraspinal administration. Herein, four cyclic disulfide analogs containing l- and/or d-type cysteine at positions 2 and 5 were synthesized. The cyclized analogs and their linear counterparts behaved as multifunctional agonists at both opioid and NPFF receptors in vitro and produced potent analgesia without tolerance development. In comparison to 0, cyclized peptide 6 exhibited sevenfold more potent μ-opioid receptor agonistic activity in vitro. Interestingly, the cyclized analog 6 possessed an improved stability in the brain and an increased blood-brain barrier permeability compared to the parent peptide 0 and produced more potent analgesia after supraspinal or subcutaneous administration with improved duration of action of 4 h. In addition, antinociceptive tolerance of analog 6 was greatly reduced after subcutaneous injection compared to fentanyl, as was the rewarding effect, withdrawal reaction, and gastrointestinal inhibition.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
23
|
Zhang R, Xu B, Zhang Q, Chen D, Zhang M, Zhao G, Xu K, Xiao J, Zhu H, Niu J, Li N, Fang Q. Spinal administration of the multi-functional opioid/neuropeptide FF agonist BN-9 produced potent antinociception without development of tolerance and opioid-induced hyperalgesia. Eur J Pharmacol 2020; 880:173169. [PMID: 32416184 DOI: 10.1016/j.ejphar.2020.173169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Chronic opioids treatment is impeded by the development of analgesic tolerance and opioid-induced hyperalgesia. Recent studies have shown that multi-functional opioid compounds produce analgesic activities with limited side effects. We developed a novel multi-functional peptide targeting opioid and neuropeptide FF receptors named BN-9, which produced potent and non-tolerance forming antinociceptive effect after supraspinal and systemic administrations. In the present study, the analgesic properties and potential side effects of intrathecal BN-9 were investigated in a range of preclinical rodent models. In complete Freund's adjuvant-induced inflammatory pain model, intrathecal BN-9 dose-dependently produced analgesic effect via opioid receptors, and the spinal antinociceptive effect was augmented by the neuropeptide FF receptor antagonist RF9. In contrast, in plantar incision-induced postoperative pain model, BN-9 exhibited potent anti-allodynic effect via opioid receptors and, at least partially, neuropeptide FF receptors. In mouse models of acetic acid-induced visceral pain and formalin pain, BN-9-induced spinal antinociception was mainly mediated by opioid receptors, independent of neuropeptide FF receptors. Furthermore, at the spinal level, chronic treatments with BN-9 did not lead to analgesic tolerance and cross-tolerance to morphine. Moreover, opioid-induced hyperalgesia was observed after repeated administration of morphine, but not BN-9. Taken together, our present study suggests that intrathecal BN-9 produces potent and non-tolerance forming antinociception, and does not cause opioid-induced hyperalgesia. Thus, BN-9 might serve as a promising lead compound in the development of multi-functional opioid analgesics with minimized side effects.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Guanghai Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
24
|
Nguyen T, Marusich J, Li JX, Zhang Y. Neuropeptide FF and Its Receptors: Therapeutic Applications and Ligand Development. J Med Chem 2020; 63:12387-12402. [PMID: 32673481 DOI: 10.1021/acs.jmedchem.0c00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endogenous neuropeptide FF (NPFF) and its two cognate G protein-coupled receptors, Neuropeptide FF Receptors 1 and 2 (NPFFR1 and NPFFR2), represent a relatively new target system for many therapeutic applications including pain regulation, modulation of opioid side effects, drug reward, anxiety, cardiovascular conditions, and other peripheral effects. Since the cloning of NPFFR1 and NPFFR2 in 2000, significant progress has been made to understand their pharmacological roles and interactions with other receptor systems, notably the opioid receptors. A variety of NPFFR ligands with different mechanisms of action (agonists or antagonists) have been discovered although with limited subtype selectivities. Differential pharmacological effects have been observed for many of these NPFFR ligands, depending on assays/models employed and routes of administration. In this Perspective, we highlight the therapeutic potentials, current knowledge gaps, and latest updates of the development of peptidic and small molecule NPFFR ligands as tool compounds and therapeutic candidates.
