1
|
Wu Z, Mo S, Huang Z, Zheng B. Identification of Diagnostically Relevant Biomarkers in Patients with Coronary Artery Disease by Comprehensive Analysis. J Inflamm Res 2024; 17:10495-10513. [PMID: 39654862 PMCID: PMC11627109 DOI: 10.2147/jir.s494438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background Peripheral biomarkers are becoming an important method by which to monitor the progression of coronary artery disease (CAD). Not only are they minimally invasive and early detection, but they can also be used for classification and diagnosis of disease as well as prognostic assessment. Currently, this approach is still in the exploratory stage. The purpose of this research is to determine the diagnostic value and therapeutic potential of the endoplasmic reticulum stress (ERS) genes in CAD. Methods The clinical information and RNA sequence data were obtained from the GEO database and subsequently subjected to a series of optimization and visualization processes using various analytical techniques, including WGCNA, LASSO, SVM-RFE feature selection, random forest (RF), and XGBoost, as well as R software and Cytoscape. Finally, immunofluorescence was used to validate the analysis. Results We identify 6 key ERS differentially expressed genes (ERS-DEGs) (UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3) for constructing diagnostic models. They showed qualified diagnostic ability as biomarkers of CAD within training dataset (AUC = 0.803) and validation dataset (AUC = 0.776 and 0.797). Association analyses showed that peripheral immune cells, immune checkpoint genes and Human Leukocyte Antigen (HLA) genes had characteristic distributions in CAD and were closely related to specific ERS genes. Meanwhile, we found that HSPA1A may involve the MAPK signaling pathway in CAD. Conclusion We constructed an efficient diagnostic model based on 6 key ERS-DEGs and explored their regulatory networks and effects on the CAD immune microenvironment. UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3 are expected to be biomarkers for CAD.
Collapse
Affiliation(s)
- Zimin Wu
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Sisi Mo
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zuyuan Huang
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
2
|
Li R, Zhang J, Ji S, Fang J, Ji X, Zeng Y, Liu N, Wu W, Liu S. Qingre Huoxue decoction attenuates myocardial ischemia‒reperfusion injury by regulating the autophagy‒endoplasmic reticulum stress axis via FAM134B-mediated ER-phagy. Front Pharmacol 2024; 15:1447610. [PMID: 39664523 PMCID: PMC11632235 DOI: 10.3389/fphar.2024.1447610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Background Autophagy‒endoplasmic reticulum (ER) stress axis dysregulation is linked to myocardial ischemia‒reperfusion injury (MIRI), which counteracts the benefits of acute myocardial infarction (AMI) reperfusion therapy. Qingre Huoxue decoction (QRHX) improves the short- and long-term prognosis of AMI after percutaneous coronary intervention and alleviates myocardial injury in AMI rats by stimulating autophagy via the PI3K/Akt pathway. We aimed to further explore the efficacy of QRHX in treating MIRI and its regulatory relationship with FAM134B-mediated ER-phagy. Materials and methods Rats were administered different concentrations of QRHX for 2 weeks, and then MIRI was induced. Ultra-performance liquid chromatography‒tandem mass spectrometry (UPLC‒MS) was used to examine the levels of the main pharmacological metabolites of the serum of rats treated with QRHX. H9c2 cells were pretreated with QRHX-mediating serum (QRHX-MS) for 24 h before being exposed to hypoxia/reoxygenation (H/R). The mechanisms underlying the effects of QRHX-MS were further studied via rescue experiments involving FAM134B knockdown. The myocardial infarct size, cardiac function, morphology and the expression of apoptosis-, autophagy-, and ER stress-related proteins and genes were assessed. The colocalization of autophagosomes with lysosomes and the localization of proteins involved in ER-phagy or autophagic flux was examined. Results QRHX decreased the myocardial infarct size and oxidative stress, improved cardiac function and alleviated morphological changes in a dose-dependent manner in MIRI rats by promoting autophagic flux to inhibit ER stress and ER stress-related apoptosis, which was related to FAM134B-mediated ER-phagy, as revealed by autophagy analysis. UPLC‒MS analysis of QRHX-MS revealed 20 major active metabolites of QRHX-MS, including baicalin, cryptotanshinone, 3,4-dihydroxybenzaldehyde and caffeic acid. QRHX-MS attenuated H/R-induced cardiomyocyte injury and apoptosis by increasing autophagic flux to suppress ER stress and ER stress-related apoptotic protein and gene expression. When autophagic flux was inhibited or FAM134B was knocked down in H9c2 cells followed by QRHX-MS pretreatment, the protective effect of QRHX was partially reversed. Conclusion QRHX alleviates myocardial injury, apoptosis and infarct size expansion in MIRI by regulating the autophagy‒ER stress axis via FAM134B-mediated ER-phagy.
Collapse
Affiliation(s)
- Rui Li
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiechun Zhang
- Department of Intensive Care Unit, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuliang Ji
- Department of Traditional Chinese Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Junfeng Fang
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaodong Ji
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanping Zeng
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Nan Liu
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wu
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shiyi Liu
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Bai Y, Niu Z, Yang Z, Sun Y, Yan W, Wu A, Wei C. Integrated bioinformatics and machine learning algorithms reveal the unfolded protein response pathways and immune infiltration in acute myocardial infarction. J Thorac Dis 2024; 16:6496-6515. [PMID: 39552895 PMCID: PMC11565340 DOI: 10.21037/jtd-24-622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Background The unfolded protein response (UPR) is a critical biological process related to a variety of physiological functions and cardiac disease. However, the role of UPR-related genes in acute myocardial infarction (AMI) has not been well characterized. Therefore, this study aims to elucidate the mechanism and role of the UPR in the context of AMI. Methods Gene expression profiles related to AMI and UPR pathway were downloaded from the Gene Expression Omnibus database and PathCards database, respectively. Differentially expressed genes (DEGs) were identified and then functionally annotated. The random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic UPR-AMI biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the curve (AUC). A nomogram based on the feature genes was developed to predict the AMI-risk rate. Then we utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the key genes and immune microenvironment. Additionally, we performed uniform clustering of AMI samples based on the expression of UPR pathway-related genes. The weighted gene co-expression network analysis was conducted to identify the key modules in various clusters, enrichment analysis was performed for the genes existing in different modules. Results A total of 14 DEGs related to the UPR pathway were identified. Among the 14 DEGs, CEBPB, ATF3, EIF2S3, and TSPYL2 were subsequently identified as biomarkers by the LASSO and RF algorithms. A diagnostic model was constructed with these four genes, and the AUC was 0.939. The calibration curves, receiver operating characteristic (ROC) curves, and the decision curve analysis of the nomogram exhibited good performance. Furthermore, immune cell infiltration analysis revealed that four feature genes were linked with the infiltration of immune cells such as neutrophils. The cluster analysis of the AMI samples identified two distinct clusters, each with differential expression of genes related to the UPR pathway, immune cell infiltration, and inflammatory cytokine secretion. Weighted gene coexpression network analysis and enrichment analysis showed that both clusters were associated with the UPR. Conclusions Our study highlights the importance of the UPR pathway in the pathogenesis of myocardial infarction, and identifies four genes CEBPB, ATF3, EIF2S3, and TSPYL2 as diagnostic biomarkers for AMI, providing new ideas for the clinical diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zequn Niu
- Computer Science and Technology, The Open University of China, Beijing, China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weidong Yan
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhang W, Zhang M, Ma J, Yao Y, Jiang Y, Huo Q, Jin S, Ji D, Zhao Y, Liu X, Sun H, Xu C, Zhang R. MicroRNA-15b promotes cardiac ischemia injury by the inhibition of Mitofusin 2/PERK pathway. Biochem Pharmacol 2024; 226:116372. [PMID: 38885773 DOI: 10.1016/j.bcp.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiao Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Yao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qingji Huo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Saidi Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dongni Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yilin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xinqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hao Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
5
|
Yu X, Ren Z, Wang Y, Yuan G, Hu J, Song L, Pan C, Feng K, Liu Y, Shao L, Zhang L, Wang J, Zhao J, Bao N, Sun Z. Kaempferol attenuates particle-induced osteogenic impairment by regulating ER stress via the IRE1α-XBP1s pathway. J Biol Chem 2024; 300:107394. [PMID: 38768813 PMCID: PMC11223082 DOI: 10.1016/j.jbc.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are the primary causes of failure following total joint arthroplasty. Wear particle-induced osteogenic impairment is recognized as an important contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress emerging as a pivotal underlying mechanism. Hence, searching for potential therapeutic targets and agents capable of modulating ER stress in osteoblasts is crucial for preventing aseptic loosening. Kaempferol (KAE), a natural flavonol compound, has shown promising osteoprotective effects and anti-ER stress properties in diverse diseases. However, the influence of KAE on ER stress-mediated osteogenic impairment induced by wear particles remains unclear. In this study, we observed that KAE effectively relieved TiAl6V4 particles-induced osteolysis by improving osteogenesis in a mouse calvarial model. Furthermore, we demonstrated that KAE could attenuate ER stress-mediated apoptosis in osteoblasts exposed to TiAl6V4 particles, both in vitro and in vivo. Mechanistically, our results revealed that KAE mitigated ER stress-mediated apoptosis by upregulating the IRE1α-XBP1s pathway while concurrently partially inhibiting the IRE1α-regulated RIDD and JNK activation. Collectively, our findings suggest that KAE is a prospective therapeutic agent for treating wear particle-induced osteolysis and highlight the IRE1α-XBP1s pathway as a potential therapeutic target for preventing aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuxiang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guodong Yuan
- Department of Orthopedics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuqiao Liu
- Medical Information Data Bank, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longgang Shao
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinjuan Wang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
6
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
8
|
More SA, Deore RS, Pawar HD, Sharma C, Nakhate KT, Rathod SS, Ojha S, Goyal SN. CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1683. [PMID: 38338960 PMCID: PMC10855244 DOI: 10.3390/ijms25031683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-β/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.
