1
|
Hassanain HA, El Wakeel LM, Khorshid H, Ahmed MA. Colchicine effect on biomarkers of cardiac remodelling and atherosclerosis in ST-elevation myocardial infarction: A randomized controlled trial. Br J Clin Pharmacol 2024. [PMID: 39359014 DOI: 10.1111/bcp.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Owing to its underlying inflammatory nature, atherosclerotic cardiovascular disease remains the leading global cause of mortality, particularly post-ST-elevation myocardial infarction (STEMI), a condition with significant risk for further cardiovascular events and mortality. This study aimed to investigate colchicine's effect on inflammation, cardiac remodelling and atherosclerotic risk in STEMI patients. METHODS We conducted a randomized controlled study on 88 STEMI patients undergoing percutaneous coronary intervention. Eligible patients were randomly assigned to 1 of 2 groups. The control group received the guideline-directed medical therapy for STEMI, and the test group received guideline-directed medical therapy and 0.5 mg colchicine twice daily for 3 months. The soluble suppressor of tumorigenicity (sST2), interleukin-1β, lipid profile parameters, triglyceride (TG)/high-density lipoprotein (HDL-C) ratio levels and left ventricular ejection fraction were evaluated for patients at baseline and the end of the 3 months. RESULTS No significant effects were reported for colchicine on sST2, interleukin-1β levels or left ventricular ejection fraction. Colchicine significantly lowered TG levels vs. controls, 134 (46-353) vs. 176 (72-825) respectively, P = .02, as well as TG/HDL-C ratio levels, 4.16 (2.75-5.24) vs. 5.11 (3.51-8.33),` respectively, P = .024. sST2 levels of the studied cohort were positively correlated with their TG/HDL-C ratio levels (R = .459, P < .001) at the end of follow-up. CONCLUSION Our study highlights a promising impact of colchicine on atherosclerosis and cardiac remodelling factors in STEMI patients. Colchicine significantly reduced TG levels and TG/HDL-C ratio and was safe and well tolerated. Larger long-term studies powered to assess clinical outcomes of remodelling are necessary to confirm its beneficial effects in STEMI. CLINICALTRIAL GOV REGISTRATION ID NCT06054100.
Collapse
Affiliation(s)
| | | | - Hazem Khorshid
- Cardiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Adel Ahmed
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Sadiq MW, Yu H, Åstrand M, Scott IC, Williams A, Hewitt L, White N, Killick H, Gavala M, Cohen ES, Reid F, Kell C, Pandya H, Jimenez E. Population pharmacokinetic/target engagement modelling of tozorakimab in healthy volunteers and patients with chronic obstructive pulmonary disease. Br J Clin Pharmacol 2024. [PMID: 39183511 DOI: 10.1111/bcp.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
AIMS This study describes the pharmacokinetic (PK)/target engagement (TE) relationship of tozorakimab, an anti-interleukin (IL)-33 antibody, by building a mechanistic population PK/TE model using phase 1 biomarker data. METHODS The analysis included tozorakimab PK and TE in serum assessed in 60 tozorakimab-treated participants, including healthy adults and patients with mild chronic obstructive pulmonary disease. Scenarios evaluated three dose frequencies (once every 2, 4 or 6 weeks) administered subcutaneously at seven doses of tozorakimab (30, 60, 90, 120, 150, 300 or 600 mg). For each dose, simulations were performed with 5000 virtual individuals to predict systemic TE. Inhibition of IL-33/soluble ST2 (sST2) complex levels at trough PK at steady state was assessed in each dosing scenario. The PK/TE modelling analyses were performed using a nonlinear mixed-effect modelling approach. RESULTS The final two-compartment PK model with tozorakimab binding IL-33 in the central compartment adequately described the systemic PK and TE of tozorakimab at population and individual levels. The mean PK parameter estimates of absorption rate, central volume of distribution and clearance were 0.48 (90% confidence interval [CI]: 0.40-0.59, 1/day), 12.64 (90% CI: 8.60-18.62, L) and 0.87 (90% CI: 0.65-1.16, L/day), respectively. Consistent with the observed value, tozorakimab bioavailability was 45%. For all three dose frequencies, predicted inhibition of systemic IL-33/sST2 levels was more than 95% at doses greater than 90 mg. CONCLUSIONS The PK/TE model reliably quantified the relationship between PK and systemic TE of tozorakimab, with potential utility for predicting clinical dose-response relationships and supporting clinical dose selection.
Collapse
Affiliation(s)
- Muhammad Waqas Sadiq
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hongtao Yu
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Magnus Åstrand
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Adam Williams
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa Hewitt
- GxP Testing Lab, Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicholas White
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Monica Gavala
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Fred Reid
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Chris Kell
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hitesh Pandya
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eulalia Jimenez
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Barcelona, Spain
| |
Collapse
|
3
|
Longuespée R, Kunz J, Fresnais M, Foerster KI, Burhenne J, Thomas M, Kazdal D, Stenzinger A, Christopoulos P, Haefeli WE. Therapeutic drug monitoring of osimertinib in non-small cell lung cancer and short bowel syndrome: A case report. Br J Clin Pharmacol 2024; 90:344-349. [PMID: 37815301 DOI: 10.1111/bcp.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/17/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Short bowel syndrome (SBS) following extensive intestinal resection is often characterized by impaired absorption of orally administered drugs, including tyrosine kinase inhibitors (TKI). We report the case of a patient with EGFR-mutated non-small cell lung carcinoma treated with 80 mg/day of the TKI osimertinib who achieved partial response of the tumour, but was subsequently subjected to a double-barrelled jejunostomy due to ileus. Due to the development of SBS after the bypass surgery, plasma concentrations of osimertinib were monitored using mass spectrometry. The therapeutic drug monitoring confirmed a malabsorption of osimertinib in the patient (108 ng/mL, which is below the 5th percentile of the expected plasma concentration) and was useful to guide adjustments of TKI dosing in order to achieve adequate blood levels (161 ng/mL after increase of the dose to 120 mg/day) in order to maintain tumour control.
Collapse
Affiliation(s)
- Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- Metabolic Crosstalk in Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Kunz
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
- Medical Care Center for Oncology and Hematology, GRN, Sinsheim, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital and National Center for Tumor Diseases, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Li X, Liu R, Liu W, Liu X, Fan Z, Cui J, Wu Y, Yin H, Lin Q. Panax quinquefolium L. and Salvia miltiorrhiza Bunge. Enhances Angiogenesis by Regulating the miR-155-5p/HIF-1α/VEGF Axis in Acute Myocardial Infarction. Drug Des Devel Ther 2023; 17:3249-3267. [PMID: 37954484 PMCID: PMC10638910 DOI: 10.2147/dddt.s426345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Background Combination of Panax quinquefolium L and Salvia miltiorrhiza Bunge. (PS) has been widely used in the clinical treatment of ischemic heart disease. The purpose of this study was to explore the therapeutic effect and mechanism of PS on angiogenesis in rats after acute myocardial infarction (AMI). Methods A rat model of AMI was established by ligating the left anterior descending (LAD) artery. The grouping and administration scheme were as follows: sham group, model group, PS low-dose (PS-L) group, PS high-dose (PS-H) group, PX-478 group and angiotensin converting enzyme inhibitor (ACEI) group. After 28 days of treatment, echocardiography, myocardial infarct size, some angiogenesis markers and the miR-155-5p/HIF-1α/VEGF axis were measured. Results PS improved cardiac structure and function, reduced infarct size, and alleviated myocardial fibrosis and inflammatory cell infiltration in AMI rats. Mechanistically, PS enhanced the expression of HGF and bFGF in serum, increased the levels of MVD and CD31 in myocardial tissues, and inhibited the activation of the miR-155-5p/HIF-1α/VEGF pathway, which ultimately promoted angiogenesis. In addition, the regulatory effect of PS on angiogenesis was partly abolished by PX-478. Conclusion PS increased the expression of MVD and CD31 in the myocardium and stimulated angiogenesis. The above effects of PS may be associated with the inhibition of the miR-155-5p/HIF-1α/VEGF axis.
Collapse
Affiliation(s)
- Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Rongpeng Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Wei Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Xin Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zongjing Fan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Jie Cui
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Yang Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Huijun Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People’s Republic of China
| | - Quan Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| |
Collapse
|
5
|
He JD, Parker JD. The effect of vitamin C on nitroglycerin-mediated vasodilation in individuals with and without the aldehyde dehydrogenase 2 polymorphism. Br J Clin Pharmacol 2023; 89:2767-2774. [PMID: 37101414 DOI: 10.1111/bcp.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS To mediate its pharmacodynamic effects, glyceryl trinitrate (GTN) requires bioactivation, by which it releases nitric oxide or a nitric oxide moiety. The exact mechanism of GTN bioactivation remains uncertain. Mitochondrial aldehyde dehydrogenase (ALDH-2) has been proposed as the primary enzyme responsible for this bioactivation process. Evidence for the importance of ALDH-2 in GTN bioactivation has been inconsistent, particularly in human models. An alternative hypothesis suggests that decreased ALDH-2 activity leads to accumulation of reactive cytotoxic aldehydes, which either inhibit the vasoactive product(s) of GTN or impair other enzymatic pathways involved in the bioactivation of GTN. We investigated the effect of supplemental vitamin C on vascular responses to GTN in healthy volunteers of East Asian descent, of whom 12 with and 12 without the ALDH-2 polymorphism participated. METHODS Subjects underwent 2 sequential brachial artery infusions of GTN at rates of 5, 11 and 22 nmol/min, separated by a 30-min washout period. The GTN infusions were carried out in the presence and absence of vitamin C using a randomized, crossover design. Venous occlusion plethysmography was used to measure forearm blood flow responses to GTN. RESULTS Compared to subjects with functional ALDH-2, the variant group exhibited blunted hemodynamic responses to intra-arterial GTN infusions, although this reduction in response was not statically significant. Contrary to our hypothesis, vitamin C had an inhibitory effect on GTN mediated vasodilation as compared to GTN during saline in both groups. CONCLUSION We conclude that vitamin C did not augment the acute vascular response to GTN in those with the ALDH-2 polymorphism.