Collapse
Affiliation(s)
- Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Julie Marusich
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, 3040 East Cornwallis Road, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
25
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
26
|
Zhao L, Luo K, Wang Z, Wang Y, Zhang X, Yang D, Ma M, Zhou J, Cui J, Wang J, Han CZY, Liu X, Wang R. Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications. Bioorg Med Chem 2020; 28:115438. [PMID: 32199689 DOI: 10.1016/j.bmc.2020.115438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map4]EMs. The combination of [(2-furyl)Map4]EMs with D-Arg2 or D-Cit2 yielded analogs with enhanced binding affinity to the μ-opioid receptor (MOR) and increased stability against enzymatic degradation (t1/2 > 300 min). However, the agonistic activities of these analogs toward MOR were slightly reduced. Similar to morphine, peripheral administration of the analog [D-Cit2, (2-furyl)Map4]EM-1 (10) significantly inhibited the pain behavior of mice in multiple pain models. In addition, this EM-1 analog was associated with reduced tolerance, less effect on gastrointestinal mobility, and no significant motor impairment. Compared to natural EMs, the EM analogs synthesized herein had enhanced metabolic stability, bioavailability, and analgesic properties.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Keyao Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhaojuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xianghui Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Mengtao Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaming Cui
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chao-Zhen-Yi Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
27
|
Xu B, Zhang M, Shi X, Zhang R, Chen D, Chen Y, Wang Z, Qiu Y, Zhang T, Xu K, Zhang X, Liedtke W, Wang R, Fang Q. The multifunctional peptide DN-9 produced peripherally acting antinociception in inflammatory and neuropathic pain via μ- and κ-opioid receptors. Br J Pharmacol 2019; 177:93-109. [PMID: 31444977 DOI: 10.1111/bph.14848] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Considerable effort has recently been directed at developing multifunctional opioid drugs to minimize the unwanted side effects of opioid analgesics. We have developed a novel multifunctional opioid agonist, DN-9. Here, we studied the analgesic profiles and related side effects of peripheral DN-9 in various pain models. EXPERIMENTAL APPROACH Antinociceptive effects of DN-9 were assessed in nociceptive, inflammatory, and neuropathic pain. Whole-cell patch-clamp and calcium imaging assays were used to evaluate the inhibitory effects of DN-9 to calcium current and high-K+ -induced intracellular calcium ([Ca2+ ]i ) on dorsal root ganglion (DRG) neurons respectively. Side effects of DN-9 were evaluated in antinociceptive tolerance, abuse, gastrointestinal transit, and rotarod tests. KEY RESULTS DN-9, given subcutaneously, dose-dependently produced antinociception via peripheral opioid receptors in different pain models without sex difference. In addition, DN-9 exhibited more potent ability than morphine to inhibit calcium current and high-K+ -induced [Ca2+ ]i in DRG neurons. Repeated treatment with DN-9 produced equivalent antinociception for 8 days in multiple pain models, and DN-9 also maintained potent analgesia in morphine-tolerant mice. Furthermore, chronic DN-9 administration had no apparent effect on the microglial activation of spinal cord. After subcutaneous injection, DN-9 exhibited less abuse potential than morphine, as was gastroparesis and effects on motor coordination. CONCLUSIONS AND IMPLICATIONS DN-9 produces potent analgesia with minimal side effects, which strengthen the candidacy of peripherally acting opioids with multifunctional agonistic properties to enter human studies to alleviate the current highly problematic misuse of classic opioids on a large scale.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yong Chen
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
28
|
Spinal DN-9, a Peptidic Multifunctional Opioid/Neuropeptide FF Agonist Produced Potent Nontolerance Forming Analgesia With Limited Side Effects. THE JOURNAL OF PAIN 2019; 21:477-493. [PMID: 31521796 DOI: 10.1016/j.jpain.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022]