Collapse
Affiliation(s)
- Sagar A. More
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Rucha S. Deore
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Harshal D. Pawar
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Sumit S. Rathod
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| |
Collapse
|
9
|
Liu M, Honjo M, Yamagishi R, Aihara M. Effects of Brimonidine, Omidenepag Isopropyl, and Ripasudil Ophthalmic Solutions to Protect against H 2O 2-Induced Oxidative Stress in Human Trabecular Meshwork Cells. Curr Eye Res 2023; 48:1014-1025. [PMID: 37466387 DOI: 10.1080/02713683.2023.2235892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE We investigated whether hydrogen peroxide (H2O2)-induced oxidative stress causes human trabecular meshwork (HTM) cell dysfunction observed in open angle glaucoma (OAG) in vitro, and the effects of topical glaucoma medications on oxidative stress in HTM cells. METHODS We used commercially available ophthalmic solutions of brimonidine, omidenepag isopropyl, and ripasudil in the study. HTM cells were exposed to H2O2 for 1 h, with or without glaucoma medications. We assessed cell viability and senescence via WST-1 and senescence-associated-β-galactosidase (SA-β-Gal) activity assays. After exposure to H2O2 and glaucoma medications, we evaluated changes in markers of fibrosis and stress by using real-time quantitative polymerase chain reaction (qPCR) to measure the mRNA levels of collagen type I alpha 1 chain (COL1A1), fibronectin, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), endoplasmic reticulum stress markers of C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and splicing X-box binding protein-1 (sXBP-1). RESULTS HTM cell viability decreased and SA-β-Gal activity increased significantly after exposure to H2O2. Treatment with three ophthalmic solutions attenuated these changes. Real-time qPCR revealed that H2O2 upregulated the mRNA levels of COL1A1, fibronectin, α-SMA, CHOP, GRP78, and sXBP-1, whereas it downregulated MMP-2 mRNA expression significantly. Brimonidine suppressed the upregulation of stress markers CHOP and GRP78. Additionally, omidenepag isopropyl and ripasudil decreased the upregulation of COL1A1 and sXBP-1. Furthermore, ripasudil significantly suppressed fibrotic markers fibronectin and α-SMA, compared with the other two medications. CONCLUSION In vitro, H2O2 treatment of HTM cells induced characteristic changes of OAG, such as fibrosis changes and the upregulation of stress markers. These glaucomatous changes were attenuated by additional treatments with brimonidine, omidenepag isopropyl, and ripasudil ophthalmic solutions.
Collapse
Affiliation(s)
- Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Yang Y, Lin X. Potential relationship between autophagy and ferroptosis in myocardial ischemia/reperfusion injury. Genes Dis 2023; 10:2285-2295. [PMID: 37554184 PMCID: PMC10404879 DOI: 10.1016/j.gendis.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved process involved in the degradation of long-lived proteins and excessive or dysfunctional organelles. As a pivotal cellular response, autophagy has been extensively studied and is known to be involved in various diseases. Ferroptosis is a recently discovered form of regulated cell death characterized by iron overload, leading to the accumulation of lethal levels of lipid hydroperoxides. Recently, an increasing number of studies have revealed a link between autophagy and ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) is an urgent dilemma after myocardial infarction recanalization, which is regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential relationship between autophagy and ferroptosis in MIRI remains unexplored. In this study, we briefly review the mechanisms of autophagy and ferroptosis, including their roles in MIRI. Moreover, we provide an overview of the potential crosstalk in MIRI. Clarifying the relationship between different cell death pathways may provide new ideas for the treatment of MIRI in the future.
Collapse
Affiliation(s)
- Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Anhui Medical University, Hefei, Anhui 230032, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
11
|
Yu X, Ding H, Wang D, Ren Z, Chen B, Wu Q, Yuan T, Liu Y, Zhang L, Zhao J, Sun Z. Particle-induced osteolysis is mediated by endoplasmic reticulum stress-associated osteoblast apoptosis. Chem Biol Interact 2023; 383:110686. [PMID: 37659624 DOI: 10.1016/j.cbi.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Osteoblast dysfunction plays a crucial role in periprosthetic osteolysis and aseptic loosening, and endoplasmic reticulum (ER) stress is recognized as an important causal factor of wear particle-induced osteolysis. However, the influence of ER stress on osteoblast activity during osteolysis and its underlying mechanisms remain elusive. This study aims to investigate whether ER stress is involved in the detrimental effects of wear particles on osteoblasts. Through our investigation, we observed elevated expression levels of ER stress and apoptosis markers in particle-stimulated bone specimens and osteoblasts. To probe further, we employed the ER stress inhibitor, 4-PBA, to treat particle-stimulated osteoblasts. The results revealed that 4-PBA effectively alleviated particle-induced osteoblast apoptosis and mitigated osteogenic reduction. Furthermore, our study revealed that wear particle-induced ER stress in osteoblasts coincided with mitochondrial damage, calcium overload, and oxidative stress, all of which were effectively alleviated by 4-PBA treatment. Encouragingly, 4-PBA administration also improved bone formation and attenuated osteolysis in a mouse calvarial model. In conclusion, our results demonstrate that ER stress plays a crucial role in mediating wear particle-induced osteoblast apoptosis and impaired osteogenic function. These findings underscore the critical involvement of ER stress in wear particle-induced osteolysis and highlight ER stress as a potential therapeutic target for ameliorating wear particle-induced osteogenic reduction and bone destruction.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Lei Zhang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
12
|
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:jcdd9120459. [PMID: 36547457 PMCID: PMC9782920 DOI: 10.3390/jcdd9120459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.