Collapse
Affiliation(s)
- Jerry D He
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - John D Parker
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Division of Cardiology, Department of Medicine, Sinai Health System and the Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
- The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| |
Collapse
|
6
|
Cox DS, Van Eyck L, Pawlak S, Beckerman B, Linn C, Ginman K, Thay Cha Y, LaBadie RR, Shi H, Damle B. Effects of itraconazole and carbamazepine on the pharmacokinetics of nirmatrelvir/ritonavir in healthy adults. Br J Clin Pharmacol 2023; 89:2867-2876. [PMID: 37184075 DOI: 10.1111/bcp.15788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
AIMS The objective of this study was to evaluate the effects of a strong cytochrome P450 family (CYP) 3A4 inhibitor (itraconazole) and inducer (carbamazepine) on the pharmacokinetics and safety of nirmatrelvir/ritonavir. METHODS Pharmacokinetics were measured in two phase 1, open-label, fixed-sequence studies in healthy adults. During Period 1, oral nirmatrelvir/ritonavir 300 mg/100 mg twice daily was administered alone; during Period 2, it was administered with itraconazole or carbamazepine. Nirmatrelvir/ritonavir was administered as repeated doses or one dose in the itraconazole and carbamazepine studies, respectively. Nirmatrelvir and ritonavir plasma concentrations and adverse event (AE) rates in both periods were analysed. RESULTS Each study included 12 participants. Following administration of nirmatrelvir/ritonavir with itraconazole (Test) or alone (Reference), test/reference ratios of the adjusted geometric means (90% CIs) for nirmatrelvir AUCtau and Cmax were 138.82% (129.25%, 149.11%) and 118.57% (112.50%, 124.97%), respectively. After administration of nirmatrelvir/ritonavir with carbamazepine (Test) or alone (Reference), test/reference ratios (90% CIs) of the adjusted geometric means for nirmatrelvir AUCinf and Cmax were 44.50% (33.77%, 58.65%) and 56.82% (47.04%, 68.62%), respectively. Nirmatrelvir/ritonavir was generally safe when administered with or without itraconazole or carbamazepine. No serious or severe AEs were reported. CONCLUSIONS Coadministration of a strong CYP3A4 inhibitor with a strong CYP3A inhibitor used for pharmacokinetic enhancement (i.e., ritonavir) resulted in small increases in plasma nirmatrelvir exposure, whereas coadministration of a strong inducer substantially decreased systemic nirmatrelvir and ritonavir exposures suggesting a contraindication in the label with CYP3A4 strong inducers. Administration of nirmatrelvir/ritonavir alone or with itraconazole or carbamazepine was generally safe.
Collapse
Affiliation(s)
- Donna S Cox
- Global Product Development, Pfizer Inc., Collegeville, Pennsylvania, USA
| | - Lien Van Eyck
- Clinical Research Unit, Pfizer Inc., Brussels, Belgium
| | - Sylvester Pawlak
- Clinical Research Unit, Pfizer Inc., New Haven, Connecticut, USA
| | - Bruce Beckerman
- Clinical Development and Operations, Pfizer Inc., New York, New York, USA
| | - Carlos Linn
- Global Product Development, Pfizer Inc., Taipei, Taiwan
| | - Katherine Ginman
- Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Youliny Thay Cha
- Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Robert R LaBadie
- Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Haihong Shi
- Global Product Development, Pfizer Inc., Groton, Connecticut, USA
| | - Bharat Damle
- Global Product Development, Pfizer Inc., New York, New York, USA
| |
Collapse
|
7
|
Liu J, Solan R, Wolk R, Plotka A, O'Gorman MT, Winton JA, Kaplan J, Purohit VS. Evaluation of the effect of ritlecitinib on the pharmacokinetics of caffeine in healthy participants. Br J Clin Pharmacol 2023; 89:2208-2215. [PMID: 36808638 DOI: 10.1111/bcp.15695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
AIMS This clinical study was conducted to evaluate the impact of ritlecitinib on the pharmacokinetics of caffeine, a cytochrome P450 1A2 (CYP1A2) substrate. METHODS In this single-centre, single-arm, open-label, fixed-sequence study, healthy participants received a single 100-mg dose of caffeine on 2 separate occasions: on Day 1 of Period 1 as monotherapy and on Day 8 of Period 2 after oral administration of ritlecitinib 200 mg once daily for 8 days. Serial blood samples were collected and analysed using a validated liquid chromatography-mass spectrometry assay. Pharmacokinetic parameters were estimated by using a noncompartmental method. Safety was monitored by physical examination, vital signs, electrocardiograms and laboratory assessments. RESULTS Twelve participants were enrolled and completed the study. Coadministration of caffeine 100 mg in the presence of steady-state levels of ritlecitinib (200 mg once daily) increased caffeine exposure compared with caffeine given alone. Area under the curve to infinity and maximum concentration of caffeine increased by approximately 165 and 10%, respectively, when coadministered with ritlecitinib. The ratios of the adjusted geometric means (90% confidence interval) for caffeine area under the curve to infinity and maximum concentration were 265.14% (234.12-300.26%) and 109.74% (103.90-15.91%), respectively, when caffeine was coadministered with steady-state ritlecitinib (test) compared with its administration alone (reference). Multiple doses of ritlecitinib when coadministered with a single dose of caffeine were generally safe and well tolerated in healthy participants. CONCLUSION Ritlecitinib is a moderate inhibitor of CYP1A2 and can increase systemic exposures of CYP1A2 substrates.
Collapse
Affiliation(s)
- Jian Liu
- Clinical Pharmacology, Pfizer Investment Co., Ltd., 9/F, Tower B, Minmetals Plaza, Dongcheng District, Beijing, 100010, China
| | - Rohit Solan
- Pfizer Research & Development UK Limited, Hurley, UK
| | - Robert Wolk
- Pfizer Global Research & Development, Groton, Connecticut, USA
| | - Anna Plotka
- Biostatistics, Pfizer Inc., Collegeville, Pennsylvania, USA
| | | | | | | | - Vivek S Purohit
- Clinical Pharmacology, Pfizer Inc., Groton, Connecticut, USA
| |
Collapse
|
8
|
Anliker-Ort M, Dingemanse J, Farine H, Groenen P, Kornberger R, van den Anker J, Kaufmann P. Multiple-ascending doses of ACT-1014-6470, an oral complement factor 5a receptor 1 (C5a 1 receptor) antagonist: Tolerability, pharmacokinetics and target engagement. Br J Clin Pharmacol 2023; 89:380-389. [PMID: 36000981 DOI: 10.1111/bcp.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS Targeting the complement factor 5a receptor 1 (C5a1 receptor) offers potential to treat various autoimmune diseases. The C5a1 receptor antagonist ACT-1014-6470 was well tolerated in a single-ascending dose study in healthy subjects. This double-blind, randomized, placebo-controlled study aimed to investigate the safety, tolerability, pharmacokinetics (PK) and target engagement of multiple-ascending doses of ACT-1014-6470. METHODS Per dose level, 10 healthy male and female subjects of nonchildbearing potential (1:1 sex ratio) were enrolled to assess 30, 60 and 120 mg ACT-1014-6470 administered twice daily for 4.5 days under fed conditions. Adverse events, clinical laboratory data, vital signs, electrocardiogram and PK blood samples were collected up to 120 h post last dose and ex vivo stimulated matrix metalloproteinase 9 was quantified as target engagement biomarker. At the 60-mg dose level, PK samples were collected until 8 weeks post last dose. RESULTS The total adverse event number was 57 and no treatment-related safety pattern was apparent. At steady state, ACT-1014-6470 reached maximum plasma concentrations after 2-3 h and the half-life estimated up to Day 10 was 115-146 h across dose levels. Exposure parameters increased dose-proportionally, steady state was attained between Day 3-5, and ACT-1014-6470 accumulated 2-fold. At the 60-mg dose level, ACT-1014-6470 was quantifiable until 8 weeks after the last dose. Matrix metalloproteinase 9 release was suppressed to endogenous background concentrations up to the last sampling time point, confirming sustained target engagement of ACT-1014-6470. CONCLUSION The compound was generally safe and well tolerated at all dose levels, warranting further clinical investigations.
Collapse
Affiliation(s)
- Marion Anliker-Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
- Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Hervé Farine
- Translational Biomarkers, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Peter Groenen
- Translational Biomarkers, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - John van den Anker
- Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
9
|
Aldahdooh J, Vähä-Koskela M, Tang J, Tanoli Z. Using BERT to identify drug-target interactions from whole PubMed. BMC Bioinformatics 2022; 23:245. [PMID: 35729494 PMCID: PMC9214985 DOI: 10.1186/s12859-022-04768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug-target interactions (DTIs) are critical for drug repurposing and elucidation of drug mechanisms, and are manually curated by large databases, such as ChEMBL, BindingDB, DrugBank and DrugTargetCommons. However, the number of curated articles likely constitutes only a fraction of all the articles that contain experimentally determined DTIs. Finding such articles and extracting the experimental information is a challenging task, and there is a pressing need for systematic approaches to assist the curation of DTIs. To this end, we applied Bidirectional Encoder Representations from Transformers (BERT) to identify such articles. Because DTI data intimately depends on the type of assays used to generate it, we also aimed to incorporate functions to predict the assay format. RESULTS Our novel method identified 0.6 million articles (along with drug and protein information) which are not previously included in public DTI databases. Using 10-fold cross-validation, we obtained ~ 99% accuracy for identifying articles containing quantitative drug-target profiles. The F1 micro for the prediction of assay format is 88%, which leaves room for improvement in future studies. CONCLUSION The BERT model in this study is robust and the proposed pipeline can be used to identify previously overlooked articles containing quantitative DTIs. Overall, our method provides a significant advancement in machine-assisted DTI extraction and curation. We expect it to be a useful addition to drug mechanism discovery and repurposing.