Abstract
The development of multitarget opioid drugs has emerged as an attractive therapeutic strategy to eliminate opioid-related side effects. Our previous study developed a series of opioid and neuropeptide FF pharmacophore-containing chimeric peptides, including DN-9 (Tyr-D.Ala-Gly-NMe.Phe-Gly-Pro-Gln-Arg-Phe-NH2), which produced potent nontolerance forming analgesia at the supraspinal level. In the present study, the antinociceptive effects of DN-9 in a series of preclinical pain models and the potential side-effects were investigated at the spinal level in mice. In the tail-flick test, intrathecal injection of DN-9 produced potent analgesia with an ED50 value at 1.33 pmol, and the spinal antinociception of DN-9 was mainly mediated by μ- and κ-opioid receptors. In addition, DN-9-induced spinal antinociception was augmented by the neuropeptide FF receptors antagonist. Furthermore, DN-9 could decrease both the frequency and amplitude of sEPSCs in lamina IIo neurons of the spinal cord, which were mediated by opioid receptors. In contrast to morphine, chronic intrathecal treatments with DN-9 did not induce analgesic tolerance, c-Fos expression or microglial activation. Intrathecal injection of DN-9 showed potent analgesia with antinociceptive ED50 values between .66 and 55.04 pmol in different pain models, including the formalin test, acetic acid-induced writhing test, carrageenan-induced inflammatory pain and neuropathic pain. Moreover, DN-9 did not show side effects in locomotor function and coordination, gastrointestinal transit inhibition, the cardiovascular system, and body temperature regulation at antinociceptive doses. Taken together, the present study showed DN-9 produced effective, nontolerance forming analgesia with reduced side effects at the spinal level. DN-9 might be a promising compound for developing multifunctional opioid analgesics with limited adverse effects. PERSPECTIVE: This article presents the potent and nontolerance forming analgesia effects of DN-9 in a series of preclinical pain models with less opioid related adverse effects at the spinal level in mice. This study also demonstrates that DN-9 has translational potential into an intrathecal analgesic.
Collapse
|
29
|
A bifunctional-biased mu-opioid agonist-neuropeptide FF receptor antagonist as analgesic with improved acute and chronic side effects. Pain 2019; 159:1705-1718. [PMID: 29708942 DOI: 10.1097/j.pain.0000000000001262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Opioid analgesics, such as morphine, oxycodone, and fentanyl, are the cornerstones for treating moderate to severe pain. However, on chronic administration, their efficiency is limited by prominent side effects such as analgesic tolerance and dependence liability. Neuropeptide FF (NPFF) and its receptors (NPFF1R and NPFF2R) are recognized as an important pronociceptive system involved in opioid-induced hyperalgesia and analgesic tolerance. In this article, we report the design of multitarget peptidomimetic compounds that show high-affinity binding to the mu-opioid receptor (MOPr) and NPFFRs. In vitro characterization of these compounds led to identification of KGFF03 and KGFF09 as G-protein-biased MOPr agonists with full agonist or antagonist activity at NPFFRs, respectively. In agreement with their biased MOPr agonism, KGFF03/09 showed reduced respiratory depression in mice, as compared to the unbiased parent opioid agonist KGOP01. Chronic subcutaneous administration of KGOP01 and KGFF03 in mice rapidly induced hyperalgesia and analgesic tolerance, effects that were not observed on chronic treatment with KGFF09. This favorable profile was further confirmed in a model of persistent inflammatory pain. In addition, we showed that KGFF09 induced less physical dependence compared with KGOP01 and KGFF03. Altogether, our data establish that combining, within a single molecule, the G-protein-biased MOPr agonism and NPFFR antagonism have beneficial effects on both acute and chronic side effects of conventional opioid analgesics. This strategy can lead to the development of novel and potent antinociceptive drugs with limited side effects on acute and chronic administration.