Collapse
|
13
|
Almutairi FM, Ullah A, Althobaiti YS, Irfan HM, Shareef U, Usman H, Ahmed S. A Review on Therapeutic Potential of Natural Phytocompounds for Stroke. Biomedicines 2022; 10:biomedicines10102566. [PMID: 36289828 PMCID: PMC9599280 DOI: 10.3390/biomedicines10102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke is a serious condition that results from an occlusion of blood vessels that leads to brain damage. Globally, it is the second highest cause of death, and deaths from strokes are higher in older people than in the young. There is a higher rate of cases in urban areas compared to rural due to lifestyle, food, and pollution. There is no effective single medicine for the treatment of stroke due to the multiple causes of strokes. Thrombolytic agents, such as alteplase, are the main treatment for thrombolysis, while multiple types of surgeries, such ascraniotomy, thrombectomy, carotid endarterectomy, and hydrocephalus, can be performed for various forms of stroke. In this review, we discuss some promising phytocompounds, such as flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside), eriodictyol, rosamirinic acid, 6″-O-succinylapigenin, and allicin, that show effectiveness against stroke. Future study paths are given, as well as suggestions for expanding the use of medicinal plants and their formulations for stroke prevention.
Collapse
Affiliation(s)
- Farooq M. Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Aman Ullah
- Saba Medical Center, Abu Dhabi P.O. Box 20316, United Arab Emirates
- Correspondence: (A.U.); (S.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | | | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Halima Usman
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Sagheer Ahmed
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (A.U.); (S.A.)
| |
Collapse
|
14
|
Kong L, Zhang Y, Ning J, Xu C, Wang Z, Yang J, Yang L. CaMKII
orchestrates endoplasmic reticulum stress and apoptosis in doxorubicin‐induced cardiotoxicity by regulating the
IRE1α
/
XBP1s
pathway. J Cell Mol Med 2022; 26:5303-5314. [PMID: 36111515 PMCID: PMC9575131 DOI: 10.1111/jcmm.17560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lingheng Kong
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Yimeng Zhang
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Jiayi Ning
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
- Department of Cardiovascular Surgery General Hospital of Northern Theatre Command Shenyang China
| | - Zhenyi Wang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
| | - Lifang Yang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| |
Collapse
|
15
|
Wang TJ, Wu ZY, Yang CH, Cao L, Wang ZZ, Cao ZY, Yu MY, Zhao MR, Zhang CF, Liu WJ, Zhao BJ, Shang XQ, Feng Y, Wang H, Deng LL, Xiao BG, Guo HY, Xiao W. Multiple Mechanistic Models Reveal the Neuroprotective Effects of Diterpene Ginkgolides against Astrocyte-Mediated Demyelination via the PAF-PAFR Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1565-1597. [PMID: 35902245 DOI: 10.1142/s0192415x22500665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.
Collapse
Affiliation(s)
- Tuan-Jie Wang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Zi-Yin Wu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Chun-Hua Yang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Liang Cao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Ze-Yu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Ming-Yang Yu
- Key Laboratory of Standardization of Chinese Medicines, Ministry of Education Institute of Chinese Materia Medica of Shanghai, University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Meng-Ru Zhao
- Key Laboratory of Standardization of Chinese Medicines, Ministry of Education Institute of Chinese Materia Medica of Shanghai, University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Chen-Feng Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Wen-Jun Liu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Bin-Jiang Zhao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| | - Xue-Qi Shang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Yu Feng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Hui Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Li-Li Deng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Bao-Guo Xiao
- Department of Neurology and National Research Center for Aging and Medicine Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Hong-Yan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, P. R. China
- CapitalBio Corporation, Beijing 102206, P. R. China
| | - Wei Xiao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, P. R. China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, P. R. China
| |
Collapse
|
16
|
Xie H, Shi Y, Zhou Y, Liu H. TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α. Mol Biol Rep 2022; 49:9181-9194. [PMID: 35857174 DOI: 10.1007/s11033-022-07744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
AIM Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6. METHODS AND RESULTS Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells. CONCLUSION TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.
Collapse
Affiliation(s)
- Huidi Xie
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Shi
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhou
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Dongzhimen Hospital, Renal Research Institute of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, No. 5, Haiyuncang Alley, Dongcheng District, 100700, Beijing, China.
| |
Collapse
|
17
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
18
|
Chinese Herbal Medicine Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4963346. [PMID: 34917158 PMCID: PMC8670943 DOI: 10.1155/2021/4963346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia/reperfusion injury is the main cause of increased mortality and disability in cardiovascular diseases. The injury involves many pathological processes, such as oxidative stress, calcium homeostasis imbalance, inflammation, and energy metabolism disorders, and these pathological stimuli can activate endoplasmic reticulum stress. In the early stage of ischemia, endoplasmic reticulum stress alleviates the injury as an adaptive survival response, but the long-term stress on endoplasmic reticulum amplifies oxidative stress, inflammation, and calcium overload to accelerate cell damage and apoptosis. Therefore, regulation of endoplasmic reticulum stress may be a mechanism to improve ischemia/reperfusion injury. Chinese herbal medicine has a long history of clinical application and unique advantages in the treatment of ischemic heart diseases. This review focuses on the effect of Chinese herbal medicine on myocardial ischemia/reperfusion injury from the perspective of regulation of endoplasmic reticulum stress.
Collapse
|
19
|
Xu XN, Jiang Y, Yan LY, Yin SY, Wang YH, Wang SB, Fang LH, Du GH. Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153687. [PMID: 34482222 DOI: 10.1016/j.phymed.2021.153687] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Aesculin (AES), an effective component of Cortex fraxini, is a hydroxycoumarin glucoside that has diverse biological properties. The nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing 3 (NLRP3) inflammasome has been heavily interwoven with the development of myocardial ischemia/reperfusion injury (MIRI). Nevertheless, it remains unclear whether AES makes a difference to the changes of the NLRP3 inflammasome in MIRI. PURPOSE We used rats that were subjected to MIRI and neonatal rat cardiomyocytes (NRCMs) that underwent oxygen-glucose deprivation/restoration (OGD/R) process to investigate what impacts AES exerts on MIRI and the NLRP3 inflammasome activation. METHODS The establishment of MIRI model in rats was conducted using the left anterior descending coronary artery ligation for 0.5 h ischemia and then untying the knot for 4 h of reperfusion. After reperfusion, AES were administered intraperitoneally using 10 and 30 mg/kg doses. We evaluated the development of reperfusion ventricular arrhythmias, hemodynamic changes, infarct size, and the biomarkers in myocardial injury. The inflammatory mediators and pyroptosis were also assessed. AES at the concentrations of 1, 3, and 10 μM were imposed on the NRCMs immediately before the restoration process. We also determined the cell viability and cell death in the NRCMs exposed to OGD/R insult. Furthermore, we also analyzed the levels of proteins that affect the NLRP3 inflammasome activation, pyroptosis, and the AKT serine/threonine kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor-kappa B (NF-κB) signaling pathway via western blotting. RESULTS We found that AES notably attenuated reperfusion arrhythmias and myocardia damage, improved the hemodynamic function, and ameliorated the inflammatory response and pyroptosis of cardiomyocytes in rats and NRCMs. Additionally, AES reduced the NLRP3 inflammasome activation in rats and NRCMs. AES also enhanced the phosphorylation of Akt and GSK3β, while suppressing the phosphorylation of NF-κB. Moreover, the allosteric Akt inhibitor, MK-2206, abolished the AES-mediated cardioprotection and the NLRP3 inflammasome suppression. CONCLUSIONS These findings indicate that AES effectively protected cardiomyocytes against MIRI by suppressing the NLRP3 inflammasome-mediated pyroptosis, which may relate to the upregulated Akt activation and disruption of the GSK3β/NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Xu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Regional inspection fourth branch of Shandong medical products administration, Yantai, Shandong Province, 264010, China
| | - Yu Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liu-Yan Yan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Su-Yue Yin
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China..