Collapse
Affiliation(s)
- Jehad Aldahdooh
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Doctoral Programme in Computer Science, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Ziaurrehman Tanoli
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,BioICAWtech, Helsinki, Finland.
| |
Collapse
|
10
|
Loureiro AI, Rocha F, Santos AT, Singh N, Bonifácio MJ, Pinto R, Kiss LE, Soares-da-Silva P. Absorption, metabolism and excretion of opicapone in human healthy volunteers. Br J Clin Pharmacol 2022; 88:4540-4551. [PMID: 35508762 PMCID: PMC9546099 DOI: 10.1111/bcp.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Aims The absorption, metabolism and excretion of opicapone (2,5‐dichloro‐3‐(5‐[3,4‐dihydroxy‐5‐nitrophenyl]‐1,2,4‐oxadiazol‐3‐yl)‐4,6‐dimethylpyridine 1‐oxide), a selective catechol‐O‐methyltransferase inhibitor, were investigated. Methods Plasma, urine and faeces were collected from healthy male subjects following a single oral dose of 100 mg [14C]‐opicapone. The mass balance of [14C]‐opicapone and metabolic profile were evaluated. Results The recovery of total administered radioactivity averaged >90% after 144 hours. Faeces were the major route of elimination, representing 70% of the administered dose; 5% and 20% were excreted in urine and expired air, respectively. The Cmax of total radioactivity matched that of unchanged opicapone, whereas the total radioactivity remained quantifiable for a longer period, attributed to the contribution of opicapone metabolites, involving primarily 3‐O‐sulfate conjugation (58.6% of total circulating radioactivity) at the nitrocatechol ring. Other circulating metabolites, accounting for <10% of the radioactivity exposure, were formed by glucuronidation, methylation, N‐oxide reduction and gluthatione conjugation. Additionally, various other metabolites resulting from combinations with the opicapone N‐oxide reduced form at the 2,5‐dichloro‐4,6‐dimethylpyridine 1‐oxide moiety, including nitro reduction and N‐acetylation, reductive opening and cleavage of the 1,2,4‐oxadiazole ring and the subsequent hydrolysis products were identified, but only in faeces, suggesting the involvement of gut bacteria. Conclusion [14C]‐opicapone was fully excreted through multiple metabolic pathways. The main route of excretion was in faeces, where opicapone may be further metabolized via reductive metabolism involving the 1,2,4‐oxadiazole ring‐opening and subsequent hydrolysis.
Collapse
Affiliation(s)
- Ana I Loureiro
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Francisco Rocha
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Ana T Santos
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Nand Singh
- Quotient Sciences, Sherwood House Mere Way Ruddington Fields Ruddington Nottingham
| | | | - Rui Pinto
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Laszlo E Kiss
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal.,Department of Biomedecine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUp, Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Abbas‐Hanif A, Rezai H, Ahmed SF, Ahmed A. The impact of COVID-19 on pregnancy and therapeutic drug development. Br J Pharmacol 2022; 179:2108-2120. [PMID: 34085281 PMCID: PMC8239854 DOI: 10.1111/bph.15582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging data show that pregnant women with COVID-19 are at significantly higher risk of severe outcomes compared with non-pregnant women of similar age. This review discusses the invaluable insight revealed from vaccine clinical trials in women who were vaccinated and inadvertently became pregnant during the trial period. It further explores a number of clinical avenues in their management and proposes a drug development strategy in line with clinical trials for vaccines and drug treatments for the drug development community. Little is known of the long-term effects of COVID-19 on the mother and the baby. Our hypothesis that COVID-19 predisposes pregnant women to pre-eclampsia or hypertensive disorders during pregnancy is supported by a clinical study, and this may also adversely impact a woman's cardiovascular disease risk later in life. It may also increase a woman's risk of pre-eclampsia in subsequent pregnancy. This is an ever-evolving landscape, and early knowledge for healthcare providers and drug innovators is offered to ensure benefits outweigh the risks. COVID-19 mRNA vaccines appear to generate robust humoral immunity in pregnant and lactating women. This novel approach to vaccination also offers new ways to therapeutically tackle disorders of many unmet medical needs. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.
Collapse
Affiliation(s)
- Allyah Abbas‐Hanif
- Division of Drug DevelopmentMirZyme TherapeuticsBirminghamUK
- Department of CardiologyChelsea and Westminster Hospital NHS Foundation TrustLondonUK
| | - Homira Rezai
- Division of Drug DevelopmentMirZyme TherapeuticsBirminghamUK
| | | | - Asif Ahmed
- Division of Drug DevelopmentMirZyme TherapeuticsBirminghamUK
- School of Health SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
12
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Sharma S, Pepin X, Cheung J, Zheng L, Wei H, Townsley D, Han D, Majewski M, Ware JA, Mann J, Munugalavadla V, Sheridan L, Patel P, Gupta A, Tomkinson H. Bioavailability of acalabrutinib suspension delivered via nasogastric tube in the presence or absence of a proton pump inhibitor in healthy subjects. Br J Clin Pharmacol 2022; 88:4573-4584. [PMID: 35466438 DOI: 10.1111/bcp.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS Acalabrutinib, a selective Bruton tyrosine kinase inhibitor is approved for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. Many critically ill patients are unable to swallow and need oral medications to be delivered via a nasogastric (NG) tube. Furthermore, critically ill patients are typically administered proton-pump inhibitors (PPIs) to prevent stress ulcers. Concomitant administration with PPIs reduces acalabrutinib exposure and is not currently recommended. To evaluate acalabrutinib in subjects co-administered with PPIs who require NG delivery, a Phase 1, open-label, randomized, crossover, single-dose study was conducted in healthy subjects. METHODS The study assessed the relative bioavailability of an acalabrutinib suspension-in regular, degassed Coca-Cola®-administered via NG tube (Acala-NG) versus the pharmacokinetics (PK) of an acalabrutinib capsule administered orally with water. In addition, the PPI effect was evaluated by comparing the PK following Acala-NG in the presence or absence of rabeprazole. RESULTS Exposure of acalabrutinib and its active metabolite (ACP-5862) were comparable following administration of Acala-NG versus the oral capsule (Geo mean ratio, % ref [90% CI]: acalabrutinib AUCinf : 103 [93-113]; Cmax : 144 [120-173]). In addition, exposure was similar following administration of Acala-NG with and without a PPI (Geo mean ratio, % ref [90% CI]: acalabrutinib AUCinf : 105 [79-138]; Cmax : 95 [66-137]). No safety or tolerability concerns were observed, and all adverse events were mild and resolved without treatment. CONCLUSIONS Acala-NG with or without a PPI, is safe and well-tolerated without impeding bioavailability.
Collapse
Affiliation(s)
- Shringi Sharma
- Quantitative Clinical Pharmacology, AstraZeneca, South San Francisco, CA, USA
| | - Xavier Pepin
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Jean Cheung
- Hematology, Research and Development, AstraZeneca, South San Francisco, CA, USA
| | - Lianqing Zheng
- Late Hematology Statistics, Oncology Biometrics, AstraZeneca, South San Francisco, CA, USA
| | - Hua Wei
- Acerta Pharma (a member of the AstraZeneca Group), South San Francisco, CA, USA
| | - Danielle Townsley
- Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - David Han
- Parexel International Early Phase Clinical Unit (Los Angeles), Glendale, CA, USA
| | - Michal Majewski
- Oncology Research and Development, Clinical Operations, AstraZeneca, Toronto, Canada
| | - Joseph A Ware
- Acerta Pharma (a member of the AstraZeneca Group), South San Francisco, CA, USA
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Veerendra Munugalavadla
- Translational Medicine, Hematology, Research and Early Development, AstraZeneca, South San Francisco, CA, USA
| | - Louise Sheridan
- Product Leadership, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Priti Patel
- Clinical Development Hematology, Oncology Research and Development, AstraZeneca, South San Francisco, CA, USA
| | - Ashok Gupta
- Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Helen Tomkinson
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| |
Collapse
|
14
|
Cabrera-Becerra SE, Vera-Juárez G, García-Rubio VG, Ocampo-Ortega SA, Blancas-Napoles CM, Aguilera-Mendez A, Romero-Nava R, Huang F, Hong E, Villafaña S. siRNA knockdown of Angiopoietin 2 significantly reduces neovascularization in diabetic rats. J Drug Target 2022; 30:673-686. [PMID: 35289235 DOI: 10.1080/1061186x.2022.2052888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes is a disease that leads to proliferative diabetic retinopathy (PDR), which is associated with an increase of new vessels formation due to an overexpression of angiogenic factors, such as angiopoietin 2 (ANGPT2). The aim of this work was to design a siRNA targeting ANGPT2 to decrease the retinal neovascularization associated with PDR. Adult male Wistar rats weighing 325-375 g were used. Diabetes was induced by a single dose of streptozotocin (STZ, 60 mg/kg i.p.). The siRNAs were designed, synthesized and administered intravitreally at the beginning of diabetes induction (t0), and after 4 weeks of diabetes evolution (t4), subsequently evaluated the retinal neovascularization (junctions and lacunarity) and ANGPT2 expression in the retina by RT-PCR, after 4 weeks of the siRNAs administration. The results showed that the administration of STZ produced significantly increases in blood glucose levels, retinal neovascularization (augmented junctions and lower lacunarity) and ANGPT2 expression, while the administration the ANGPT2-siRNAs at different groups (t0 and t4) reduces the junctions and increases the lacunarity in diabetic rats. Therefore, we conclude that the administration of siRNAs targeting ANGPT2 could be an option to decrease the retinal neovascularization associated with PDR and halt the progression of blindness caused by diabetes.
Collapse
Affiliation(s)
- Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Vera-Juárez
- Laboratorio de neurofarmacología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Vanessa Giselle García-Rubio
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Adrián Ocampo-Ortega
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, México
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México "Federico Gómez", Ciudad de México, México
| | - Enrique Hong
- Departamento de Neurofarmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
15
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Bian Y, Meng J, Ma S, Li G, Wang Y, Li S, Liu L, Huang C, Zhang H, Zhong D, Miao L. Metabolite profiles and mass balance of fuzuloparib, a novel poly (ADP-ribose) polymerase (PARP) inhibitor, in subjects with advanced solid cancers. Br J Clin Pharmacol 2022; 88:3307-3320. [PMID: 35112382 DOI: 10.1111/bcp.15256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
AIM This trial (NCT04013048) investigated the metabolite profiles, mass balance and pharmacokinetics of fuzuloparib, a novel poly (ADP-ribose) polymerase (PARP) inhibitor, in subjects with advanced solid cancers. METHODS A single dose of 150 mg [14 C]fuzuloparib was administered to five subjects with advanced solid cancers. Blood, urine and fecal samples were collected, analyzed for radioactivity, unchanged fuzuloparib and profiled for metabolites. The safety of the medicine was assessed during the study. RESULTS The maximum concentration (Cmax ) of the total radioactivity (TRA) and unchanged fuzuloparib in plasma was 5.39 μg eq/mL and 4.19 μg/mL, respectively, at approximately 4 h post dose. The exposure (AUC0-t ) of fuzuloparib accounted for 70.7% of the TRA in plasma, and no single metabolite was observed accounting for more than 10% of the plasma TRA. The recovery of TRA in excreta was 103.3±3.8% in 288 h, including 59.1±9.9% in urine and 44.2±10.8% in feces. Sixteen metabolites of fuzuloparib were identified, including mono-oxidation (M1), hydrogenation (M2), di-oxidation (M3), trioxidation (M4), glucuronidation (M5, M7, M8) and de-ethylation (M6) products, and there was no specific binding between these metabolites and blood cells. Aliphatic hydroxylated fuzuloparib (M1-1) was the primary metabolite in the excreta, accounting for more than 40% of the dose for subjects. There were no serious adverse events observed in the study. CONCLUSION Fuzuloparib was widely metabolized and excreted completely through urine and feces in subjects with advanced solid cancer. Unchanged fuzuloparib was indicated to be the primary drug-related compound in circulation. [14 C]fuzuloparib was well-tolerated at the study dose.
