1
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Joshi R, Paracha TU, Mostafa MM, Thorne AJ, Jayasinghe V, Yan D, Hamed O, Newton R, Giembycz MA. Comparison of the Genomic Activity of an EP 4-Receptor and β 2-Adrenoceptor Agonist in BEAS-2B Human Bronchial Epithelial Cells: In Search of Compartmentalized, cAMP-Dependent Gene Expression. J Pharmacol Exp Ther 2024; 391:64-81. [PMID: 39060164 DOI: 10.1124/jpet.124.002226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as β 2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a β 2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of β 2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the β 2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.
Collapse
Affiliation(s)
- Radhika Joshi
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thorne
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Zaccolo M, Kovanich D. Nanodomain cAMP signalling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2024:10.1152/physrev.00013.2024. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
3', 5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signalling pathway, how they organized are inside the intracellular space and how they achieve exquisite regulation of signalling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalised cAMP signaling and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Sherpa RT, Moshal KS, Agarwal SR, Ostrom RS, Harvey RD. Role of protein kinase A and A kinase anchoring proteins in buffering and compartmentation of cAMP signalling in human airway smooth muscle cells. Br J Pharmacol 2024; 181:2622-2635. [PMID: 38613158 PMCID: PMC11219259 DOI: 10.1111/bph.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND PURPOSE In human airway smooth muscle (hASM) cells, not all receptors stimulating cAMP production elicit the same effects. This can only be explained if cAMP movement throughout the cell is restricted, yet the mechanisms involved are not fully understood. Phosphodiesterases (PDEs) contribute to compartmentation of many cAMP responses, but PDE activity alone is predicted to be insufficient if cAMP is otherwise freely diffusible. We tested the hypothesis that buffering of cAMP by protein kinase A (PKA) associated with A kinase anchoring proteins (AKAPs) slows cAMP diffusion and that this contributes to receptor-mediated, compartmentalized responses. EXPERIMENTAL APPROACH Raster image correlation spectroscopy (RICS) was used to measure intracellular cAMP diffusion coefficients and evaluate the contribution of PKA-AKAP interactions. Western blotting and immunocytochemistry were used to identify the AKAPs involved. RNA interference was used to down-regulate AKAP expression and determine its effects on cAMP diffusion. Compartmentalized cAMP responses were measured using fluorescence resonance energy transfer (FRET) based biosensors. KEY RESULTS Cyclic AMP movement was significantly slower than that of free-diffusion in hASM cells, and disrupting PKA-AKAP interactions significantly increased the diffusion coefficient. PKA associated with the outer mitochondrial membrane appears to play a prominent role in this effect. Consistent with this idea, knocking down expression of D-AKAP2, the primary mitochondrial AKAP, increased cAMP diffusion and disrupted compartmentation of receptor-mediated responses. CONCLUSION AND IMPLICATIONS Our results confirm that AKAP-anchored PKA contributes to the buffering of cAMP and is consequential in the compartmentation of cAMP responses in hASM cells.
Collapse
Affiliation(s)
- Rinzhin T Sherpa
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Karni S Moshal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
5
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
6
|
Johnson SC, Annamdevula NS, Leavesley SJ, Francis CM, Rich TC. Hyperspectral imaging and dynamic region of interest tracking approaches to quantify localized cAMP signals. Biochem Soc Trans 2024; 52:191-203. [PMID: 38334148 PMCID: PMC11115359 DOI: 10.1042/bst20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.
Collapse
Affiliation(s)
- Santina C Johnson
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Naga S Annamdevula
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Silas J Leavesley
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, U.S.A
| | - C Michael Francis
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Thomas C Rich
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| |
Collapse
|
7
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
8
|
Nayak AP, Javed E, Villalba DR, Wang Y, Morelli HP, Shah SD, Kim N, Ostrom RS, Panettieri RA, An SS, Tang DD, Penn RB. Prorelaxant E-type Prostanoid Receptors Functionally Partition to Different Procontractile Receptors in Airway Smooth Muscle. Am J Respir Cell Mol Biol 2023; 69:584-591. [PMID: 37523713 PMCID: PMC10633839 DOI: 10.1165/rcmb.2022-0445oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.