Collapse
|
30
|
Discovery of two novel branched peptidomimetics containing endomorphin-2 and RF9 pharmacophores: Synthesis and neuropharmacological evaluation. Bioorg Med Chem 2019; 27:630-643. [DOI: 10.1016/j.bmc.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 11/23/2022]
|
31
|
Zhang T, Zhao W, Zhang M, Xu B, Shi X, Zhang Q, Guo Y, Xiao J, Chen D, Zheng T, Fang Q. Analgesic activities of the mixed opioid and NPFF receptors agonist DN-9 in a mouse model of formalin-induced orofacial inflammatory pain. Peptides 2018; 110:30-39. [PMID: 30391423 DOI: 10.1016/j.peptides.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
Orofacial pain is one of the most common pain conditions and compromises the quality of life of the sufferer. Several studies have shown that opioid agonists produced significant analgesia in the orofacial pain, and combination of opioids with drugs belonging to other classes induced synergism in the orofacial pain. However, combination therapy of different analgesic drugs improves the risk of drug-drug interactions. Against this background, we sought to investigate the analgesic effects of the multi-functional opioid peptide DN-9, a mixed opioid and NPFF receptors agonist that produced robust analgesia in acute and inflammatory pain models, on formalin-induced orofacial pain. Our results showed that formalin injection caused significant spontaneous pain behaviors and increased the expressions of the mu-opioid receptor, c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) in the ipsilateral trigeminal ganglion (TG). In mice pretreated with DN-9, there was a significant reduction in nociceptive behaviors, which was selectively mediated by the mu- and kappa-opioid receptors, independently of the NPFF system. Four hours after formalin injection, the level of c-Fos immunoreactivity in the ipsilateral TG neurons was much lower in mice pretreated with DN-9 or morphine. In addition, DN-9 exhibited a significant inhibition in the expression of p-ERK1/2, which was reversed by the selective antagonists of the mu- and kappa-opioid receptors. In conclusion, our present results demonstrate that central administration of DN-9 produces potential antinociceptive effects via the mu- and kappa-opioid receptors, independently of the NPFF system, and this antinociceptive action is tightly linked with the intracellular ERK activation in TG neurons.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Yuanyuan Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Li N, Han ZL, Xu B, Zhang MN, Zhang T, Shi XR, Zhao WD, Guo YY, Zhang QQ, Fang Q. Systemic administration of the bifunctional opioid/neuropeptide FF receptors agonist BN-9 produced peripheral antinociception in preclinical mouse models of pain. Eur J Pharmacol 2018; 837:53-63. [DOI: 10.1016/j.ejphar.2018.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 01/10/2023]
|
33
|
Chen C, Xu B, Shi X, Zhang M, Zhang Q, Zhang T, Zhao W, Zhang R, Wang Z, Li N, Fang Q. GpTx-1 and [Ala 5 , Phe 6 , Leu 26 , Arg 28 ]GpTx-1, two peptide Na V 1.7 inhibitors: analgesic and tolerance properties at the spinal level. Br J Pharmacol 2018; 175:3911-3927. [PMID: 30076786 DOI: 10.1111/bph.14461] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The voltage-gated sodium channel NaV 1.7 is considered a therapeutic target for pain treatment based on human genetic evidence. GpTx-1 and its potent analogue [Ala5 , Phe6 , Leu26 , Arg28 ]GpTx-1 (GpTx-1-71) were recently characterized as NaV 1.7 inhibitors in vitro. Furthermore, the present work was conducted to investigate the analgesic properties of these two peptides in different pain models after spinal administration. EXPERIMENTAL APPROACH The antinociceptive activities of both GpTx-1 and GpTx-1-71 were investigated in mouse models of acute, visceral, inflammatory and neuropathic pain. Furthermore, the side effects of GpTx-1 and GpTx-1-71 were evaluated in rotarod, antinociceptive tolerance, acute hyperlocomotion and gastrointestinal transit tests. KEY RESULTS The i.t. administration of both GpTx-1 and GpTx-1-71 dose-dependently produced powerful antinociception in the different pain models. This effect was attenuated by the opioid receptor antagonist naloxone, suggesting the involvement of the opioid system. In this study, repeated administration of these two_peptides produced spinal analgesia without a loss of potency over 8 days in mouse models of acute, inflammatory and neuropathic pain. Moreover, spinal administration of GpTx-1 and GpTx-1-71 did not induce significant effects on motor coordination, evoke acute hyperlocomotion or increase gastrointestinal transit time. CONCLUSIONS AND IMPLICATIONS Our data indicate that the NaV 1.7 peptide inhibitors GpTx-1 and GpTx-1-71 produce powerful, nontolerance-forming analgesia in preclinical pain models, which might be dependent on the endogenous opioid system. In addition, at the spinal level, the limited side effects imply that these NaV 1.7 peptide inhibitors could be potentially developed as GpTx-1-based drugs for pain relief.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Heteromerization of μ-opioid receptor and cholecystokinin B receptor through the third transmembrane domain of the μ-opioid receptor contributes to the anti-opioid effects of cholecystokinin octapeptide. Exp Mol Med 2018; 50:1-16. [PMID: 29780163 PMCID: PMC5960647 DOI: 10.1038/s12276-018-0090-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 01/21/2018] [Accepted: 03/06/2018] [Indexed: 11/08/2022] Open