Collapse
Affiliation(s)
- Yicong Bian
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Meng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ma
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Yuya Wang
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Shaorong Li
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Linsheng Liu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liyan Miao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
18
|
Cupido AJ, Asselbergs FW, Natarajan P, Ridker PM, Hovingh GK, Schmidt AF. Dissecting the IL-6 pathway in cardiometabolic disease: a Mendelian randomization study on both IL6 and IL6R. Br J Clin Pharmacol 2021; 88:2875-2884. [PMID: 34931349 PMCID: PMC9303316 DOI: 10.1111/bcp.15191] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chronic inflammation is a risk factor for cardiovascular disease. IL-6 signaling perturbation through IL-6 or IL-6R blockade may have potential benefit on cardiovascular risk. It is unknown whether targeting either IL-6 or IL-6 receptor may result in similar effects on CVD and adverse events. We compared the anticipated effects of targeting IL-6 and IL-6 receptor on cardiometabolic risk and potential side effects. METHODS We constructed four instruments: two main instruments with genetic variants in the IL6 and IL6R loci weighted for their association with CRP, and two after firstly filtering variants for their association with IL-6 or IL-6R expression. Analyses were performed for coronary artery disease (CAD), ischemic stroke, atrial fibrillation (AF), heart failure, type 2 diabetes (T2D), rheumatoid arthritis (RA), infection endpoints, and quantitative hematological, metabolic, and anthropometric parameters. RESULTS A 1 mg/L lower CRP by the IL6 instrument was associated with lower CAD (OR 0.86, 95% CI 0.77;0.96), AF, and T2D risk. A 1mg/L lower CRP by the IL6R instrument was associated with lower CAD (OR 0.90, 95% CI 0.86;0.95), any stroke and ischemic stroke, AF, RA risk and higher pneumonia risk. The eQTL filtered results were in concordance with the main results, but with wider confidence intervals. CONCLUSIONS IL-6 signalling perturbation by either IL6 or IL6R genetic instruments is associated with a similar risk reduction for multiple cardiometabolic diseases, suggesting that both IL-6 and IL-6R are potential therapeutic targets to lower CVD. Moreover, IL-6 rather than IL-6R inhibition might have a more favorable pneumonia risk.
Collapse
Affiliation(s)
- Arjen J Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, US.,Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, US
| | | | - Paul M Ridker
- Divisions of Preventive Medicine and Cardiovascular Medicine, Department of Medicine, Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - A Floriaan Schmidt
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Shiratori‐Hayashi M, Tsuda M. Spinal glial cells in itch modulation. Pharmacol Res Perspect 2021; 9:e00754. [PMID: 34677000 PMCID: PMC8532133 DOI: 10.1002/prp2.754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
Glial cells are non-neuronal cells in the nervous system that are electrically non-excitable and outnumber neurons in humans. Glial cells have attracted attention in recent years for their active involvement in the regulation of neuronal activity, suggesting their contribution to the pathogenesis and progression of neurological diseases. Studies have shown that astrocytes, a type of glial cell, are activated in the spinal cord in response to skin inflammation and contribute to the exacerbation of chronic itch. This review summarizes the current knowledge about the role of astrocytes and other glial cells in the modulation of itch processing and the mechanism of their activation under itch conditions.
Collapse
Affiliation(s)
- Miho Shiratori‐Hayashi
- Department of Molecular and System PharmacologyGraduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Tsuda
- Department of Molecular and System PharmacologyGraduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
20
|
Wu HX, Zhuo KQ, Wang K. Efficacy of targeted therapy in patients with HER2-positive non-small cell lung cancer: A systematic review and meta-analysis. Br J Clin Pharmacol 2021; 88:2019-2034. [PMID: 34820879 PMCID: PMC9302639 DOI: 10.1111/bcp.15155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Anti-human epidermal growth factor receptor 2 (HER2) therapy is an effective treatment for HER2-positive gastric and breast malignancies. However, the efficacy of HER2-targeted therapy in non-small cell lung cancer (NSCLC) patients with HER2 alterations remains controversial. We searched studies on HER2-targeted therapy in NSCLC patients that reported objective response rate (ORR), disease control rate (DCR) and progressionfree survival (PFS) published from database inception to 30 May 2021. A total of 32 trials involving 958 patients were included. The ORRs of HER2-TKIs targeted therapy, humanised monoclonal antibody, trastuzumab-based treatment and antibody-drug conjugate (ADC) (T-DM1) were 22% (95% CI 11-31), 23% (95% CI 20-65), 26% (95% CI 14-39) and 16% (95% CI _6-37), while that of ADC (DS-8201) was 60% (95% CI 35-85). The DCRs of these groups were 59% (95% CI 49-69), 39% (95% CI _9-88), 63% (95% CI 37-89), 31% (95% CI 4-58) and 87% (95% CI 62-112), respectively. In the subgroup analysis, numerically higher ORRs and DCRs were observed in the poziotinib (38%; 75%) and pyrotinib (35%; 83%) groups. The median PFSs of these groups were 5.51 months, 3.09 months, 4.61 months, 2.65 months and 12.04 months, respectively. HER2-targeted therapy can be considered an acceptable treatment strategy for NSCLC patients with HER2 alterations. In particular, ADC (DS-8201), pyrotinib and poziotinib demonstrated promising anti-tumour activity in HER2-positive NSCLC.
Collapse
Affiliation(s)
- Hong-Xia Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kai-Quan Zhuo
- Department of Neurosurgery, Suining Municipal Hospital of TCM, Suining, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, Jorge-Mora A, Crespo-Gomar A, López-Fagúndez M, Pazos-Pérez A, Gualillo O, Belén Bravo S, Gómez R. Amitriptyline blocks innate immune responses mediated by TLR4 & IL1R: preclinical and clinical evidence in OA and gout. Br J Pharmacol 2021; 179:270-286. [PMID: 34643941 PMCID: PMC9300168 DOI: 10.1111/bph.15707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Osteoarthritis, a major cause of disability in developed countries does not have effective treatment. Activation of TLR4 and innate immune response factors contribute to osteoarthritis progressive cartilage degradation. There are no clinically available TLR4 inhibitors. Interestingly, the antidepressant amitriptyline could block this receptor. Thus, we evaluated amitriptyline anti‐TLR4 effects on human osteoarthritis chondrocytes in order to repurpose it as an inhibitor of innate immune response in joint inflammatory pathologies. Experimental Approach Using in silico docking analysis, RT‐PCR, siRNA, elisa, proteomics and clinical data mining of drug consumption, we explored the clinical relevance of amitriptyline blockade of TLR4‐mediated innate immune responses in human osteoarthritis chondrocytes. Key Results Amitriptyline bound TLR4 but not IL‐1 receptor. Interestingly, amitriptyline binding to TLR4 inhibited TLR4‐ and IL‐1 receptor‐mediated innate immune responses in human osteoarthritis chondrocytes, synoviocytes and osteoblasts cells. Amitriptyline reduced basal innate immune responses and promoted anabolic effects in human osteoarthritis chondrocytes. Supporting its anti‐innate immune response effects, amitriptyline down‐regulated basal and induced expression of NLRP3, an inflammasome member from IL‐1 receptor signalling linked to osteoarthritis and gout pathologies. Accordingly, mining of dissociated and aggregated drug consumption data from 107,172 elderly patients (>65 years) revealed that amitriptyline consumption was significantly associated with lower colchicine consumption associated with inflammatory gout flare treatment. Conclusion and Implications Amitriptyline blocks TLR4‐, IL‐1 receptor and NLRP3‐dependent innate immune responses. This together with clinical data amitriptyline could be repurposed for systemic or local innate immune response management in diverse joint inflammatory pathologies.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antia Crespo-Gomar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID LAB, Institute IDIS, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomics Unit, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Singh A, Strobbe D, Campanella M. Pyroptosis targeting via mitochondria: An educated guess to innovate COVID-19 therapies. Br J Pharmacol 2021; 179:2081-2085. [PMID: 34632567 PMCID: PMC8653109 DOI: 10.1111/bph.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 01/30/2023] Open
Abstract
Pyroptosis is a specialized form of inflammatory cell death which aids the defensive response against invading pathogens. Its normally tight regulation is lost during infection by the severe acute respiratory coronavirus 2 (SARS‐CoV‐2), and thus, uncontrolled pyroptosis disrupts the immune system and the integrity of organs defining the critical conditions in patients with high viral load. Molecular pathways engaged downstream of the formation and stabilization of the inflammasome, which are necessary to execute the process, have been uncovered and drugs are available for their regulation. However, the pharmacology of the upstream events, which are critical to sense and interpret the initial damage by the pathogen, is far from being elucidated. This limits our capacity to identify early markers and targets to ameliorate SARS‐CoV‐2 linked pyroptosis. Here, we focus attention on the mitochondria and pathways leading to their dysfunction, in order to elucidate the early steps of inflammasome formation and devise tools to predict and counter pathological states induced by SARS‐CoV‐2.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Daniela Strobbe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Department of Cell and Developmental Biology, Consortium for Mitochondrial Research (CfMR), University College London, London, UK
| |
Collapse
|
23
|
Yang M, Chen Q, Mei L, Wen G, An W, Zhou X, Niu K, Liu C, Ren M, Sun K, Xiao Q, Zhang L. Neutrophil elastase promotes neointimal hyperplasia by targeting toll-like receptor 4 (TLR4)-NF-κB signalling. Br J Pharmacol 2021; 178:4048-4068. [PMID: 34076894 DOI: 10.1111/bph.15583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Neointimal hyperplasia (NIH) is the fundamental cause for vascular diseases and vascular smooth muscle cell (VSMC) dysregulation has been widely implicated in NIH. Neutrophil elastase is a potential therapeutic target for multiple diseases. We investigated the role of neutrophil elastase in VSMC functions and injury-induced NIH and explored the therapeutic potential of targeting neutrophil elastase in NIH. EXPERIMENTAL APPROACH VSMCs were used to analyse the effects of neutrophil elastase. Proteomic analysis was used to identify potential neutrophil elastase targets. Artery injury model and neutrophil elastase inhibitor GW311616A were used to investigate the role of neutrophil elastase in NIH. KEY RESULTS TNF-α up-regulated neutrophil elastase in VSMCs through modulating GAPBα/Runx1/CEBPα/c-Myb signalling. Up-regulated neutrophil elastase promoted VSMC migration, proliferation and inflammation. Toll-like receptor 4 (TLR4) was identified as a target protein for neutrophil elastase in VSMCs and the TLR4/MyD88/IRAK1/TRAF6/NF-κB regulatory axis was shown to be the signalling pathway for neutrophil elastase in VSMC pathology. Importantly, TLR4 inhibition abolished neutrophil elastase-mediated VSMC dysregulation. Injury-induced NIH was significantly reduced in both neutrophil elastase-deficient mice and mice treated with GW311616A. The formation of neutrophil extracellular traps was impaired in injured arteries from neutrophil elastase-deficient mice. Finally, a similar role for neutrophil elastase in human VSMC pathology was confirmed and we observed higher expression levels of neutrophil elastase but lower expression levels of TLR4 in human atherosclerotic lesions. CONCLUSION AND IMPLICATIONS We provide new insight into the molecular mechanisms underlying NIH and identify neutrophil elastase as a potential therapeutic target for vascular disease.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Mei
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanmei Wen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xinmiao Zhou
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meixia Ren
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Kun Sun
- Department of Pediatric Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Hüll K, Fernández-Dueñas V, Schönberger M, López-Cano M, Trauner D, Ciruela F. Optical Control of Adenosine-Mediated Pain Modulation. Bioconjug Chem 2021; 32:1979-1983. [PMID: 34448572 PMCID: PMC8634359 DOI: 10.1021/acs.bioconjchem.1c00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Adenosine receptors (ARs) play many important roles in physiology and have been recognized as potential targets for pain relief. Here, we introduce three photoswitchable adenosine derivatives that function as light-dependent agonists for ARs and confer optical control to these G protein-coupled receptors. One of our compounds, AzoAdenosine-3, was evaluated in the classical formalin model of pain. The molecule, active in the dark, was not metabolized by adenosine deaminase and effectively reduced pain perception in a light-dependent manner. These antinociceptive effects suggested a major role for A1R and A3R in peripheral-mediated pain sensitization, whereas an average adenosine-mediated antinociceptive effect will be facilitated by A2AR and A2BR. Our results demonstrate that a photoswitchable adenosine derivative can be used to map the contribution of ARs mediating analgesia in vivo.