Collapse
Affiliation(s)
- Ajay P. Nayak
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elham Javed
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic R. Villalba
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Henry P. Morelli
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D. Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Parker M, Annamdevula NS, Pleshinger D, Ijaz Z, Jalkh J, Penn R, Deshpande D, Rich TC, Leavesley SJ. Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy. Bioengineering (Basel) 2023; 10:642. [PMID: 37370573 PMCID: PMC10295298 DOI: 10.3390/bioengineering10060642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies-in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals.
Collapse
Affiliation(s)
- Marina Parker
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
| | - Naga S. Annamdevula
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Donald Pleshinger
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Zara Ijaz
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Josephine Jalkh
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Raymond Penn
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak Deshpande
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas C. Rich
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Silas J. Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| |
Collapse
|
10
|
Cattani-Cavalieri I, Li Y, Margolis J, Bogard A, Roosan MR, Ostrom RS. Quantitative phosphoproteomic analysis reveals unique cAMP signaling pools emanating from AC2 and AC6 in human airway smooth muscle cells. Front Physiol 2023; 14:1149063. [PMID: 36926196 PMCID: PMC10011497 DOI: 10.3389/fphys.2023.1149063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Human airway smooth muscle (HASM) is the primary target of ßAR agonists used to control airway hypercontractility in asthma and chronic obstructive pulmonary disease (COPD). ßAR agonists induce the production of cAMP by adenylyl cyclases (ACs), activate PKA and cause bronchodilation. Several other G-protein coupled receptors (GPCR) expressed in human airway smooth muscle cells transduce extracellular signals through cAMP but these receptors elicit different cellular responses. Some G-protein coupled receptors couple to distinct adenylyl cyclases isoforms with different localization, partly explaining this compartmentation, but little is known about the downstream networks that result. We used quantitative phosphoproteomics to define the downstream signaling networks emanating from cAMP produced by two adenylyl cyclases isoforms with contrasting localization in uman airway smooth muscle. After a short stimulus of adenylyl cyclases activity using forskolin, phosphopeptides were analyzed by LC-MS/MS and differences between cells overexpressing AC2 (localized in non-raft membranes) or AC6 (localized in lipid raft membranes) were compared to control human airway smooth muscle. The degree of AC2 and AC6 overexpression was titrated to generate roughly equal forskolin-stimulated cAMP production. 14 Differentially phosphorylated proteins (DPPs) resulted from AC2 activity and 34 differentially phosphorylated proteins resulted from AC6 activity. Analysis of these hits with the STRING protein interaction tool showed that AC2 signaling is more associated with modifications in RNA/DNA binding proteins and microtubule/spindle body proteins while AC6 signaling is associated with proteins regulating autophagy, calcium-calmodulin (Ca2+/CaM) signaling, Rho GTPases and cytoskeletal regulation. One protein, OFD1, was regulated in opposite directions, with serine 899 phosphorylation increased in the AC6 condition 1.5-fold but decreased to 0.46-fold by AC2. In conclusion, quantitative phosphoproteomics is a powerful tool for deciphering the complex signaling networks resulting from discreet signaling events that occur in cAMP compartments. Our data show key differences in the cAMP pools generated from AC2 and AC6 activity and imply that distinct cellular responses are regulated by these two compartments.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Yue Li
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Jordyn Margolis
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Amy Bogard
- AB Research LLC, Cincinnati, OH, United States
| | - Moom R. Roosan
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
11
|