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| |
Collapse
|
20
|
Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7277966. [PMID: 34394833 PMCID: PMC8355967 DOI: 10.1155/2021/7277966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Recent progress has been made in understanding the roles and mechanisms of endoplasmic reticulum (ER) stress in the development and pathogenesis of diabetic nephropathy (DN). Hyperglycemia induces ER stress and apoptosis in renal cells. The induction of ER stress can be cytoprotective or cytotoxic. Experimental treatment of animals with ER stress inhibitors alleviated renal damage. Considering these findings, the normalization of ER stress by pharmacological agents is a promising approach to prevent or arrest DN progression. The current article reviews the mechanisms, roles, and therapeutic aspects of these findings.
Collapse
|
21
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
22
|
Qian Z, Zhu L, Li Y, Li Y, Wu Y, Fu S, Yang D. Icarrin prevents cardiomyocyte apoptosis in spontaneously hypertensive rats by inhibiting endoplasmic reticulum stress pathways. J Pharm Pharmacol 2021; 73:1023-1032. [PMID: 34018553 DOI: 10.1093/jpp/rgaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES This study aimed to explore whether icarrin (ICA) can protect cardiomyocytes from hypertension-induced damage by inhibiting endoplasmic reticulum stress (ERS). METHODS Spontaneously hypertensive rats (SHRs) were orally administered water or ICA at 10, 20 and 40 mg/kg once daily for 12 weeks, and Wistar-Kyoto (WKY) rats were used as control. Changes in the growth and blood pressure of rats were assessed. Cardiac function was determined by ultrasound and the left ventricle mass was calculated. Myocardial tissue structure was assessed by haematoxylin and eosin staining, cardiomyocyte apoptosis was observed by TUNEL staining and the expression of ERS-related proteins was determined by western blotting. RESULTS In the SHR group, blood pressure was significantly high, left ventricular function decreased and left ventricular mass index increased. Additionally, left ventricular cardiomyocyte hypertrophy, disordered myofilament arrangement and increased cardiomyocyte apoptosis were observed by histological staining. ERS-induced proteins associated with apoptosis, including GRP78, PERK, ATF-6, ATF-4, CHOP, DR5, Caspase 12, c-JUN and ASK-1 were found to be highly expressed. ICA treatment reduced blood pressure and regulated the expression of proteins induced by ERS. Cardiomyocyte apoptosis decreased and left ventricular function improved. CONCLUSIONS ICA can inhibit ERS-induced apoptosis of cardiomyocytes and protect ventricular function in SHR.
Collapse
Affiliation(s)
- Zhiqiang Qian
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Taizhou Jiangyan Hospital of TCM, Jiangyan Affiliated Hospital of Nanjing University of traditional Chinese Medicine, Taizhou, Jiangsu, China
| | - Ling Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yiqi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuting Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shu Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
23
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
24
|
Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL, Zhou J, Cao L, Wang ZZ, Zhang QC, Li M, Fan QR, Hu HF, Xiao W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 2021; 35:2727-2744. [PMID: 33452698 DOI: 10.1002/ptr.7018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to identify whether prostaglandin E2 receptor is the potential receptor/binding site for Ginkgolide A, Ginkgolide B, Ginkgolide K, and Bilobalide, the four main ingredients of the Ginkgo biloba L., leaves. Using functional assays, we identified EP4, coupled with Gs protein, as a target of Ginkgolide B. In human neuroblastoma SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion, Ginkgolide B-activated PKA, Akt, and ERK1/2 as well as Src-mediated transactivation of epidermal growth factor receptor. These resulted in downstream signaling pathways, which enhanced cell survival and inhibited apoptosis. Knockdown of EP4 prevented Ginkgolide B-mediated Src, epidermal growth factor receptor (EGFR), Akt, and ERK1/2 phosphorylation and neuroprotective effects. Moreover, Src inhibitor prevented Ginkgolide B-mediated EGFR transactivation and the downstream Akt and ERK1/2 activation, while the phosphorylation of PKA induced by Ginkgolide B was not affected, indicating Ginkgolide B might transactivate EGFR in a ligand-independent manner. EP4 knockdown in a rat middle cerebral artery occlusion (MCAO) model prevented Ginkgolide B-mediated infarct size reduction and neurological assessment improvement. At the same time, the increased expressions of p-Akt, p-ERK1/2, p-PKA, p-Src, and p-EGFR and the deceased expression of cleaved capases-3 induced by Ginkgolide B in cerebral cortex were blocked due to EP4 knockdown. In conclusion, Ginkgolide B exerts neuroprotective effects in rat MCAO model through the activation of EP4 and the downstream transactivation of EGFR.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Gui-Ping Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qiu Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shao-Bo Zong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhi-Liang Xu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Quan-Chang Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Ming Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qi-Ru Fan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Han-Fei Hu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
25
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
26
|
Tung MC, Tsai KC, Fung KM, Don MJ, Tseng TS. Characterizing the structure-activity relationships of natural products, tanshinones, reveals their mode of action in inhibiting spleen tyrosine kinase. RSC Adv 2021; 11:2453-2461. [PMID: 35424194 PMCID: PMC8693659 DOI: 10.1039/d0ra08769f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
The cytosolic non-receptor protein kinase, spleen tyrosine kinase (SYK), is an attractive drug target in autoimmune, inflammatory disorder, and cancers indications. Here, we employed pharmacophore-based drug screening combined with biochemical assay and molecular dynamics (MD) simulations to identify and characterize inhibitors targeting SYK. The built pharmacophore model, phar-TanI, successfully identified tanshinone (TanI (IC50 = 1.72 μM)) and its analogs (TanIIA (IC50 = 3.2 μM), ST32da (IC50 = 46 μM), and ST32db (IC50 = 51 μM)) which apparently attenuated the activities of SYK in vitro. Additionally, the MD simulations followed by Ligplot analyses revealed that TanI and TanIIA interfered SYK activity through binding deeply into the active site. Besides, TanI and TanIIA mainly interact with residues L377, A400, V433, M448, M450, A451, E452, L453, G454, P455, and L501, which are functional hotspots for structure-based inhibitor optimization against SYK. The structure-activity relationships (SAR) study of the identified SYK inhibitors demonstrated that the pharmacophore model, phar-TanI is reliable and precise in screening inhibitors against SYK. This study disclosed the structure-function relationships of tanshinones from Traditional Chinese Medicine (Danshen), revealing their binding site and mode of action in inhibiting SYK and provides applicability in developing new therapeutic agents.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Stomatology, Tung's MetroHarbor Hospital Taichung Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare Taipei Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare Taipei Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| |
Collapse
|
27
|
Chen S, Zhang J, Yu WB, Zhuang JC, Xiao W, Wu ZY, Xiao BG. Eomesodermin in CD4 +T cells is essential for Ginkgolide K ameliorating disease progression in experimental autoimmune encephalomyelitis. Int J Biol Sci 2021; 17:50-61. [PMID: 33390832 PMCID: PMC7757039 DOI: 10.7150/ijbs.50041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 11/05/2022] Open
Abstract