Collapse
Affiliation(s)
- Katharina Hüll
- Department
of Chemistry, New York University, 100 Washington Square East, New York City, New York 10003, United States
- Department
of Chemistry and Center for Integrated Protein Munich, Ludwig-Maximilians-Universität Menchen, Butenandtstrasse 5−13, 81377 Munich, Germany
| | - Víctor Fernández-Dueñas
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, IDIBELL, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Matthias Schönberger
- Department
of Chemistry and Center for Integrated Protein Munich, Ludwig-Maximilians-Universität Menchen, Butenandtstrasse 5−13, 81377 Munich, Germany
| | - Marc López-Cano
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, IDIBELL, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Dirk Trauner
- Department
of Chemistry, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Francisco Ciruela
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, IDIBELL, Av. Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
25
|
Mergault C, Lisée F, Tiroille V, Magnien M, Parent C, Lenga Mabonda W, Sizaret D, Jaillet M, Crestani B, Marchand-Adam S, Plantier L. Inhibition of the Arp2/3 complex represses human lung myofibroblast differentiation and attenuates bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2021; 179:125-140. [PMID: 34453744 DOI: 10.1111/bph.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The Arp2/3 multiprotein complex regulates branched polymerisation of the actin cytoskeleton and may contribute to collagen synthesis and fibrogenesis in the lung. EXPERIMENTAL APPROACH Expression of Arp2/3 components was assessed in human lung fibroblasts and in the bleomycin-induced pulmonary fibrosis model in mice. The Arp2/3 complex was repressed with the allosteric inhibitor CK666 and with interfering RNAs targeting the ARP2, ARP3 and ARPC2 subunits (siARP2, siARP3 and siARPC2) in CCD-16Lu human lung fibroblasts in vitro. Mice received daily intraperitoneal injections of CK666 from the 7th to the 14th day after tracheal bleomycin instillation. KEY RESULTS Expression of Arp2/3 complex subunits mRNAs was increased in fibroblasts treated with TGF-β1 and in the lungs of bleomycin-treated mice compared with controls. In vitro, CK666 and siARPC2 inhibited cell growth and TGF-β1-induced α-smooth muscle actin (ACTA2) and collagen-1 (COL1) expression. CK666 also decreased ACTA2 and COL1 expression in unstimulated cells. CK666 reduced Akt phosphorylation and repressed phospho-GSK3β, β-catenin and MRTF-A levels in unstimulated fibroblasts. In vivo, CK666 reduced levels of both procollagen-1 and insoluble collagen in bleomycin-treated mice. CONCLUSION AND IMPLICATIONS Expression of the Arp2/3 complex was increased in profibrotic environments in vitro and in vivo. Inhibition of the Arp2/3 complex repressed ACTA2 and COL1 expression and repressed an Akt/phospho-GSK3β/β-catenin/MRTF-A pathway in lung fibroblasts. CK666 exerted antifibrotic properties in the lung in vivo. Inhibition of the Arp2/3 complex could represent an interesting new therapy for idiopathic pulmonary fibrosis and other fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Coralie Mergault
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Fanny Lisée
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Victor Tiroille
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Mélia Magnien
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Christelle Parent
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France
| | - Woodys Lenga Mabonda
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France
| | - Damien Sizaret
- CHRU de Tours, Service d'Anatomie Pathologique, Tours, France
| | | | - Bruno Crestani
- Université de Paris, Inserm UMR1152, Labex Inflamex, Paris, France.,Service de Pneumologie A, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Paris, France
| | - Sylvain Marchand-Adam
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| | - Laurent Plantier
- Centre d'Etudes des Pathologies Respiratoires, Inserm UMR1100, Tours, France.,Université de Tours, Tours, France.,CHRU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| |
Collapse
|
26
|
Jiang LP, Ji JZ, Ge PX, Zhu T, Mi QY, Tai T, Li YF, Xie HG. Is platelet responsiveness to clopidogrel attenuated in overweight or obese patients and why? A reverse translational study in mice. Br J Pharmacol 2021; 179:46-64. [PMID: 34415054 DOI: 10.1111/bph.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Overweight or obese patients exhibit poorer platelet responses to clopidogrel. However, the mechanisms behind this phenotype remain to be elucidated. Here, we sought to discover whether and why obesity could affect the metabolic activation of and/or platelet response to clopidogrel in obese patients and high-fat diet-induced obese mice. EXPERIMENTAL APPROACH A post hoc stratified analysis of an observational clinical study was performed to investigate changes in residual platelet reactivity with increasing body weight in patients taking clopidogrel. Furthermore, high-fat diet-induced obese mice were used to reveal alterations in systemic exposure of clopidogrel thiol active metabolite H4, ADP-induced platelet activation and aggregation, the expression of genes involved in the metabolic activation of clopidogrel, count of circulating reticulated and mature platelets, and proliferation profiles of megakaryocytes in bone marrow. The relevant genes and potential signalling pathways were predicted and enriched according to the GEO datasets available from obese patients. KEY RESULTS Obese patients exhibited significantly attenuated antiplatelet effects of clopidogrel. In diet-induced obese mice, systemic exposure of clopidogrel active metabolite H4 was reduced but that of its hydrolytic metabolite was increased due to down-regulation of certain P450s but up-regulation of carboxylesterase-1 in the liver. Moreover, enhanced proliferation of megakaryocytes and elevated platelet count also contributed. CONCLUSION AND IMPLICATIONS Obesity attenuated metabolic activation of clopidogrel and increased counts of circulating reticulated and mature platelets, leading to impaired platelet responsiveness to the drug in mice, suggesting that clopidogrel dosage may need to be adjusted adequately in overweight or obese patients.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng-Xin Ge
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Fei Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
27
|
Edvinsson L, Edvinsson JCA, Haanes KA. Biological and small molecule strategies in migraine therapy with relation to the calcitonin gene-related peptide family of peptides. Br J Pharmacol 2021; 179:371-380. [PMID: 34411289 DOI: 10.1111/bph.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Migraine is one of the most common of neurological disorders with a global prevalence of up to 15%. One in five migraineurs have frequent episodic or chronic migraine requiring prophylactic treatment. In recent years, specific pharmacological treatments targeting calcitonin gene-related peptide (CGRP) signalling molecules have provided safe and effective treatments, monoclonal antibodies for prophylaxis and gepants for acute therapy. Albeit beneficial, it is important to understand the molecular mechanisms of these new drugs to better understand migraine pathophysiology and improve therapy. Here, we describe current views on the role of the CGRP family of peptides - CGRP, calcitonin, adrenomedullin, amylin - and their receptors in the trigeminovascular system. All these molecules are present within the trigeminovascular system but differ in expression and localization. It is likely that they have different roles, which can be utilized in providing additional drug targets.
Collapse
Affiliation(s)
- Lars Edvinsson
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| | - Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Departments of Internal Medicine, Lund University Hospital, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Rigshospitalet, Denmark
| |
Collapse
|
28
|
Škuta C, Southan C, Bartůněk P. Will the chemical probes please stand up? RSC Med Chem 2021; 12:1428-1441. [PMID: 34447939 PMCID: PMC8372204 DOI: 10.1039/d1md00138h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
In 2005, the NIH Molecular Libraries Program (MLP) undertook the identification of tool compounds to expand biological insights, now termed small-molecule chemical probes. This inspired other organisations to initiate similar efforts from 2010 onwards. As a central focus of the Probes & Drugs portal (P&D), we have standardised, integrated and compared sets of declared probe compounds harvested from 12 different sources. This turned out to be challenging and revealed unexpected anomalies. Results in this work address key questions including; a) individual and total structure counts, b) overlaps between sources, c) comparisons with selected PubChem sources and d) investigating the probe coverage of druggable targets. In addition, we developed new high-level scoring schemes to filter collections down to probes of higher quality. This generated 548 high-quality chemical probes (HQCP) covering 447 distinct protein targets. This HQCP collection has been added to the P&D portal and will be regularly updated as established sources expand and new ones release data.