Lam T, Mastos C, Sloan EK, Halls ML. Pathological changes in GPCR signal organisation: Opportunities for targeted therapies for triple negative breast cancer. Pharmacol Ther 2023; 241:108331. [PMID: 36513135 DOI: 10.1016/j.pharmthera.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Triple negative breast cancer (TNBC) has the poorest prognosis compared to other breast cancer subtypes, due to a historical lack of targeted therapies and high rates of relapse. Greater insight into the components of signalling pathways in TNBC tumour cells has led to the clinical evaluation, and in some cases approval, of targeted therapies. In the last decade, G protein-coupled receptors, such as the β2-adrenoceptor, have emerged as potential new therapeutic targets. Here, we describe how the β2-adrenoceptor accelerates TNBC progression in response to stress, and the unique signalling pathway activated by the β2-adrenoceptor to drive the invasion of an aggressive TNBC tumour cell. We highlight evidence that supports an altered organisation of GPCRs in tumour cells, and suggests that activation of the same GPCR in a different cellular location can control unique cell responses. Finally, we speculate how the relocation of GPCRs to the "wrong" place in tumour cells presents opportunities to develop targeted anti-cancer GPCR drugs with greater efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
12
|
Leavesley SJ, Johnson S, Paudel SS, Knighten J, Tambe DT, Francis M, Gong N, Taylor MS, Rich TC. Combined hyperspectral imaging, monolayer stress microscopy, and S8 image analysis approaches for simultaneously interrogating cellular signals and biomechanics. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12383:123830D. [PMID: 37051186 PMCID: PMC10084657 DOI: 10.1117/12.2650653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Second messenger signals, e.g., Ca2+ and cyclic nucleotides, orchestrate a wide range of cellular events. The methods by which second messenger signals determine specific physiological responses are complex. Recent studies point to the importance of temporal and spatial encoding in determining signal specificity. Studies also indicate the importance of mechanical stimuli, substrate stiffness, and mechanical responses - the "mechanosome" - in regulating physiology. Hence, approaches that probe both chemical and mechanical signals are needed. Here, we report preliminary efforts to combine hyperspectral imaging for second messenger signal measurements, monolayer stress microscopy for mechanical force measurements, and S8 analysis software for quantifying localized signals - specifically, Ca2+ dynamics and mechanical forces in human airway smooth muscle cells (HASMCs). HASMCs were prepared as confluent monolayers on 11 kPa gels with embedded fluorescent microparticles that serve as fiducial markers as well as smaller microparticles to measure deformation (strain). Imaging was performed using a custom excitation-scanning hyperspectral microscope. Hyperspectral images were unmixed to identify signals from cellular fluorescent labels (e.g., CAL 590-AM) and fluorescent microparticles. Images were analyzed to quantify localized force dynamics through monolayer stress microscopy. S8 software was used to identify, track, and quantify spatially-localized Ca2+ activity. Results indicate that localized and transient cellular signals and forces can be quantified and mapped within cell populations. Importantly, these results establish a method for simultaneous interrogation of cellular signals and mechanical forces that may play synergistic roles in regulating downstream cellular physiology in confluent monolayers. This work was supported by NIH P01HL066299, R01HL137030, R01HL058506, and NSF MRI1725937. Drs. Leavesley and Rich disclose financial interest in a university start-up company, SpectraCyte LLC, to commercialize spectral imaging technologies.
Collapse
Affiliation(s)
- Silas J Leavesley
- Department of Chemical and Biomolecular Engineering
- Department of Pharmacology
- Center for Lung Biology
| | | | - Sunita S Paudel
- Center for Lung Biology
- Department of Physiology and Cell Biology
| | | | - Dhananjay T Tambe
- Department of Pharmacology
- Center for Lung Biology
- William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering
| | - Michael Francis
- Center for Lung Biology
- Department of Physiology and Cell Biology
| | - Na Gong
- Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL, USA 36688
| | - Mark S Taylor
- Center for Lung Biology
- Department of Physiology and Cell Biology
| | | |
Collapse
|
13
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
14
|
Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022; 19:23. [PMID: 35307032 PMCID: PMC8935726 DOI: 10.1186/s12987-022-00322-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs (ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood-brain barrier (BBB) integrity are reviewed. Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster new research in the future.