Eomesodermin (Eomes), a transcription factor, could suppress the Th17 cell differentiation and proliferation through directly binding to the promoter zone of the Rorc and Il17a gene, meanwhile the expression of Eomes is suppressed when c-Jun directly binds to its promoter zone. Ginkgolide K (1,10-dihydroxy-3,14-didehydroginkgolide, GK) is a diterpene lactone isolated from the leaves of Ginkgo biloba. A previous study indicated that GK could decrease the level of phospho JNK (c-Jun N-terminal kinase). Here, we reported the therapeutic potential of Ginkgolide K (GK) treatment to ameliorate experimental autoimmune encephalomyelitis (EAE) disease progression. Methods: EAE was induced in both wildtype and CD4-Eomes conditional knockout mice. GK was injected intraperitoneally. Disease severity, inflammation, and tissue damage were assessed by clinical evaluation, flow cytometry of mononuclear cells (MNCs), and histopathological evaluation. Dual-luciferase reporter assays were performed to measure Eomes transcription activity in vitro. The potency of GK (IC50) was determined using JNK1 Kinase Enzyme System. Results: We revealed that GK could ameliorate EAE disease progression by the inhibition of the Th17 cells. Further mechanism studies demonstrated that the level of phospho JNK was decreased and the level of Eomes in CD4+T cells was dramatically increased. This therapeutic effect of GK was almost completely interrupted in CD4-Eomes conditional knockout mice. Conclusions: These results provided the therapeutic potential of GK treatment in EAE, and further suggested that Eomes expression in CD4+T cells might be essential in this process.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurology, Huashan Hospital, Fudan University
- Department of Neurology, Fujian Medical University Union Hospital
| | - Juan Zhang
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine
| | - Wen-Bo Yu
- Department of Neurology, Huashan Hospital, Fudan University
| | - Jing-Cong Zhuang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University
| | - Wei Xiao
- Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, Fudan University
| |
Collapse
|
28
|
Li J, Xie J, Wang YZ, Gan YR, Wei L, Ding GW, Ding YH, Xie DX. Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324. Mol Med Rep 2020; 23:116. [PMID: 33300079 PMCID: PMC7723073 DOI: 10.3892/mmr.2020.11755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) contributes to the pathogenesis of myocardial ischemia/reperfusion injury and myocardial infarction (MI). Long non-coding RNAs (lncRNAs) serve an important role in cardiovascular diseases, and lncRNA discrimination antagonizing non-protein coding RNA (Dancr) alleviates cardiomyocyte damage. microRNA (miR)-6324 was upregulated in MI model rats and was predicted to bind to Dancr. The present study aimed to investigate the role of Dancr in ERS-induced cardiomyocytes and the potential underlying mechanisms. Tunicamycin (Tm) was used to induce ERS. Cell viability, apoptosis and levels of associated proteins, ERS and autophagy in Dancr-overexpression H9C2 cells and miR-6234 mimic-transfected H9C2 cells were assessed using Cell Counting Kit-8, TUNEL staining and western blot assay, respectively. The results suggested that Dancr expression levels and cell viability were downregulated by Tm in a concentration-dependent manner compared with the control group. Tm induced apoptosis, ERS and autophagy, as indicated by an increased ratio of apoptotic cells, increased expression levels of Bax, cleaved (c)-caspase-3/9, glucose-regulated protein 78 kDa (GRP78), phosphorylated (p)-inositol-requiring enzyme-1α (IRE1α), spliced X-box-binding protein 1 (Xbp1s), IRE1α, activating transcription factor (ATF)6, ATF4, Beclin 1 and microtubule associated protein 1 light chain 3α (LC3)II/I, and decreased expression levels of Bcl-2, unspliced Xbp1 (Xbp1u) and p62 in the Tm group compared with the control group. Moreover, the results indicated that compared with the Tm + overexpression (Oe)-negative control (NC) group, the Tm + Oe-Dancr group displayed decreased apoptosis, but enhanced ERS and autophagy to restore cellular homeostasis. Compared with the Tm + Oe-NC group, the Tm + Oe-Dancr group decreased the ratio of apoptotic cells, decreased expression levels of Bax, c-caspase-3/9 and Xbp1u, and increased expression levels of Bcl-2, p-IRE1α, Xbp1s, Beclin 1 and LC3II/I. Dancr overexpression also significantly downregulated miR-6324 expression compared with Oe-NC. The dual-luciferase reporter assay further indicated an interaction between Dancr and miR-6324. In addition, miR-6324 mimic partially reversed the effects of Dancr overexpression on Tm-induced apoptosis, ERS and autophagy. In conclusion, lncRNA Dancr overexpression protected cardiomyocytes against ERS injury via sponging miR-6324, thus inhibiting apoptosis, enhancing autophagy and restoring ER homeostasis.
Collapse
Affiliation(s)
- Jiong Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Xie
- Department of Ultrasonic Diagnosis, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Yan-Zhen Wang
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Yi-Rong Gan
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Ling Wei
- Outpatient Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Guan-Waner Ding
- Medical Department, Shijiazhuang People's Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Yan-Hong Ding
- Anesthesiology Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Ding-Xiong Xie
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
29
|
Xing N, Wang Y, Wang W, Zhong R, Xia T, Ding Z, Yang Y, Zhong Y, Shu Z. Cardioprotective effect exerted by Timosaponin BⅡ through the regulation of endoplasmic stress-induced apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153288. [PMID: 32782218 DOI: 10.1016/j.phymed.2020.153288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Timosaponin BⅡ (TBⅡ), one of the primary bioactive compounds from Anemarrhena asphodeloides Bunge, possesses potential cardioprotective effects. However, the mechanism underlying TBⅡ-mediated cardioprotection, especially the involvement of endoplasmic reticulum stress, remains largely unknown. PURPOSE This study was designed to evaluate the role of TBⅡ in myocardial injury protection and explore its possible mechanisms. METHODS In vivo models of isoproterenol-induced myocardial injury and H2O2-induced cytotoxicty were established to investigate the effect of anti-myocardial injury of TBⅡ. The potential mechanisms were investigated in vitro and in vivo using multiple detection methods like electrocardiography, histo-pathological examination, JC-1 staining, TUNEL staining, ELISA technology, and western blot analysis. RESULTS In vivo study revealed that TBⅡ improved electrocardiography and heart vacuolation, reduced myocyte apoptosis, and improved the antioxidant potential. In vitro investigation demonstrated that TBⅡ pretreatment inhibited ER stress-mediated apoptosis pathways. Further investigation of the underlying mechanisms revealed that TBⅡ prevented H2O2-induced H9c2 cardiomyocytes injury by the PI3K/Akt pathways, whereas the addition of LY294002, the pharmacologic antagonist of PI3K, attenuated TBⅡ-induced expression of apoptotic protein and cytoprotective effects. CONCLUSION These results suggested that TBⅡ protects against myocardial injury in vitro and enhances cellular defense capacity by inhibiting ER stress-mediated apoptosis pathways in vivo by activating the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Na Xing
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Pharmacy College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yi Wang
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wujing Wang
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zihe Ding
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanni Yang
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanmei Zhong