Collapse
Affiliation(s)
- Ctibor Škuta
- CZ-OPENSCREEN, National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Christopher Southan
- Deanery of Biomedical Sciences, University of Edinburgh Edinburgh EH8 9XD UK
| | - Petr Bartůněk
- CZ-OPENSCREEN, National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
| |
Collapse
|
29
|
MacRitchie N, Noonan J, Guzik TJ, Maffia P. Molecular Imaging of Cardiovascular Inflammation. Br J Pharmacol 2021; 178:4216-4245. [PMID: 34378206 DOI: 10.1111/bph.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD), including atherosclerosis, are chronic inflammatory diseases characterised by a complex and evolving tissue micro-environment. Molecular heterogeneity of inflammatory responses translates into clinical outcomes. However, current medical imaging modalities are unable to reveal the cellular and molecular events at a level of detail that would allow more accurate and timely diagnosis and treatment. This is an inherent limitation of the current imaging tools which are restricted to anatomical or functional data. Molecular imaging - the visualization and quantification of molecules in the body - is already established in the clinic in the form of Positron Emitted Tomography (PET), yet the use of PET in CVD is limited. In this visual review, we will guide you through the current state of molecular imaging research, assessing the respective strengths and weaknesses of molecular imaging modalities, including those already being used in the clinic such as PET and magnetic resonance imaging (MRI) and emerging technologies at pre-clinical stage, such as photoacoustic imaging. We discuss the basic principles of each technology and provide key examples of their application in imaging inflammation in CVD and the added value into the diagnostic decision-making process. Finally, we discuss barriers for rapid successful clinical translation of these novel diagnostic modalities.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Hao L, Mao Y, Park J, Bae EJ, Park BH. Repurposing anthelmintic praziquantel to treat psoriasis. Br J Pharmacol 2021; 178:4726-4740. [PMID: 34363611 DOI: 10.1111/bph.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthelmintic drug praziquantel (PZQ) has been used as a standard treatment for schistosomiasis for over 40 years. This study aimed to repurpose PZQ to treat psoriasis. EXPERIMENTAL APPROACH Psoriasis-like skin inflammation was induced in mice by topical application of imiquimod or intradermal injection of recombinant IL-23. PZQ was either orally or topically administrated during the psoriasis induction period. KEY RESULTS Mice treated with either oral or topical PZQ exhibited markedly improved psoriasiform skin symptoms when compared to control mice, as judged by disease severity score, epidermal thickening, inflammatory cell infiltration, and spleen size. Flow cytometric analysis of infiltrating immune cells from mouse skin displayed reduced infiltration of Th17 cells. In vitro experiments revealed that PZQ inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation and RORγt expression in splenic CD4+ T cells. PZQ also decreased STAT3 phosphorylation in HEK-A/F cells. Downregulation of STAT3 phosphorylation in these cells accounts for the decreased number of Th17 cells and keratinocytes. CONCLUSION AND IMPLICATIONS These results amount to the first preclinical evidence that PZQ may effectively treat psoriasis, and suggest that PZQ alleviates symptoms in mice by inhibiting STAT3 phosphorylation, thereby suppressing Th17 immune responses.
Collapse
Affiliation(s)
- Lihua Hao
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Yuancheng Mao
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Jin Park
- Department of Dermatology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
31
|
Jama HA, Muralitharan RR, Xu C, O'Donnell JA, Bertagnolli M, Broughton BRS, Head GA, Marques FZ. Rodent models of hypertension. Br J Pharmacol 2021; 179:918-937. [PMID: 34363610 DOI: 10.1111/bph.15650] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated blood pressure (BP), or hypertension, is the main risk factor for cardiovascular disease. As a multifactorial and systemic disease that involves multiple organs and systems, hypertension remains a challenging disease to study. Models of hypertension are invaluable to support the discovery of the specific genetic, cellular and molecular mechanisms underlying essential hypertension, as well as to test new possible treatments to lower BP. Rodent models have proven to be an invaluable tool for advancing the field. In this review, we discuss the strengths and weaknesses of rodent models of hypertension through a systems approach. We highlight the ways how target organs and systems including the kidneys, vasculature, the sympathetic nervous system (SNS), immune system and the gut microbiota influence BP in each rodent model. We also discuss often overlooked hypertensive conditions such as pulmonary hypertension and hypertensive-pregnancy disorders, providing an important resource for researchers.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Bradley R S Broughton
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia.,Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
32
|
Mousavi Motlagh SS, Seyedhamzeh M, Ahangari Cohan R, Shafiee Ardestani M, Vaziri B, Azadmanesh K, Saberi S, Masoumi V. Novel G-CSF conjugated anionic globular dendrimer: Preparation and biological activity assessment. Pharmacol Res Perspect 2021; 9:e00826. [PMID: 34269522 PMCID: PMC8283867 DOI: 10.1002/prp2.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
The most crucial role of granulocyte colony-stimulating factor (G-CSF) in the body is to increase the strength of immune system. In recent years, research on the use of nanoparticles in pharmaceuticals has been considered, most of which have been for drug-loading purposes. In this study, a novel G-CSF conjugated dendrimer was synthesized and characterized using different techniques. In vitro cytotoxicity was assessed on A549 and L929 cells, while abnormal toxicity was studied in mice. In vitro and in vivo biological activities were assessed in NFS60 cells and rats, respectively. In addition, in vivo distribution, plasma half-life, and histopathological effect were studied in rat. The characterization tests confirmed the successful conjugation. There was no difference between G-CSF cytotoxicity before and after conjugation, and no difference with the control group. No mice showed abnormal toxicity. Although in vitro biological activity revealed both conjugated and free G-CSF promote proliferation cells, biological activity decreased significantly after conjugation about one-third of the unconjugated form. Nonetheless, in vivo biological activity of conjugated G-CSF increased by more than 2.5-fold relative to the unconjugated form, totally. Fortunately, no histopathologic adverse effect was observed in vital rat tissues. Also, in vivo distribution of the conjugate was similar to the native protein with an enhanced terminal half-life. Our data revealed that G-CSF conjugated dendrimer could be considered as a candidate to improve the in vivo biological activity of G-CSF. Moreover, multivalent capability of the dendrimer may be used for other new potentials of G-CSF in future perspectives.
Collapse
Affiliation(s)
| | | | - Reza Ahangari Cohan
- Department of NanobiotechnologyNew Technologies Research GroupPasteur Institute of IranTehranIran
| | | | - Behrouz Vaziri
- Biotechnology Research CenterPasteur Institute of IranTehranIran
| | | | - Sahar Saberi
- Department of Biotechnology, Food and Drug Control LaboratoriesNational Food and Drug OrganizationTehranIran
| | - Vahideh Masoumi
- Department of Biotechnology, Food and Drug Control LaboratoriesNational Food and Drug OrganizationTehranIran
| |
Collapse
|
33
|
Zhang X, Zhang Y, Miao Q, Shi Z, Hu L, Liu S, Gao J, Zhao S, Chen H, Huang Z, Han Y, Ji Y, Xie L. Inhibition of HSP90 S-nitrosylation Alleviates Cardiac Fibrosis via TGFβ/SMAD3 Signaling Pathway. Br J Pharmacol 2021; 178:4608-4625. [PMID: 34265086 DOI: 10.1111/bph.15626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Effective anti-fibrotic therapeutic solutions are unavailable so far. The heat shock protein 90 (HSP90) exerts deleterious effects in some fibrotic diseases. S-nitrosylation (SNO) of HSP90 affects its own function, however, little is known about its role in pathological stress. Here, we investigated the effect of SNO-HSP90 on cardiac fibrosis. EXPERIMENTAL APPROACH SNO-HSP90 level was measured by biotin-switch. SNO sites were identified through mass spectrometry. S-nitrosylation site-mutated plasmids or adeno-associated virus, gene deletion and pharmacological antagonists were used to identify the contribution of SNO-HSP90 in myocardial fibrosis. KEY RESULTS SNO-HSP90 level was positively correlated with fibrosis marker expression in hearts from patients and significantly higher in fibrotic hearts from spontaneously hypertensive rats and mice subjected to transverse aortic constriction, as well as in angiotensin II- or isoproterenol-treated neonatal rat cardiac fibroblasts. S-nitrosylated site of HSP90 at cysteine 589 was identified. Inhibition of SNO-HSP90 by Cys589 mutation reduced fibrosis in angiotensin II- or isoproterenol-treated cardiac fibroblasts. Administration of recombinant adeno-associated virus of Cys589 mutation improved heart function and alleviated fibrosis in transverse aortic constriction mice. Mechanismly, SNO-HSP90 stimulated transforming growth factor-β type II receptor (TGFβ RII) binding to HSP90 in response to fibrotic stimuli, subsequently increased phosphorylation and nuclear translocation of SMAD3. Additionally, inducible nitric oxide synthase (iNOS) deficiency or iNOS inhibitor, 1400W, reduced SNO-HSP90 level and the activation of TGFβ/SMAD3 signaling pathway. CONCLUSIONS AND IMPLICATIONS We demonstrate that genetic or pharmacological inhibition of SNO-HSP90 mitigates fibrosis through blocking TGFβ/SMAD3 signaling pathway, providing a potential therapy for cardiac remodeling.