Collapse
Affiliation(s)
- Karan Devasani
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Hardy JC, Mehta S, Zhang J. Measuring Spatiotemporal cAMP Dynamics Within an Endogenous Signaling Compartment Using FluoSTEP-ICUE. Methods Mol Biol 2022; 2483:351-366. [PMID: 35286687 PMCID: PMC9994038 DOI: 10.1007/978-1-0716-2245-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
cAMP is a ubiquitous second messenger involved in the regulation of diverse cellular processes. Spatiotemporal regulation of cAMP through compartmentalization within various subcellular microdomains is essential to ensure specific signaling. In the following protocol, we describe a method for directly visualizing signaling dynamics within cAMP microdomains using fluorescent sensors targeted to endogenous proteins (FluoSTEPs). Instead of overexpressing a biosensor-tagged protein of interest to target a microdomain, FluoSTEP Indicator of cAMP using Epac (FluoSTEP-ICUE) utilizes spontaneously complementing split GFP and CRISPR-Cas9 genome editing to localize a FRET-based cAMP biosensor to an endogenously expressed protein of interest. Utilizing this approach, FluoSTEP-ICUE can be used to measure cAMP levels within endogenous signaling compartments, thus providing a powerful tool for studying the spatiotemporal regulation of cAMP signaling.
Collapse
Affiliation(s)
- Julia C Hardy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Roberts MJ, May LT, Keen AC, Liu B, Lam T, Charlton SJ, Rosethorne EM, Halls ML. Inhibition of the Proliferation of Human Lung Fibroblasts by Prostacyclin Receptor Agonists is Linked to a Sustained cAMP Signal in the Nucleus. Front Pharmacol 2021; 12:669227. [PMID: 33995100 PMCID: PMC8116805 DOI: 10.3389/fphar.2021.669227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disease, and current treatments are limited by their side effects. Proliferation of human lung fibroblasts in the pulmonary interstitial tissue is a hallmark of this disease and is driven by prolonged ERK signalling in the nucleus in response to growth factors such as platelet-derived growth factor (PDGF). Agents that increase cAMP have been suggested as alternative therapies, as this second messenger can inhibit the ERK cascade. We previously examined a panel of eight Gαs-cAMP-coupled G protein-coupled receptors (GPCRs) endogenously expressed in human lung fibroblasts. Although the cAMP response was important for the anti-fibrotic effects of GPCR agonists, the magnitude of the acute cAMP response was not predictive of anti-fibrotic efficacy. Here we examined the reason for this apparent disconnect by stimulating the Gαs-coupled prostacyclin receptor and measuring downstream signalling at a sub-cellular level. MRE-269 and treprostinil caused sustained cAMP signalling in the nucleus and complete inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. In contrast, iloprost caused a transient increase in nuclear cAMP, there was no effect of iloprost on PDGF-induced ERK in the nucleus, and this agonist was much less effective at reversing PDGF-induced proliferation. This suggests that sustained elevation of cAMP in the nucleus is necessary for efficient inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. This is an important first step towards understanding of the signalling events that drive GPCR inhibition of fibrosis.