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou 510006, China; The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Zhu H, Zhao M, Chen Y, Li D. Bcl-2-associated athanogene 5 overexpression attenuates catecholamine-induced vascular endothelial cell apoptosis. J Cell Physiol 2020; 236:946-957. [PMID: 32583430 DOI: 10.1002/jcp.29904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/12/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Bcl-2 associated athanogene 5 (Bag5) is a novel endoplasmic reticulum (ER) regulator. However, its role in catecholamine-induced endothelial cells damage has not been fully understood. In our study, catecholamine was used to mimic hypertension-related endothelial cell damage. Then, western blots, enzyme-linked immunosorbent assay, immunofluorescence, quantitative polymerase chain reaction and pathway analysis were conducted to analyze the role of Bag5 in endothelial cell damage in response to catecholamine. Our results indicated that the endothelial cell viability was impaired by catecholamine. Interestingly, Bag5 overexpression significantly reversed endothelial cell viability. Mechanistically, Bag5 overexpression inhibited ER stress, attenuated oxidative stress and repressed inflammation in catecholamine-treated endothelial cells. These beneficial effects finally contributed to endothelial cell survival under catecholamine treatment. Pathway analysis demonstrated that Bag5 was under the control of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway. Reactivation of the MAPK-ERK pathway could upregulate Bag5 expression and thus promote endothelial cell survival through inhibiting oxidative stress, ER stress, and inflammation. Altogether, our results illustrate that Bag5 overexpression sustains endothelial cell survival in response to catecholamine treatment. This finding identifies Bag5 downregulation and the inactivated MAPK-ERK pathway as potential mechanisms underlying catecholamine-induced endothelial cell damage.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Maoxiang Zhao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Qin C, Wu XL, Gu J, Du D, Guo Y. Mitochondrial Dysfunction Secondary to Endoplasmic Reticulum Stress in Acute Myocardial Ischemic Injury in Rats. Med Sci Monit 2020; 26:e923124. [PMID: 32439834 PMCID: PMC7261002 DOI: 10.12659/msm.923124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The relationship between endoplasmic reticulum and mitochondria during acute myocardial ischemic injury is still unclear. Our study aimed to define the dynamics of endoplasmic reticulum stress and mitochondrial dysfunction during acute ischemic injury. Material/Methods A rat model of acute myocardial infarction and hypoxic cardiomyocytes were used in this study. Groups were set at 0 hours, 1 hour, 2 hours, 4 hours, and 6 hours after ischemic injury for both in vivo and in vitro studies. ATF6 and GRP-78 were examined to indicate endoplasmic reticulum stress. Cellular ATP and cytosolic levels of mitochondrial DNA and cytochrome c were detected to evaluate mitochondrial dysfunction. Caspase-3 was used for apoptosis analysis. Result Our results showed that both mRNA and protein levels of ATF6 and GRP-78 were elevated from 1 hour after ischemic injury in vivo and in vitro (P<0.05). However, ATP levels were increased at 2 hours after ischemic injury and significantly decreased from 4 hours after ischemic injury in vivo, while ATP level of cultured cardiomyocytes decreased remarkably from 2 hours after ischemic injury (P<0.05). Cytosolic mitochondrial DNA levels began to increase from 2 hours after ischemic injury (P<0.05). Cytosolic levels of cytochrome c increased from 4 hours after ischemic injury. Additionally, both mRNA and protein expressions of caspase-3 started to significantly elevate at 6 hours after ischemic injury (P<0.05). Conclusions The present study suggested that mitochondrial dysfunction was secondary to endoplasmic reticulum stress, which provides a novel experimental foundation for further exploration of the detailed mechanism after ischemic injury, especially the interaction between endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Xue-Lin Wu
- Anesthesia and Operating Center of West China Hospital/Nursing School of West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Dan Du
- West China - Washington Mitochondria and Metabolism Center, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
33
|
Lindner P, Christensen SB, Nissen P, Møller JV, Engedal N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun Signal 2020; 18:12. [PMID: 31987044 PMCID: PMC6986015 DOI: 10.1186/s12964-019-0499-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell death triggered by unmitigated endoplasmic reticulum (ER) stress plays an important role in physiology and disease, but the death-inducing signaling mechanisms are incompletely understood. To gain more insight into these mechanisms, the ER stressor thapsigargin (Tg) is an instrumental experimental tool. Additionally, Tg forms the basis for analog prodrugs designed for cell killing in targeted cancer therapy. Tg induces apoptosis via the unfolded protein response (UPR), but how apoptosis is initiated, and how individual effects of the various UPR components are integrated, is unclear. Furthermore, the role of autophagy and autophagy-related (ATG) proteins remains elusive. METHODS To systematically address these key questions, we analyzed the effects of Tg and therapeutically relevant Tg analogs in two human cancer cell lines of different origin (LNCaP prostate- and HCT116 colon cancer cells), using RNAi and inhibitory drugs to target death receptors, UPR components and ATG proteins, in combination with measurements of cell death by fluorescence imaging and propidium iodide staining, as well as real-time RT-PCR and western blotting to monitor caspase activity, expression of ATG proteins, UPR components, and downstream ER stress signaling. RESULTS In both cell lines, Tg-induced cell death depended on death receptor 5 and caspase-8. Optimal cytotoxicity involved a non-autophagic function of MAP1LC3B upstream of procaspase-8 cleavage. PERK, ATF4 and CHOP were required for Tg-induced cell death, but surprisingly acted in parallel rather than as a linear pathway; ATF4 and CHOP were independently required for Tg-mediated upregulation of death receptor 5 and MAP1LC3B proteins, whereas PERK acted via other pathways. Interestingly, IRE1 contributed to Tg-induced cell death in a cell type-specific manner. This was linked to an XBP1-dependent activation of c-Jun N-terminal kinase, which was pro-apoptotic in LNCaP but not HCT116 cells. Molecular requirements for cell death induction by therapy-relevant Tg analogs were identical to those observed with Tg. CONCLUSIONS Together, our results provide a new, integrated understanding of UPR signaling mechanisms and downstream mediators that induce cell death upon Tg-triggered, unmitigated ER stress. Video Abstract.
Collapse
Affiliation(s)
- Paula Lindner
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
| |
Collapse
|
34
|
Lin D, Wu H, Zhou Z, Tao Z, Jia T, Gao W. Ginkgolide B improves multiterritory perforator flap survival by inhibiting endoplasmic reticulum stress and oxidative stress. J INVEST SURG 2019; 34:610-616. [PMID: 31870195 DOI: 10.1080/08941939.2019.1676483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Damu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zongwei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Tao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tanghong Jia
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
36
|
Li QY, Miao Q, Sui RX, Cao L, Ma CG, Xiao BG, Xiao W, Yu WB. Ginkgolide K supports remyelination via induction of astrocytic IGF/PI3K/Nrf2 axis. Int Immunopharmacol 2019; 75:105819. [PMID: 31421546 DOI: 10.1016/j.intimp.2019.105819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Although several therapies are approved, none promote re-myelination in multiple sclerosis (MS) patients, limiting their ability for sustained recovery. Thus, treatment development in MS has the opportunity to tackle the challenges, including experimental therapies targeting neuroprotection and re-myelination. Here, we provide a novel therapeutic target for Ginkgolide K (GK) that is now becoming a very critical natural compound to treat demyelination and neurodegeneration. GK improves behavioral dysfunction and demyelination in cuprizone (CPZ) model, followed by the migration and enrichment of astrocytes in the corpus callosum. Both in vitro and in vivo experiments demonstrates that GK triggers the upregulation of Nrf2/HO-1 in astrocytes and inhibition of p-NF-kB/p65, which is associated with the outcome of anti-inflammation and anti-oxidation by suppressing the production of IL-6 and TNFα as well as nitric oxide and iNOS in astrocytes. Further findings suggest that IGF/PI3K, but not BDNF, was induced in the corpus callosum after GK treatment, revealing that Nrf2 activation inhibited caspase-3 and apoptosis in O4+ oligodendrocytes possibly through IGF/PI3K signaling molecules. Since the current immunomodulatory therapies for MS have failed to prevent patients from entering the progressive phase of the disease, thus targeting Nrf2 in astrocytes with GK would be an ideal strategy for myelin protection and regeneration.