Abstract
Activation of the cholecystokinin type B receptor (CCKBR) by cholecystokinin octapeptide (CCK-8) inhibits opioid analgesia. Chronic opiate treatment leads to an increase in the CCK-8 concentration and thus enhances the antagonism of CCK-8 against opioid analgesia; the underlying molecular mechanisms remain of great interest. In the present study, we validated the colocalization of the μ-opioid receptor (MOR) and CCKBR in pain signal transmission-related spinal cord dorsal horn and dorsal root ganglion neurons of rats. Co-immunoprecipitation (Co-IP) and fluorescence lifetime-imaging-microscopy-based fluorescence resonance energy transfer (FLIM-FRET) assays showed that MOR heteromerized with CCKBR directly in transfected HEK293 cells. Combined with MOR mutant construction, the third transmembrane domain of MOR (TM3MOR) was demonstrated to participate in heteromerization with CCKBR. Receptor ligand binding, ERK phosphorylation and cAMP assays showed that MOR heteromerization with CCKBR weakened the activity of MOR. A cell-penetrating interfering peptide consisting of TM3MOR and TAT (a transactivator of HIV-1) sequences from the N terminal to the C terminal disrupted the MOR-CCKBR interaction and restored the activity of MOR in transfected HEK293 cells. Furthermore, intrathecal application of the TM3MOR-TAT peptide alleviated CCK-8-injection-induced antagonism to morphine analgesia in rats. These results suggest a new molecular mechanism for CCK-8 antagonism to opioid analgesia in terms of G-protein-coupled receptor (GPCR) interaction through direct heteromerization. Our study may provide a potential strategy for pain management with opioid analgesics.
Collapse
|
35
|
Wang P, Zheng T, Zhang M, Xu B, Zhang R, Zhang T, Zhao W, Shi X, Zhang Q, Fang Q. Antinociceptive effects of the endogenous cannabinoid peptide agonist VD-hemopressin(β) in mice. Brain Res Bull 2018; 139:48-55. [DOI: 10.1016/j.brainresbull.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
36
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
37
|
Zheng T, Zhang R, Zhang T, Zhang MN, Xu B, Song JJ, Li N, Tang HH, Wang P, Wang R, Fang Q. CB 1 cannabinoid receptor agonist mouse VD-hemopressin(α) produced supraspinal analgesic activity in the preclinical models of pain. Brain Res 2017; 1680:155-164. [PMID: 29274880 DOI: 10.1016/j.brainres.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/15/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
Abstract
Mouse VD-hemopressin(α) (VD-Hpα) is an undecapeptide that selectively activates CB1 cannabinoid receptor in in vitro functional tests, and exerts CB1-mediated central antinociception in the mouse tail-flick assay. The aim of the present study was to further investigate the analgesic properties of supraspinal mouse VD-Hpα in a range of preclinical pain models. Our results indicated that the classical cannabinoid agonist WIN 55,212-2 produced supraspinal analgesia in preclinical pain models, which was selectively antagonized by the CB1 antagonist/inverse agonist AM251, but not by the CB2 antagonist AM630. In contrast, in post-operative pain model and phase I of formalin test, intracerebroventricular administration of mouse VD-Hpα induced dose-related analgesia in mice, which were markedly reduced by pretreatment with the CB1 neutral antagonist AM4113, but not AM251, AM630 and the selective antagonists of opioid and Transient Receptor Potential Vanilloid Type 1 (TRPV1) receptors. Furthermore, in the acetic acid-induced visceral pain model, supraspinal administration of mouse VD-Hpα dose-dependently produced analgesic activities and the effects were significantly antagonized by both AM4113 and the TRPV1 receptor antagonist SB366791, but not AM251, AM630 and naloxone. In addition, central injection of mouse VD-Hpα did not have significant effect in phase II of formalin test. Taken together, the present work suggests that the CB1 receptor peptidic agonist mouse VD-Hpα produces supraspinal analgesia in preclinical pain models via a novel CB1 receptor-mediated mechanism, in a manner pharmacologically dissociable from WIN 55,212-2. In addition, TRPV1 receptor might also be involved in mouse VD-Hpα-induced analgesia in a visceral pain model.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Pei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
38
|