Collapse
Affiliation(s)
- Maxine J Roberts
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Lauren T May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Excellerate Bioscience Ltd., BioCity, Nottingham, United Kingdom
| | - Elizabeth M Rosethorne
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| |
Collapse
|
17
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
19
|
Ojiaku CA, Chung E, Parikh V, Williams JK, Schwab A, Fuentes AL, Corpuz ML, Lui V, Paek S, Bexiga NM, Narayan S, Nunez FJ, Ahn K, Ostrom RS, An SS, Panettieri RA. Transforming Growth Factor-β1 Decreases β 2-Agonist-induced Relaxation in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol 2020; 61:209-218. [PMID: 30742476 DOI: 10.1165/rcmb.2018-0301oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-β1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-β1 affects the ability of HASM cells to relax in response to β2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-β1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-β1-treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-β1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-β1 decreases HASM cell β2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying β2-agonist hyporesponsiveness in asthma, and suggest TGF-β1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Elena Chung
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Vishal Parikh
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Anthony Schwab
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Ana Lucia Fuentes
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Maia L Corpuz
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Victoria Lui
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sam Paek
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalia M Bexiga
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,6Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Shreya Narayan
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Francisco J Nunez
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kwangmi Ahn
- 7National Institutes of Health, Bethesda, Maryland
| | - Rennolds S Ostrom
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Steven S An
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,8Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; and.,9Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reynold A Panettieri
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
20
|
Agonist-specific desensitization of PGE 2-stimulated cAMP signaling due to upregulated phosphodiesterase expression in human lung fibroblasts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:843-856. [PMID: 31884570 PMCID: PMC7328663 DOI: 10.1007/s00210-019-01800-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 11/03/2022]
Abstract
Pulmonary fibrosis is characterized by fibroblasts persisting in an activated form, producing excessive fibrous material that destroys alveolar structure. The second messenger molecule cyclic 3',5'-adenosine monophosphate (cAMP) has antifibrotic properties, and prostaglandin E2 (PGE2) can stimulate cAMP production through prostaglandin E (EP)2 and EP4 receptors. Although EP receptors are attractive therapeutic targets, the effects of long-term exposure to PGE2 have not been characterized. To determine the effects of long-term exposure of lung fibroblasts to PGE2, human fetal lung (HFL)-1 cells were treated for 24 h with 100 nM PGE2 or other cAMP-elevating agents. cAMP levels stimulated by acute exposure to PGE2 were measured using a fluorescent biosensor. Pretreatment for 24 h with PGE2 shifted the concentration-response curve to PGE2 rightward by approximately 22-fold but did not affect responses to the beta-adrenoceptor agonist isoproterenol. Neither isoproterenol nor forskolin pretreatment altered PGE2 responses, implying that other cAMP-elevating agents do not induce desensitization. Use of EP2- and EP4-selective agonists and antagonists suggested that PGE2-stimulated cAMP responses in HFL-1 cells are mediated by EP2 receptors. EP2 receptors are resistant to classical mechanisms of agonist-specific receptor desensitization, so we hypothesized that increased PDE activity mediates the loss of signaling after PGE2 pretreatment. PGE2 treatment upregulated messenger RNA for PDE3A, PDE3B, PDE4B, and PDE4D and increased overall PDE activity. The PDE4 inhibitor rolipram partially reversed PGE2-mediated desensitization and PDE4 activity was increased, but rolipram did not alter responses to isoproterenol. The PDE3 inhibitor cilostazol had minimal effect. These results show that long-term exposure to PGE2 causes agonist-specific desensitization of EP2 receptor-stimulated cAMP signaling through the increased expression of PDE isozymes, most likely of the PDE4 family.
Collapse
|
21
|
Stone N, Shettlesworth S, Rich TC, Leavesley SJ, Phan AV. A two-dimensional finite element model of cyclic adenosine monophosphate (cAMP) intracellular signaling. SN APPLIED SCIENCES 2019; 1. [PMID: 33615142 DOI: 10.1007/s42452-019-1757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In this work, we present a two-dimensional finite element analysis (FEA) model that describes fundamental intracellular signals of cyclic adenosine monophosphate (cAMP) in a general fashion. The model was subsequently solved numerically and the results were displayed in forms of time-course plots of cAMP concentration at a cellular location or color-filled contour maps of cAMP signal distribution within the cell at specific time points. Basic intracellular cAMP signaling was described in this model so it can be numerically validated by verifying its numerical results against available analytical solutions and against results obtained from other numerical techniques reported in the literature. This is the first important step before the model can be expanded in future work. Model simulations demonstrate that under certain conditions, sustained cAMP concentrations can be formed within endothelial cells (ECs), similar to those observed in rat pulmonary microvascular ECs. Spatial and temporal cAMP dynamic simulations indicated that the proposed FEA model is an effective tool for the study of the kinetics and spatial spread of second messenger signaling and can be expanded to simulate second messenger signals in the pulmonary vasculature.