Collapse
Affiliation(s)
- Qin-Ying Li
- Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Liang Cao
- Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan 030024, China; Institute of Brain Science, Shanxi Datong University, Datong, 037009, China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Wei Xiao
- Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China.
| | - Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China.
| |
Collapse
|
37
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Ginkgo Biloba Leaf Extract Attenuates Atherosclerosis in Streptozotocin-Induced Diabetic ApoE-/- Mice by Inhibiting Endoplasmic Reticulum Stress via Restoration of Autophagy through the mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8134678. [PMID: 31080547 PMCID: PMC6442448 DOI: 10.1155/2019/8134678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
Abstract
Background There is a crosstalk between endoplasmic reticulum stress (ERS) and autophagy, and autophagy could attenuate endoplasmic reticulum stress-mediated apoptosis. Ginkgo biloba leaf extract (GBE) exerts vascular protection functions. The purpose of the present study is to investigate the role of autophagy in diabetic atherosclerosis (AS) and the effect of GBE on autophagy and ERS. Methods Network pharmacology was utilized to predict the targets and pathways of the active chemical compounds of Gingko biloba leaf to attenuate AS. ApoE−/− mice were rendered diabetic by intraperitoneal ingestion with streptozotocin combined with a high-fat diet. The diabetic mice were divided into five groups: model group, atorvastatin group, rapamycin group, and low- and high-dose GBE groups. Serum and tissue markers of autophagy or ERS markers, including the protein expression, were examined. Results The mammalian target of rapamycin (mTOR) and NF-κB signaling pathways were targeted by the active chemical compounds of GBE to attenuate AS predicted by network pharmacology. GBE reduced the plaque area/lumen area and the plaque lipid deposition area/intimal area and inhibited the expressions of CD68, MMP2, and MMP9. Rapamycin and GBE inhibited the expression of mTOR and SQSTM1/p62 which increased in the aorta of diabetic mice. In addition, GBE reduced the expression of ERS markers in diabetic mice. GBE reduced the serum lipid metabolism levels, blood glucose, and inflammatory cytokines. Conclusion Impaired autophagy and overactive endoplasmic reticulum stress contributed to diabetic atherosclerosis. mTOR inhibitor rapamycin and GBE attenuated diabetic atherosclerosis by inhibiting ERS via restoration of autophagy through inhibition of mTOR.
Collapse
|
39
|
Yu WB, Wang Q, Chen S, Cao L, Tang J, Ma CG, Xiao W, Xiao BG. The therapeutic potential of ginkgolide K in experimental autoimmune encephalomyelitis via peripheral immunomodulation. Int Immunopharmacol 2019; 70:284-294. [PMID: 30851709 DOI: 10.1016/j.intimp.2019.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis is a T cell-mediated inflammatory, demyelinating disease of the central nervous system, accompanied by neuronal degeneration. Based on the anti-inflammatory effects of Ginkgolide K (GK), a platelet activating factor antagonist, we explored the possible application of GK in the treatment of MS. The results showed that GK effectively ameliorated the severity of experimental autoimmune encephalomyelitis. The intervention of GK inhibited the infiltration of inflammatory cells and demyelination in the spinal cord. At the same time, the expression of the inflammation-related molecules TLR4, NF-κB, and COX2 in the spinal cord was significantly lower in the GK-treated mice, indicating that GK intervention can inhibit the inflammatory microenvironment of the spinal cord in EAE mice. In mouse spleen lymphocytes, GK increased the proportion of regulatory T cells (Treg) and reduced the proportion of T helper 17 cells (Th17), modifying the imbalance between Th17/Treg cells. Additionally, GK shifted macrophage/microglia polarization from M1 to M2 cell type. Importantly, GK inhibited the expression of chemotactic molecules CCL-2, CCL-3 and CCL-5, thereby limiting the migration of inflammatory cells to the spinal cord. Our results provide the possibility that GK may be a promising naturally small molecule compound for the future treatment of MS.
Collapse
Affiliation(s)
- Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qing Wang
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, University of Shanxi Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Sheng Chen
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, University of Shanxi Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
41
|
Wang X, Guo J, Ning Z, Wu X. Discovery of a Natural Syk Inhibitor from Chinese Medicine through a Docking-Based Virtual Screening and Biological Assay Study. Molecules 2018; 23:molecules23123114. [PMID: 30487406 PMCID: PMC6320911 DOI: 10.3390/molecules23123114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is a critical target protein for treating immunoreceptor signalling-mediated allergies. In this study, a virtual screening of an in-house Chinese medicine database followed by biological assays was carried out to identify novel Syk inhibitors. A molecular docking method was employed to screen for compounds with potential Syk inhibitory activity. Then, an in vitro kinase inhibition assay was performed to verify the Syk inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was conducted to evaluate the anti-mast cell degranulation activity of the active compounds. Finally, tanshinone I was confirmed as a Syk inhibitor (IC50 = 1.64 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.76 μM). Docking studies showed that Pro455, Gln462, Leu377, and Lys458 were key amino acid residues for Syk inhibitory activity. This study demonstrated that tanshinone I is a Syk inhibitor with mast cell degranulation inhibitory activity. Tanshinone I may be a potential lead compound for developing effective and safe Syk-inhibiting drugs.
Collapse
Affiliation(s)
- Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Junfang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Zhongqi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China.
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing 100069, China.
| |
Collapse
|
42
|
Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018; 38:BSR20180519. [PMID: 30232231 PMCID: PMC6239257 DOI: 10.1042/bsr20180519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.
Collapse
|
43
|
Yu WB, Cao L, Zhao YY, Xiao W, Xiao BG. Comparing the role of Ginkgolide B and Ginkgolide K on cultured astrocytes exposed to oxygen‑glucose deprivation. Mol Med Rep 2018; 18:4417-4427. [PMID: 30221704 PMCID: PMC6172388 DOI: 10.3892/mmr.2018.9450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Ginkgolide B (GB) and ginkgolide K (GK) are two main active monomers of ginkgolides that present a unique group of diterpenes found naturally in the leaves of the Ginkgo biloba tree. Astrocytes are the most abundant cell type within the central nervous system (CNS) and serve essential roles in maintaining healthy brain function. The present study compared the biological effects of GB and GK on astrocytes exposed to oxygen-glucose deprivation (OGD). The results demonstrated that GB and GK exhibit many different actions. The level of the platelet-activating factor (PAF) was elevated on astrocytes exposed to OGD, and inhibited by GB and GK treatment. Although GB and GK inhibited the expression of p-NF-κB/p65, GK exerted stronger anti-inflammatory and antioxidant effects on astrocytes exposed to OGD than GB by inhibiting interleukin (IL)-6 and tumor necrosis factor-α, and inducing IL-10 and the nuclear factor-erythroid 2-related factor 2/HO-1 signaling pathway. When compared with GB treatment, GK treatment maintained high levels of phosphoinositide 3-kinase/phosphorylated-protein kinase B expression, and induced a marked upregulation of Wnt family member 1 and brain derived neurotrophic factor, indicating that GK, as a natural plant compound, may have more attractive prospects for clinical application in the treatment of neurological disorders than GB.
Collapse
Affiliation(s)
- Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Liang Cao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Yan-Yin Zhao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
44
|
Liu Q, Li X, Li L, Xu Z, Zhou J, Xiao W. Ginkgolide K protects SH‑SY5Y cells against oxygen‑glucose deprivation‑induced injury by inhibiting the p38 and JNK signaling pathways. Mol Med Rep 2018; 18:3185-3192. [PMID: 30066915 PMCID: PMC6102632 DOI: 10.3892/mmr.2018.9305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
The purpose of the present study was to explore the protective effect and functional mechanism of ginkgolide K (GK: C20H22O9) on cerebral ischemia. SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model in vitro. Cell viability, reactive oxygen species (ROS), nuclear staining with Hoechst 33258 and mitochondrial membrane potential were detected following 4 h of exposure to OGD. Subsequently, the expression levels of the apoptosis-related proteins, caspase-9, caspase-3, Bcl-2, Bax, p53 and c-Jun, as well as the mitogen-activated protein kinases (MAPKs) signaling molecules were detected by western blot analysis. GK significantly elevated the cell viability and decreased the generation of ROS and the number of apoptotic cells in a dose-dependent manner. Furthermore, GK markedly decreased the protein expression levels of p-p38, p-JNK, p-p53, p-c-Jun and the expression levels of Bcl-2, Bax, cleaved caspase-9 and caspase-3. In conclusion, GK demonstrated a neuroprotective effect on the simulated cerebral ischemia in vitro, and this effect was mediated through the inhibition of the mitochondria-mediated apoptosis pathway triggered by ROS-evoked p38 and JNK activation.