Orai1 Plays a Crucial Role in Central Sensitization by Modulating Neuronal Excitability. J Neurosci 2017; 38:887-900. [PMID: 29229703 DOI: 10.1523/jneurosci.3007-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear. Store-operated calcium channels (SOCs) mediate important calcium signals in nonexcitable and excitable cells. SOCs have been implicated in a wide variety of human pathophysiological conditions, including immunodeficiency, occlusive vascular diseases, and cancer. However, the role of SOCs in CNS disorders has been relatively unexplored. Orai1, a key component of SOCs, is expressed in the human and rodent spinal cord dorsal horn, but its functional significance in dorsal horn neurons is poorly understood. Here we sought to explore a potential role of Orai1 in the modulation of neuronal excitability and A-type potassium channels involved in pain plasticity. Using both male and female Orai1 knock-out mice, we found that activation of Orai1 increased neuronal excitability and reduced A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway in dorsal horn neurons. Orai1 deficiency significantly decreased acute pain induced by noxious stimuli, nearly eliminated the second phase of formalin-induced nociceptive response, markedly attenuated carrageenan-induced ipsilateral pain hypersensitivity and abolished carrageenan-induced contralateral mechanical allodynia. Consistently, carrageenan-induced increase in neuronal excitability was abolished in the dorsal horn from Orai1 mutant mice. These findings uncover a novel signaling pathway involved in the pain process and central sensitization. Our study also reveals a novel link among Orai1, ERK, A-type potassium channels, and neuronal excitability.SIGNIFICANCE STATEMENT Orai1 is a key component of store-operated calcium channels (SOCs) in many cell types. It has been implicated in such pathological conditions as immunodeficiency, autoimmunity, and cancer. However, the role of Orai1 in CNS disorders remains poorly understood. The functional significance of Orai1 in neurons is elusive. Here we demonstrate that activation of Orai1 modulates neuronal excitability and Kv4-containing A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway. Genetic knock-out of Orai1 nearly eliminates the second phase of formalin-induced pain and markedly attenuates carrageenan-induced pain hypersensitivity and neuronal excitability. These findings reveal a novel link between Orai1 and neuronal excitability and advance our understanding of central sensitization.
Collapse
|
39
|
Zhang R, Xu B, Zhang MN, Zhang T, Wang ZL, Zhao G, Zhao GH, Li N, Fang Q, Wang R. Peripheral and central sites of action for anti-allodynic activity induced by the bifunctional opioid/NPFF receptors agonist BN-9 in inflammatory pain model. Eur J Pharmacol 2017; 813:122-129. [DOI: 10.1016/j.ejphar.2017.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
40
|
Morphine dosing strategy plays a key role in the generation and duration of the produced antinociceptive tolerance. Neuropharmacology 2017; 121:158-166. [PMID: 28450061 DOI: 10.1016/j.neuropharm.2017.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022]
Abstract
Antinociceptive tolerance after repetitive administration of morphine severely limits its clinical use. Despite increased mechanistic understanding of morphine tolerance, little is known about the influence of dosing regimens in its development. We hypothesized that the starting dose of morphine, dosing frequency and dose increments, influence antinociception and the manifestation of antinociceptive tolerance in rats. Male rats were randomly divided into four groups with different intermittent starting-doses of daily morphine (b.i.d.) followed by different increments of single-dose morphine upon development of antinociceptive tolerance, for 2-3 weeks: 2.5 (b.i.d.)→5 → 10→15 mg/kg/day, 5 (b.i.d.)→10 mg/kg/day, 5 (b.i.d.)→15 mg/kg/day, 10 (b.i.d.)→20 mg/kg/day. Antinociception was assessed daily pre-treatment and at several time-points over 2 h post-administration, using tail-flick and hot-plate assays. Tolerance was defined as significant antinociceptive desensitization and was presented as significant reduction of the maximum and total antinociceptive efficacy upon morphine administration. Rats commenced on 2.5 mg/kg/day (b.i.d.) morphine developed tolerance faster than those started on 5 or 10 mg/kg/day (b.i.d.). Comparatively, higher starting and maintenance doses of morphine produced prolonged antinociception and delayed tolerance. Whereas, lower starting and maintenance doses of morphine produced less total antinociception during the course of treatment and did not delay the onset of tolerance, but require smaller dose-increments to reach antinociception after development of antinociceptive tolerance. These results suggest that morphine starting dose, dosing frequency, increments and timing determine the manifestation of antinociceptive tolerance and extent of antinociception. In addition, our results also highlight the need for generally standardized and validated assay protocols and procedures to compare different studies, as a prerequisite to translate pre-clinical results into the clinic.