Collapse
Affiliation(s)
- Xiyue Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yihua Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Miao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiguang Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lulu Hu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shangmin Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Han
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Arout CA, Haney M, Herrmann ES, Bedi G, Cooper ZD. A placebo-controlled investigation of the analgesic effects, abuse liability, safety and tolerability of a range of oral cannabidiol doses in healthy humans. Br J Clin Pharmacol 2021; 88:347-355. [PMID: 34223660 DOI: 10.1111/bcp.14973] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Preclinical studies demonstrate that cannabidiol (CBD) elicits an antinociceptive response in animal models of neuropathic pain; in humans, limited data are available to support such analgesic effects. Few studies have examined CBD's analgesic effects when administered without other compounds, and little is known regarding dose-dependent effects in noncannabis users. METHODS This double-blind, placebo-controlled, within-subject outpatient clinical laboratory study sought to determine the analgesic effects, abuse liability, safety and tolerability of acute CBD (0, 200, 400 and 800 mg orally) in healthy noncannabis-using volunteers (n = 17; 8 men, 9 women). Outcomes included experimental pain threshold and pain tolerance using the cold pressor test (CPT), subjective ratings of CPT painfulness and bothersomeness, subjective ratings of abuse liability and mood, and cardiovascular measures, which were assessed at baseline and several time points after drug administration. Data analyses included repeated measures analysis of variance (ANOVA) with planned comparisons. RESULTS CBD failed to consistently affect pain threshold and tolerance in the CPT relative to placebo. All doses of CBD increased ratings of painfulness compared to placebo (P < .01). Further, CBD had dose-dependent, modest effects on mood and subjective drug effects associated with abuse liability. Oral CBD was safe and well tolerated, producing small decreases in blood pressure (P < .01). CONCLUSION CBD did not elicit consistent dose-dependent analgesia and in fact increased pain on some measures. Future studies exploring CBD-induced pain relief should consider using a more extensive pain assessment paradigm in different participant populations.
Collapse
Affiliation(s)
- Caroline A Arout
- Division on Substance Use Disorders, New York Psychiatric Institute and Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Margaret Haney
- Division on Substance Use Disorders, New York Psychiatric Institute and Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan S Herrmann
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, USA
| | - Gillinder Bedi
- Centre for Youth Mental Health, The University of Melbourne and Substance Use Research Group, Melbourne, Australia
| | - Ziva D Cooper
- University of California, Los Angeles Cannabis Research Initiative, Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, USA.,Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Wong DVT, Holanda RBF, Cajado AG, Bandeira AM, Pereira JFB, Amorim JO, Torres CS, Ferreira LMM, Lopes MHS, Oliveira RTG, Pereira AF, Sant'Ana RO, Arruda LM, Ribeiro-Júnior HL, Pinheiro RF, Almeida PRC, Carvalho RF, Chaves FF, Rocha-Filho DR, Cunha FQ, Lima-Júnior RCP. TLR4 deficiency upregulates TLR9 expression and enhances irinotecan-related intestinal mucositis and late-onset diarrhoea. Br J Pharmacol 2021; 178:4193-4209. [PMID: 34216140 DOI: 10.1111/bph.15609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Severe diarrhoea, a common gastrointestinal manifestation of anticancer treatment with irinotecan, might involve single nucleotide polymorphisms (SNPs) of toll-like receptors (TLRs), described as critical bacterial sensors in the gut. Here, colorectal cancer patients carrying missense TLR4 A896G (rs4986790) or C1,196T (rs4986791) SNPs and Tlr4 knockout (Tlr4-/-) mice were given irinotecan to investigate the severity of the induced diarrhoea. EXPERIMENTAL APPROACH Forty-six patients treated with irinotecan-based regimens had diarrhoea severity analysed according to TLR4 genotypes. In the experimental setting, wild-type (WT) or Tlr4-/- mice were given irinotecan (45 or 75 mg·kg-1 , i.p.) or saline (3 ml·kg-1 ). Diarrhoea severity was evaluated by measuring intestinal injury and inflammatory markers expression after animals were killed. KEY RESULTS All patients with TLR4 SNPs chemotherapy-treated presented diarrhoea, whereas gastrointestinal toxicity was observed in 50% of the wild homozygous individuals. Mice injected with irinotecan presented systemic bacterial translocation and increased TLR4 immunostaining in the intestine. In line with the clinical findings, Tlr4 gene deficiency enhanced irinotecan-related diarrhoea and TLR9 expression in mice. An increased myeloperoxidase activity and Il-18 expression along with IL-10 decreased production in Tlr4-/- mice also indicated an intensified intestinal damage and inflammatory response. CONCLUSION AND IMPLICATIONS TLR4 deficiency upregulates TLR9 expression and enhances intestinal damage and the severity of late-onset diarrhoea during irinotecan-based treatment. Identifying patients genetically predisposed to chemotherapy-associated diarrhoea is a strategy toward precision medicine.
Collapse
Affiliation(s)
- Deysi Viviana Tenazoa Wong
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Renata Brito Falcão Holanda
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Faculty of Pharmacy, Nursing and Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Aurilene Gomes Cajado
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alessandro Maia Bandeira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jorge Fernando Bessa Pereira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Joice Oliveira Amorim
- Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Clarice Sampaio Torres
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luana Maria Moura Ferreira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marina Helena Silva Lopes
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Taiane Germano Oliveira
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Anamaria Falcão Pereira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosane Oliveira Sant'Ana
- Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil.,Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Larissa Mont'alverne Arruda
- Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Roberto Carvalho Almeida
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Figueiredo Chaves
- Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Duílio Reis Rocha-Filho
- Clinical Oncology Service, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Roberto César Pereira Lima-Júnior
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
36
|
Klinger JR, Chakinala MM, Langleben D, Rosenkranz S, Sitbon O. Riociguat: Clinical research and evolving role in therapy. Br J Clin Pharmacol 2021; 87:2645-2662. [PMID: 33242341 PMCID: PMC8359233 DOI: 10.1111/bcp.14676] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Riociguat is a first-in-class soluble guanylate cyclase stimulator, approved for the treatment of adults with pulmonary arterial hypertension (PAH), inoperable chronic thromboembolic pulmonary hypertension (CTEPH), or persistent or recurrent CTEPH after pulmonary endarterectomy. Approval was based on the results of the phase III PATENT-1 (PAH) and CHEST-1 (CTEPH) studies, with significant improvements in the primary endpoint of 6-minute walk distance vs placebo of +36 m and +46 m, respectively, as well as improvements in secondary endpoints such as pulmonary vascular resistance and World Health Organization functional class. Riociguat acts as a stimulator of cyclic guanosine monophosphate synthesis rather than as an inhibitor of cGMP metabolism. As with other approved therapies for PAH, riociguat has antifibrotic, antiproliferative and anti-inflammatory effects, in addition to vasodilatory properties. This has led to further clinical studies in patients who do not achieve a satisfactory clinical response with phosphodiesterase type-5 inhibitors. Riociguat has also been evaluated in patients with World Health Organization group 2 and 3 pulmonary hypertension, and other conditions including diffuse cutaneous systemic sclerosis, Raynaud's phenomenon and cystic fibrosis. This review evaluates the results of the original clinical trials of riociguat for the treatment of PAH and CTEPH, and summarises the body of work that has examined the safety and efficacy of riociguat for the treatment of other types of pulmonary hypertension.
Collapse
Affiliation(s)
- James R. Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt LouisMissouriUSA
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealCanada
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology), and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Cardiovascular Research Center (CCRC)University of CologneCologneGermany
| | - Olivier Sitbon
- Universite Paris‐Sud, Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- AP‐HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- INSERM UMR_S 999, Hôpital Marie‐LannelongueLe Plessis‐RobinsonFrance
| |
Collapse
|
37
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Wang T, Wang H, Yang F, Gao K, Luo S, Bai L, Ma K, Liu M, Wu S, Wang H, Chen Z, Xiao Q. Honokiol inhibits proliferation of colorectal cancer cells by targeting anoctamin 1/TMEM16A Ca 2+ -activated Cl - channels. Br J Pharmacol 2021; 178:4137-4154. [PMID: 34192810 DOI: 10.1111/bph.15606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ -activated Cl- channels (Ano1 channels) contribute to the pathogenesis of colorectal cancer. Honokiol is known to inhibit cell proliferation and tumour growth in colorectal cancer. However, the molecular target of honokiol remains unclear. This study aimed to investigate whether honokiol inhibited cell proliferation of colorectal cancer by targeting Ano1 channels. EXPERIMENTAL APPROACH Patch-clamp techniques were performed to study the effect of honokiol on Ca2+ -activated Cl- currents in HEK293 cells overexpressing Ano1- or Ano2-containing plasmids or in human colorectal carcinoma SW620 cells. Site-directed mutagenesis was used to identify the critical residues for honokiol-induced Ano1 inhibition. Proliferation of SW620 cells or human intestinal epithelial NCM460 cells by CCK-8 assays. KEY RESULTS Honokiol blocked Ano1 currents in Ano1-overexpressing HEK293 cells and SW620 cells. Honokiol more potently inhibited Ano1 currents than Ano2 currents. Three amino acids (R429, K430 and N435) were critical for honokiol-induced Ano1 inhibition. The R429A/K430L/N435G mutation reduced the sensitivity of Ano1 to honokiol. Honokiol inhibited SW620 cell proliferation, and this effect was reduced by Ano1-shRNAs. Furthermore, Ano1 overexpression promoted proliferation in NCM460 cells with low Ano1 endogenous expression and resulted in an increased sensitivity to honokiol. Overexpression of the R429A/K430L/N435G mutation reduced WT Ano1-induced increase in the sensitivity of NCM460 cells to honokiol. CONCLUSION AND IMPLICATIONS We identified a new anticancer mechanism of honokiol, through the inhibition of cell proliferation, by targeting Ano1 Ca2+ -activated Cl- channels.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zaixing Chen
- Pharmaceutical Teaching and Experimental Center, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. Br J Clin Pharmacol 2021; 88:64-74. [PMID: 34192364 PMCID: PMC9292808 DOI: 10.1111/bcp.14964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing the large arsenal of existing non‐cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target‐centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought‐after anti‐cancer drug targets over the last three decades. There are many non‐cancer approved drugs that can inhibit kinases as “off‐targets” as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer‐associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial‐ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non‐cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti‐cancer action.