Collapse
Affiliation(s)
- Qiu Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Xueke Li
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang 222001, P.R. China
| | - Liang Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Zhiliang Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Jun Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu, Lianyungang 222001, P.R. China
| |
Collapse
|
45
|
Chen M, Zou W, Chen M, Cao L, Ding J, Xiao W, Hu G. Ginkgolide K promotes angiogenesis in a middle cerebral artery occlusion mouse model via activating JAK2/STAT3 pathway. Eur J Pharmacol 2018; 833:221-229. [PMID: 29890157 DOI: 10.1016/j.ejphar.2018.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
Abstract
Ginkgolide K (GK) is a new compound extracted from the leaves of Ginkgo biloba, which has been recognized to exert anti-oxidative stress and neuroprotective effect on ischemic stroke. While whether it plays an enhanced effect on angiogenesis during ischemic stroke remains unknown. The aim of this study was to investigate the effect of ginkgolide K on promoting angiogenesis as well as the protective mechanism after cerebral ischemia-reperfusion. Using the transient middle cerebral artery occlusion (tMCAO) mouse model, we found that GK (3.5, 7.0, 14.0 mg/kg, i.p., bid., 2 weeks) attenuated neurological impairments, and promoted angiogenesis of injured ipsilateral cortex and striatum after 14 days of cerebral ischemia-reperfusion in mice. Further, GK (3.5 mg/kg in vivo, 10 μM in vitro) significantly up-regulated the expressions of HIF-1α and VEGF in tMCAO mouse brains and in b End3 cells after OGD/R, and GK-induced upregulation of HIF-1α and VEGF in b End3 cells could be abolished by JAK2/STAT3 inhibitor AG490. Our results demonstrate that GK promotes angiogenesis after ischemia stroke through increasing the expression of HIF-1α/VEGF via JAK2/STAT3 pathway, which provide an insight into the novel clinical application of GK and its analogs in ischemic stroke therapy in future.
Collapse
Affiliation(s)
- Meng Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Wenyan Zou
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang, Jiangsu 222001, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD., Lianyungang, Jiangsu 222001, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
46
|
Wang S, Binder P, Fang Q, Wang Z, Xiao W, Liu W, Wang X. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol 2018; 175:1293-1304. [PMID: 28548229 PMCID: PMC5867005 DOI: 10.1111/bph.13888] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) serves several essential cellular functions including protein synthesis, protein folding, protein translocation, calcium homoeostasis and lipid biosynthesis. Physiological or pathological stimuli, which disrupt ER homoeostasis and disturb its functions, lead to an accumulation of misfolded and unfolded proteins, a condition referred to as ER stress. ER stress triggers the unfolded protein response to restore the homoeostasis of ER, through activating transcriptional and translational pathways. However, prolonged ER stress will lead to cell dysfunction and apoptosis. Recent evidence revealed that ER stress is involved in the development and progression of various heart diseases, such as cardiac hypertrophy, ischaemic heart diseases and heart failure. Therefore, improved understanding of the molecular mechanisms of ER stress in heart disease will help to investigate more potential targets for new therapeutic interventions and drug discovery. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Shunyao Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Pablo Binder
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Qiru Fang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Zhenzhong Wang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Wei Xiao
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
47
|
Ginkgolide K attenuates neuronal injury after ischemic stroke by inhibiting mitochondrial fission and GSK-3β-dependent increases in mitochondrial membrane permeability. Oncotarget 2018; 8:44682-44693. [PMID: 28591721 PMCID: PMC5546510 DOI: 10.18632/oncotarget.17967] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Ginkgolide K (GK) belongs to the ginkgolide family of natural compounds found in Ginkgo biloba leaves, which have been used for centuries to treat cerebrovascular and cardiovascular diseases. We evaluated the protective effects of GK against neuronal apoptosis by assessing its ability to sustain mitochondrial integrity and function. Co-immunoprecipitation showed that Drp1 binding to GSK-3β was increased after an oxygen-glucose deprivation/reperfusion (OGD/R) insult in cultured neuroblastoma cells. This induced Drp1 and GSK-3β translocation to mitochondria and mitochondrial dysfunction, which was attenuated by GK. GK also reduced mitochondrial fission by increasing Drp1 phosphorylation at Ser637 and inhibiting mitochondrial Drp1 recruitment. In addition, GK exposure induced GSK-3β phosphorylation at Ser9 and enhanced the interaction between adenine nucleotide translocator (ANT) and p-GSK-3β. This interaction suppressed the interaction between ANT and cyclophilin D (CypD), which inhibited mitochondrial permeability transition pore (mPTP) opening. Similarly, suppression of mitochondrial fission by Mdivi-1 also inhibited GSK-3β-induced mPTP opening. Treating mice with GK prevented GSK-3β and Drp1 translocation to mitochondria and attenuated mitochondrial dysfunction after middle cerebral artery occlusion. We therefore propose that by inhibiting mitochondrial fission and attenuating mPTP opening, GK exerts neuroprotective effects that mitigate or prevent neuronal damage secondary to ischemic stroke.
Collapse
|
48
|
Niu X, Zhang J, Ling C, Bai M, Peng Y, Sun S, Li Y, Zhang Z. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. J Int Med Res 2018. [PMID: 29517941 PMCID: PMC5991254 DOI: 10.1177/0300060518758863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H2O2) and ASP. Results The ingredient–pathway–disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H2O2-induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H2O2-induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H2O2-induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.
Collapse
Affiliation(s)
- Xiaowei Niu
- 1 The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | | | - Chun Ling
- 3 The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ming Bai
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Yu Peng
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Shaobo Sun
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Yingdong Li
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Zheng Zhang
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| |
Collapse
|
49
|
Diterpene ginkgolides meglumine injection protects against paraquat-induced lung injury and pulmonary fibrosis in rats. Biomed Pharmacother 2018; 99:746-754. [DOI: 10.1016/j.biopha.2018.01.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/28/2018] [Indexed: 12/29/2022] Open
|
50
|
Yu W, Chen S, Cao L, Tang J, Xiao W, Xiao B. Ginkgolide K promotes the clearance of A53T mutation alpha-synuclein in SH-SY5Y cells. Cell Biol Toxicol 2017; 34:291-303. [PMID: 29214369 DOI: 10.1007/s10565-017-9419-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
Abstract
Alpha-synuclein (α-syn) is associated to Parkinson's disease (PD). The aggregated form of α-syn has potential neurotoxicity. Thus, the clearance of α-syn aggregation is a plausible strategy to delay disease progression of PD. In our study, we found that the treatment of Ginkgolide B (GB) and Ginkgolide K (GK) reduced cell death, and enhanced cell proliferation in SH-SY5Y cells, which overexpressed A53T mutant α-syn. Surprisingly, GK, but not GB, promoted the clearance of A53T α-syn, which can be abolished by autophagy inhibitor 3-methyladenine, indicating that GK-induced autophagy intervened in the clearance of A53T α-syn. However, GK did not affect the NEDD4 that belongs to the ubiquitin ligase in the endosomal-lysosomal pathway. Furthermore, GK treatment inhibited the p-NF-kB/p65 and induced the PI3K, BDNF, and PSD-95. Taken together, GK increased the clearance of α-syn, reduced cell death, and triggered complex crosstalk between different signaling pathways. Although our results show a potentially new therapeutic candidate for PD, the details of this mechanism need to be further identified.
Collapse
Affiliation(s)
- Wenbo Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Baoguo Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|