Collapse
Affiliation(s)
- N Stone
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S Shettlesworth
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Department of Chemical and Biomolecular Engineering & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - A-V Phan
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
22
|
Agarwal SR, Fiore C, Miyashiro K, Ostrom RS, Harvey RD. Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by β-2 Adrenoceptors in Human Airway Smooth-Muscle Cells. J Pharmacol Exp Ther 2019; 370:104-110. [PMID: 31068382 DOI: 10.1124/jpet.119.256594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
β 2-Adrenoceptors (β 2ARs) are concentrated in caveolar lipid raft domains of the plasma membrane in airway smooth-muscle (ASM) cells, along with adenylyl cyclase type 6 (AC6). This is believed to contribute to how these receptors can selectively regulate certain types of cAMP-dependent responses in these cells. The goal of the present study was to test the hypothesis that β 2AR production of cAMP is localized to specific subcellular compartments using fluorescence resonance energy transfer-based cAMP biosensors targeted to different microdomains in human ASM cells. Epac2-MyrPalm and Epac2-CAAX biosensors were used to measure responses associated with lipid raft and nonraft regions of the plasma membrane, respectively. Activation of β 2ARs with isoproterenol produced cAMP responses that are most readily detected in lipid raft domains. Furthermore, overexpression of AC6 somewhat paradoxically inhibited β 2AR production of cAMP in lipid raft domains without affecting β 2AR responses detected in other subcellular locations or cAMP responses to EP2 prostaglandin receptor activation, which were confined primarily to nonraft domains of the plasma membrane. The inhibitory effect of overexpressing AC6 was blocked by inhibition of phosphodiesterase type 4 (PDE4) activity with rolipram, inhibition of protein kinase A (PKA) activity with H89, and inhibition of A kinase anchoring protein (AKAP) interactions with the peptide inhibitor Ht31. These results support the idea that overexpression of AC6 leads to enhanced feedback activation of PDE4 via phosphorylation by PKA that is part of an AKAP-dependent signaling complex. This provides insight into the molecular basis for localized regulation of cAMP signaling in human ASM cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Chase Fiore
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Rennolds S Ostrom
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| |
Collapse
|
23
|
Sensory primary cilium is a responsive cAMP microdomain in renal epithelia. Sci Rep 2019; 9:6523. [PMID: 31024067 PMCID: PMC6484033 DOI: 10.1038/s41598-019-43002-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are hair-like cellular extensions that sense microenvironmental signals surrounding cells. The role of adenylyl cyclases in ciliary function has been of interest because the product of adenylyl cyclase activity, cAMP, is relevant to cilia-related diseases. In the present study, we show that vasopressin receptor type-2 (V2R) is localized to cilia in kidney epithelial cells. Pharmacologic inhibition of V2R with tolvaptan increases ciliary length and mechanosensory function. Genetic knockdown of V2R, however, does not have any effect on ciliary length, although the effect of tolvaptan on ciliary length is dampened. Our study reveals that tolvaptan may have a cilia-specific effect independent of V2R or verapamil-sensitive calcium channels. Live-imaging of single cilia shows that V2R activation increases cilioplasmic and cytoplasmic cAMP levels, whereas tolvaptan mediates cAMP changes only in a cilia-specific manner. Furthermore, fluid-shear stress decreases cilioplasmic, but not cytoplasmic cAMP levels. Our data indicate that cilioplasmic and cytoplasmic cAMP levels are differentially modulated. We propose that the cilium is a critical sensor acting as a responsive cAMP microcompartment during physiologically relevant stimuli.
Collapse
|
24
|
Localised GPCR signalling as revealed by FRET biosensors. Curr Opin Cell Biol 2019; 57:48-56. [DOI: 10.1016/j.ceb.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
|
25
|
Naim N, White AD, Reece JM, Wankhede M, Zhang X, Vilardaga JP, Altschuler DL. Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis. J Biol Chem 2018; 294:1095-1103. [PMID: 30559293 DOI: 10.1074/jbc.ac118.004905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fine-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alex D White
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | | | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
26
|
Annamdevula NS, Sweat R, Griswold JR, Trinh K, Hoffman C, West S, Deal J, Britain AL, Jalink K, Rich TC, Leavesley SJ. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry A 2018; 93:1029-1038. [PMID: 30176184 DOI: 10.1002/cyto.a.23572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022]
Abstract
Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.