Collapse
|
41
|
Wang ZL, Pan JX, Song JJ, Tang HH, Yu HP, Li XH, Li N, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. Structure-Based Optimization of Multifunctional Agonists for Opioid and Neuropeptide FF Receptors with Potent Nontolerance Forming Analgesic Activities. J Med Chem 2016; 59:10198-10208. [PMID: 27798836 DOI: 10.1021/acs.jmedchem.6b01181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zi-Long Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jia-Xin Pan
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Jing-Jing Song
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Hong-Ping Yu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Xu-Hui Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| | - Rui Wang
- Key Laboratory of Preclinical
Study for New Drugs of Gansu Province, and Institute of Physiology,
School of Basic Medical Sciences, Lanzhou University, 199 Donggang
West Road, Lanzhou, 730000, PR China
| |
Collapse
|
42
|
Li N, Han ZL, Wang ZL, Xing YH, Sun YL, Li XH, Song JJ, Zhang T, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. BN-9, a chimeric peptide with mixed opioid and neuropeptide FF receptor agonistic properties, produces nontolerance-forming antinociception in mice. Br J Pharmacol 2016; 173:1864-80. [PMID: 27018797 DOI: 10.1111/bph.13489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide FF (NPFF) behaves as an endogenous opioid-modulating peptide. In the present study, the opioid and NPFF pharmacophore-containing chimeric peptide BN-9 was synthesized and pharmacologically characterized. EXPERIMENTAL APPROACH Agonist activities of BN-9 at opioid and NPFF receptors were characterized in in vitro cAMP assays. Antinociceptive activities of BN-9 were evaluated in the mouse tail-flick and formalin tests. Furthermore, its side effects were investigated in rotarod, antinociceptive tolerance, reward and gastrointestinal transit tests. KEY RESULTS BN-9 acted as a novel multifunctional agonist at μ, δ, κ, NPFF1 and NPFF2 receptors in cAMP assays. In the tail-flick test, BN-9 produced dose-related antinociception and was approximately equipotent to morphine; this antinociception was blocked by μ and κ receptor antagonists, but not by the δ receptor antagonist. In the formalin test, supraspinal administration of BN-9 produced significant analgesia. Notably, repeated administration of BN-9 produced analgesia without loss of potency over 8 days. In contrast, repeated i.c.v. co-administration of BN-9 with the NPFF receptor antagonist RF9 produced significant antinociceptive tolerance. Furthermore, i.c.v. BN-9 induced conditioned place preference. When given by the same routes, BN-9 had a more than eightfold higher ED50 value for gastrointestinal transit inhibition compared with the ED50 values for antinociception. CONCLUSIONS AND IMPLICATIONS BN-9 produced a robust, nontolerance-forming analgesia with limited inhibition of gastrointestinal transit. As BN-9 is able to activate both opioid and NPFF systems, this provides an interesting approach for the development of novel analgesics with minimal side effects.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Lan Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yan-Hong Xing
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Long Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xu-Hui Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|