Collapse
Affiliation(s)
- Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Nikola Bowden
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Jennifer Martin
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Richard Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| |
Collapse
|
40
|
Rudzitis-Auth J, Christoffel A, Menger MD, Laschke MW. Targeting sphingosine kinase-1 with the low MW inhibitor SKI-5C suppresses the development of endometriotic lesions in mice. Br J Pharmacol 2021; 178:4104-4118. [PMID: 34185874 DOI: 10.1111/bph.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Limited evidence suggests that the sphingosine-1-phosphate/sphingosine kinase 1 (S1P/SPHK1) signalling pathway is involved in the pathogenesis of endometriosis. Therefore, we analyzed in this study whether the inhibition of SPHK1 and, consequently, decreased levels of S1P affected the vascularization and growth of endometriotic lesions. EXPERIMENTAL APPROACH Endometriotic lesions were surgically induced in the peritoneal cavity and the dorsal skinfold chamber of female BALB/c mice. The animals received a daily dose of the SPHK1 inhibitor SKI-5C or vehicle (control). Analyses involved the determination of lesion growth, cyst formation, microvessel density and cell proliferation within peritoneal endometriotic lesions by means of high-resolution ultrasound imaging, caliper measurement, histology and immunohistochemistry. In the dorsal skinfold chamber model the development of newly formed microvascular networks and their microhemodynamic parameters within endometriotic lesions were investigated by means of intravital fluorescence microscopy. KEY RESULTS SKI-5C significantly inhibited the development and vascularization of peritoneal endometriotic lesions, as indicated by a reduced growth and cyst formation, a lower microvessel density and a suppressed cell proliferation, when compared to vehicle-treated controls. Endometriotic lesions in dorsal skinfold chambers of SKI-5C-treated animals exhibited a significantly smaller lesion size, lower functional microvessel density, smaller microvessel diameters and a reduced blood perfusion of the newly developing microvascular networks. CONCLUSIONS AND IMPLICATIONS SPHK1/S1P signalling promotes the establishment and progression of endometriotic lesions. The inhibition of this pathway suppresses the development of endometriotic lesions, suggesting SPHK1 as a potential novel target for future endometriosis therapy.
Collapse
Affiliation(s)
| | - Anika Christoffel
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
41
|
Berdasco M, Esteller M. Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. Br J Pharmacol 2021; 179:2868-2889. [PMID: 34185879 DOI: 10.1111/bph.15604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022] Open
Abstract
Epitranscriptomics is an exciting emerging area that studies biochemical modifications of RNA. The field has been opened up by the technical efforts of the last decade to characterize and quantify RNA modifications, and this has led to a map of post-transcriptional RNA marks in normal cell fate and development. However, the scientific interest has been fuelled by the discovery of aberrant epitranscriptomes associated with human diseases, mainly cancer. The challenge is now to see whether epitrancriptomics offers mechanisms that can be effectively targeted by low MW compounds and are thus druggable. In this review, we will describe the principal RNA modifications (with a focus on mRNA), summarize the latest scientific evidence of their dysregulation in cancer and provide an overview of the state-of-the-art drug discovery to target the epitranscriptome. Finally, we will discuss the principal challenges in the field of chemical biology and drug development to increase the potential of targeted-RNA for clinical benefit.
Collapse
Affiliation(s)
- María Berdasco
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
42
|
Mampay M, Flint MS, Sheridan GK. Tumour brain: Pretreatment cognitive and affective disorders caused by peripheral cancers. Br J Pharmacol 2021; 178:3977-3996. [PMID: 34029379 DOI: 10.1111/bph.15571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
People that develop extracranial cancers often display co-morbid neurological disorders, such as anxiety, depression and cognitive impairment, even before commencement of chemotherapy. This suggests bidirectional crosstalk between non-CNS tumours and the brain, which can regulate peripheral tumour growth. However, the reciprocal neurological effects of tumour progression on brain homeostasis are not well understood. Here, we review brain regions involved in regulating peripheral tumour development and how they, in turn, are adversely affected by advancing tumour burden. Tumour-induced activation of the immune system, blood-brain barrier breakdown and chronic neuroinflammation can lead to circadian rhythm dysfunction, sleep disturbances, aberrant glucocorticoid production, decreased hippocampal neurogenesis and dysregulation of neural network activity, resulting in depression and memory impairments. Given that cancer-related cognitive impairment diminishes patient quality of life, reduces adherence to chemotherapy and worsens cancer prognosis, it is essential that more research is focused at understanding how peripheral tumours affect brain homeostasis.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Graham K Sheridan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Martin TP, MacDonald EA, Elbassioni AAM, O'Toole D, Zaeri AAI, Nicklin SA, Gray GA, Loughrey CM. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol 2021; 179:770-791. [PMID: 34131903 DOI: 10.1111/bph.15595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
Approximately 7 million people are affected by acute myocardial infarction (MI) each year, and despite significant therapeutic and diagnostic advancements, MI remains a leading cause of mortality worldwide. Preclinical animal models have significantly advanced our understanding of MI and have enabled the development of therapeutic strategies to combat this debilitating disease. Notably, some drugs currently used to treat MI and heart failure (HF) in patients had initially been studied in preclinical animal models. Despite this, preclinical models are limited in their ability to fully reproduce the complexity of MI in humans. The preclinical model must be carefully selected to maximise the translational potential of experimental findings. This review describes current experimental models of MI and considers how they have been used to understand drug mechanisms of action and support translational medicine development.
Collapse
Affiliation(s)
- Tamara P Martin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Eilidh A MacDonald
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Ali Mohamed Elbassioni
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.,Suez Canal University, Arab Republic of Egypt
| | - Dylan O'Toole
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Abdullah I Zaeri
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher M Loughrey
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
44
|
Kao TI, Chen PJ, Wang YH, Tseng HH, Chang SH, Wu TS, Yang SH, Lee YT, Hwang TL. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. Br J Pharmacol 2021; 178:4069-4084. [PMID: 34131920 PMCID: PMC8518616 DOI: 10.1111/bph.15597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Ting-I Kao
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hui Tseng
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yen-Tung Lee
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
45
|
Iffah R, Gavins FNE. Thromboinflammation in coronavirus disease 2019: The clot thickens. Br J Pharmacol 2021; 179:2100-2107. [PMID: 34128218 PMCID: PMC8444860 DOI: 10.1111/bph.15594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Since the start of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic, a disease that has become one of the world's greatest global health challenges, the role of the immune system has been at the forefront of scientific studies. The pathophysiology of coronavirus disease 2019 (COVID‐19) is complex, which is evident in those at higher risk for poor outcome. Multiple systems contribute to thrombosis and inflammation seen in COVID‐19 patients, including neutrophil and platelet activation, and endothelial dysfunction. Understanding how the immune system functions in different patient cohorts (particularly given recent emerging events with the Oxford/AstraZeneca vaccine) is vital to understanding the pathophysiology of this devastating disease and for the subsequent development of novel therapeutic targets and to facilitate possible drug repurposing strategies that could benefit society on a global scale.
Collapse
Affiliation(s)
- Raayma Iffah
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, London, UK
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, London, UK
| |
Collapse
|
46
|
Vera-Yunca D, Parra-Guillen ZP, Girard P, Trocóniz IF, Terranova N. Relevance of primary lesion location, tumour heterogeneity and genetic mutation demonstrated through tumour growth inhibition and overall survival modelling in metastatic colorectal cancer. Br J Clin Pharmacol 2021; 88:166-177. [PMID: 34087010 DOI: 10.1111/bcp.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS The aims of this work were to build a semi-mechanistic tumour growth inhibition (TGI) model for metastatic colorectal cancer (mCRC) patients receiving either cetuximab + chemotherapy or chemotherapy alone and to identify early predictors of overall survival (OS). METHODS A total of 1716 patients from 4 mCRC clinical studies were included in the analysis. The TGI model was built with 8973 tumour size measurements where the probability of drop-out was also included and modelled as a time-to-event variable using parametric survival models, as it was the case in the OS analysis. The effects of patient- and tumour-related covariates on model parameters were explored. RESULTS Chemotherapy and cetuximab effects were included in an additive form in the TGI model. Development of resistance was found to be faster for chemotherapy (drug effect halved at wk 8) compared to cetuximab (drug effect halved at wk 12). KRAS wild-type status and presenting a right-sided primary lesion were related to a 3.5-fold increase in cetuximab drug effect and a 4.7× larger cetuximab resistance, respectively. The early appearance of a new lesion (HR = 4.14), a large tumour size at baseline (HR = 1.62) and tumour heterogeneity (HR = 1.36) were the main predictors of OS. CONCLUSIONS Semi-mechanistic TGI and OS models have been developed in a large population of mCRC patients receiving chemotherapy in combination or not with cetuximab. Tumour-related predictors, including a machine learning derived-index of tumour heterogeneity, were linked to changes in drug effect, resistance to treatment or OS, contributing to the understanding of the variability in clinical response.
Collapse
Affiliation(s)
- Diego Vera-Yunca
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Zinnia P Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Pascal Girard
- Merck Serono S.A., Switzerland, an affiliate of Merck KGaA, Merck Institute for Pharmacometrics, Darmstadt, Germany
| | - Iñaki F Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Nadia Terranova
- Merck Serono S.A., Switzerland, an affiliate of Merck KGaA, Merck Institute for Pharmacometrics, Darmstadt, Germany
| |
Collapse
|
47
|
May CN, Bellomo R, Lankadeva YR. Therapeutic potential of megadose vitamin C to reverse organ dysfunction in sepsis and COVID-19. Br J Pharmacol 2021; 178:3864-3868. [PMID: 34061355 PMCID: PMC8239596 DOI: 10.1111/bph.15579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis induced by bacteria or viruses can result in multiorgan dysfunction, which is a major cause of death in intensive care units. Current treatments are only supportive, and there are no treatments that reverse the pathophysiological effects of sepsis. Vitamin C has antioxidant, anti‐inflammatory, anticoagulant and immune modulatory actions, so it is a rational treatment for sepsis. Here, we summarise data that support the use of megadose vitamin C as a treatment for sepsis and COVID‐19. Megadose intravenous sodium ascorbate (150 g per 40 kg over 7 h) dramatically improved the clinical state and cardiovascular, pulmonary, hepatic and renal function and decreased body temperature, in a clinically relevant ovine model of Gram‐negative bacteria‐induced sepsis. In a critically ill COVID‐19 patient, intravenous sodium ascorbate (60 g) restored arterial pressure, improved renal function and increased arterial blood oxygen levels. These findings suggest that megadose vitamin C should be trialled as a treatment for sepsis and COVID‐19.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Xiang J, Yang G, Ma C, Wei L, Wu H, Zhang W, Tao X, Jiang L, Liang Z, Kang L, Yang S. Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ. Br J Pharmacol 2021; 178:2443-2460. [PMID: 33661551 DOI: 10.1111/bph.15429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ. EXPERIMENTAL APPROACH Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ. KEY RESULTS Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked. CONCLUSION AND IMPLICATIONS In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.
Collapse
Affiliation(s)
- Jiaqing Xiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuhua Tao
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Lingyun Jiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhen Liang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. Br J Pharmacol 2021; 178:2393-2411. [PMID: 33655497 DOI: 10.1111/bph.15426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Division of Bimolecular Sciences and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
50
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|