Collapse
Affiliation(s)
- Naga S Annamdevula
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Rachel Sweat
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - John R Griswold
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Kenny Trinh
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama
| | - Chase Hoffman
- Medical Sciences, University of South Alabama, Mobile, Alabama
| | - Savannah West
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama
| | - Joshua Deal
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Andrea L Britain
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Kees Jalink
- The Netherlands Cancer Institute and van Leeuwenhoek Center for Advanced Microscopy, Amsterdam, the Netherlands
| | - Thomas C Rich
- Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama.,College of Engineering, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
27
|
Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Front Pharmacol 2018; 9:332. [PMID: 29740315 PMCID: PMC5925456 DOI: 10.3389/fphar.2018.00332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Jackson Gratwohl
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Mia Cozad
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
28
|
Johnstone TB, Smith KH, Koziol-White CJ, Li F, Kazarian AG, Corpuz ML, Shumyatcher M, Ehlert FJ, Himes BE, Panettieri RA, Ostrom RS. PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by β 2-Adrenergic Receptors and Adenylyl Cyclase 6. Am J Respir Cell Mol Biol 2018; 58:530-541. [PMID: 29262264 PMCID: PMC5894499 DOI: 10.1165/rcmb.2017-0294oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Two cAMP signaling compartments centered on adenylyl cyclase (AC) exist in human airway smooth muscle (HASM) cells, one containing β2-adrenergic receptor AC6 and another containing E prostanoid receptor AC2. We hypothesized that different PDE isozymes selectively regulate cAMP signaling in each compartment. According to RNA-sequencing data, 18 of 24 PDE genes were expressed in primary HASM cells derived from age- and sex-matched donors with and without asthma. PDE8A was the third most abundant of the cAMP-degrading PDE genes, after PDE4A and PDE1A. Knockdown of PDE8A using shRNA evoked twofold greater cAMP responses to 1 μM forskolin in the presence of 3-isobutyl-1-methylxanthine. Overexpression of AC2 did not alter this response, but overexpression of AC6 increased cAMP responses an additional 80%. We examined cAMP dynamics in live HASM cells using a fluorescence sensor. PF-04957325, a PDE8-selective inhibitor, increased basal cAMP concentrations by itself, indicating a significant basal level of cAMP synthesis. In the presence of an AC inhibitor to reduce basal signaling, PF-04957325 accelerated cAMP production and increased the inhibition of cell proliferation induced by isoproterenol, but it had no effect on cAMP concentrations or cell proliferation regulated by prostaglandin E2. Lipid raft fractionation of HASM cells revealed PDE8A immunoreactivity in buoyant fractions containing caveolin-1 and AC5/6 immunoreactivity. Thus, PDE8 is expressed in lipid rafts of HASM cells, where it specifically regulates β2-adrenergic receptor AC6 signaling without effects on signaling by the E prostanoid receptors 2/4-AC2 complex. In airway diseases such as asthma and chronic obstructive pulmonary disease, PDE8 may represent a novel therapeutic target to modulate HASM responsiveness and airway remodeling.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Airway Remodeling
- Asthma/enzymology
- Asthma/genetics
- Asthma/pathology
- Asthma/physiopathology
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Humans
- Membrane Microdomains/enzymology
- Membrane Microdomains/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Respiratory System/enzymology
- Respiratory System/pathology
- Respiratory System/physiopathology
- Second Messenger Systems
- Time Factors
Collapse
Affiliation(s)
- Timothy B. Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kaitlyn H. Smith
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Cynthia J. Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Fengying Li
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Austin G. Kazarian
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maia L. Corpuz
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Frederick J. Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
29
|
Johnstone TB, Agarwal SR, Harvey RD, Ostrom RS. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Mol Pharmacol 2018; 93:270-276. [PMID: 29217670 PMCID: PMC5820540 DOI: 10.1124/mol.117.110825] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes.
Collapse
Affiliation(s)
- Timothy B Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Shailesh R Agarwal
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Robert D Harvey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (T.B.J., R.S.O.); and Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno Nevada (S.R.A., R.D.H.)
| |
Collapse
|
30
|
Abstract
3′,5′-cyclic adenosine monophosphate (cAMP) signalling plays a major role in the cardiac myocyte response to extracellular stimulation by hormones and neurotransmitters. In recent years, evidence has accumulated demonstrating that the cAMP response to different extracellular agonists is not uniform: depending on the stimulus, cAMP signals of different amplitudes and kinetics are generated in different subcellular compartments, eliciting defined physiological effects. In this review, we focus on how real-time imaging using fluorescence resonance energy transfer (FRET)-based reporters has provided mechanistic insight into the compartmentalisation of the cAMP signalling pathway and allowed for the precise definition of the regulation and function of subcellular cAMP nanodomains.
Collapse
|
31
|
Dale P, Head V, Dowling MR, Taylor CW. Selective inhibition of histamine-evoked Ca 2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells. Cell Calcium 2017; 71:53-64. [PMID: 29604964 PMCID: PMC5893132 DOI: 10.1016/j.ceca.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/29/2023]
Abstract
β2-adrenoceptors, via cAMP and PKA, inhibit histamine-evoked Ca2+ signals in human bronchial airway smooth muscle cells. Responses to other Ca2+-mobilizing receptors are unaffected or minimally affected by cAMP. There is no consistent relationship between the amounts of cAMP produced by different stimuli and inhibition of histamine-evoked Ca2+ release. Local delivery of cAMP within hyperactive signaling junctions stimulates PKA. PKA inhibits an early step in the signaling pathway activated by H1 histamine receptors.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.
Collapse
Affiliation(s)
- Philippa Dale
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Victoria Head
- Novartis Institutes for BioMedical Research, Fabrikstrasse, CH-4056, Basel, Switzerland
| | - Mark R Dowling
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Colin W Taylor
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
32
|
Agarwal SR, Miyashiro K, Latt H, Ostrom RS, Harvey RD. Compartmentalized cAMP responses to prostaglandin EP 2 receptor activation in human airway smooth muscle cells. Br J Pharmacol 2017; 174:2784-2796. [PMID: 28603838 DOI: 10.1111/bph.13904] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies indicate that prostaglandin EP2 receptors selectively couple to AC2 in non-lipid raft domains of airway smooth muscle (ASM) cells, where they regulate specific cAMP-dependent responses. The goal of the present study was to identify the cellular microdomains where EP2 receptors stimulate cAMP production. EXPERIMENTAL APPROACH FRET-based cAMP biosensors were targeted to different subcellular locations of primary human ASM cells. The Epac2-camps biosensor, which expresses throughout the cell, was used to measure bulk cytoplasmic responses. Epac2-MyrPalm and Epac2-CAAX were used to measure responses associated with lipid raft and non-raft regions of the plasma membrane respectively. Epac2-NLS was used to monitor responses at the nucleus. KEY RESULTS Activation of AC with forskolin or β2 -adrenoceptors with isoprenaline increased cAMP in all subcellular locations. Activation of EP2 receptors with butaprost produced cAMP responses that were most readily detected by the non-raft and nuclear sensors, but only weakly detected by the cytosolic sensor and not detected at all by the lipid raft sensor. Exposure to rolipram, a PDE4 inhibitor, unmasked the ability of EP2 receptors to increase cAMP levels associated with lipid raft domains. Overexpression of AC2 selectively increased EP2 receptor-stimulated production of cAMP in non-raft membrane domains. CONCLUSIONS AND IMPLICATIONS EP2 receptor activation of AC2 leads to cAMP production in non-raft and nuclear compartments of human ASMs, while β2 adrenoceptor signalling is broadly detected across microdomains. The activity of PDE4 appears to play a role in maintaining the integrity of compartmentalized EP2 receptor responses in these cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Htun Latt
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|