1
|
Costanza-Robinson MS, Angstman BJ, Cai Q, Forbes C, Keon JS, Lin S, Neill ED, Peebles EG, Roelofs E, Moody EK. Comparison of inductively coupled plasma mass spectrometry and molybdenum blue colorimetry for total phosphorus determination in freshwater invertebrates. PLoS One 2025; 20:e0317871. [PMID: 39874358 PMCID: PMC11774397 DOI: 10.1371/journal.pone.0317871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data. In this work, we compared ICP-MS and MBC for total P determination in freshwater invertebrates, including the potential for analytical interferences, by applying both methods to three standard reference materials (SRMs) and 106 freshwater invertebrate samples. Average total P recoveries for SRMs were slightly higher for ICP-MS (99.8 ± 5.2%) than MBC (96.5 ± 5.4%), but both methods indicated good accuracy. Total P in invertebrates determined using the two methods was strongly linearly correlated (r = 0.96) with a slope of 1.01. On the whole, total P measured using ICP-MS exceeded that measured by MBC, but average pair-wise differences in %P were biologically negligible (0.044 ± 0.054). %P for SRMs and invertebrate samples run on ICP-MS in kinetic energy discrimination and standard modes compared favorably (e.g., SRM P recovery of 102% by both methods), indicating negligible influence of polyatomic ions on ICP-MS analysis. Similarly, analysis of P spike recoveries by ICP-MS (100.2 ± 3.4%) and MBC (107.0 ± 2.8%) were both considered acceptable. We conclude that ICP-MS represents a reliable and comparable alternative to MBC for determining total P in freshwater invertebrates while also offering the opportunity to measure additional biologically relevant elements in a single analysis.
Collapse
Affiliation(s)
- Molly S. Costanza-Robinson
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Baker J. Angstman
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Qiting Cai
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Charles Forbes
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Julia S. Keon
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Shuyi Lin
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Emma D. Neill
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Elizabeth G. Peebles
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Ella Roelofs
- Program for Environmental Studies, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Eric K. Moody
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| |
Collapse
|
2
|
Xu H, He X, Chen J, Huang X, Chen Y, Xu Y, Xiao Y, Liu T, He H, Wang Y, Yang X, Shi L, Zhang H, Yan W. Soil nutrient limitation controls trophic cascade effects of micro-food web-derived ecological functions in degraded agroecosystems. J Adv Res 2025:S2090-1232(25)00037-2. [PMID: 39809362 DOI: 10.1016/j.jare.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Soil nutrient supply drives the ecological functions of soil micro-food webs through bottom-up and top-down mechanisms in degraded agroecosystems. Nutrient limitation responds sensitively to variations in degraded agroecosystems through restoration practices, such as legume intercropping. OBJECTIVES This study examined the effects of legume intercropping on trophic cascade dynamics through resource supply in degraded purple soil ecosystems. METHODS A field experiment was conducted with three plantation types: Camellia oleifera monoculture (CK), C. oleifera-Arachis hypogaea (peanut) intercropping (CP), and C. oleifera-Senna tora intercropping (CS). Using soil nutrient limitation as a premise, modified by legume intercropping, we assessed the biodiversity of soil biotic taxa, analysed their community composition, and applied partial least squares path modelling (PLS-PM) to link trophic cascade with ecological functions. RESULTS Legume intercropping altered the abundance of biotic taxa, leading to changes in biotic diversity and microbial life strategies. The PLS-PM results indicated that legume intercropping enhanced bacterial diversity by aggravating soil P limitation, which subsequently increased protist consumer diversity and omnivore-predator nematode abundance through a bottom-up effect. Omnivore-predator nematodes and protist consumers indirectly influenced soil P metabolism, down-regulated through bacteria in the top-down effect. We observed high consistency between the untargeted metabolomic analysis and soil nutrient limitations. These findings indicate that soil micro-food web structure and function responded sensitively to legume intercropping in degraded ecosystems. CONCLUSION The results highlight the role of soil nutrient limitation in shaping micro-food webs and suggest that soil P limitation controls the down-regulation of soil P-related ecological functions through bottom-up and top-down effects.
Collapse
Affiliation(s)
- Haobo Xu
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xinxing He
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China.
| | - Juan Chen
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xiaozhou Huang
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yazhen Chen
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yichen Xu
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yu Xiao
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Yuelushan Laboratory, Central South University of Forestry & Technology, Changsha 410004, China
| | - Tao Liu
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Hanjie He
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yingping Wang
- Department of Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Aspendale, VIC, Australia
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Leilei Shi
- Faculty of Geographical Science and Engineering, Henan University, Zhengzhou 450046, China
| | - Hongzhi Zhang
- Faculty of Geographical Science and Engineering, Henan University, Zhengzhou 450046, China
| | - Wende Yan
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China.
| |
Collapse
|
3
|
Munsterman KS, Hesselbarth MHK, Allgeier JE. Smaller and bolder fish enhance ecosystem-scale primary production around artificial reefs in seagrass beds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3055. [PMID: 39575845 PMCID: PMC11733711 DOI: 10.1002/eap.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025]
Abstract
Effective management of wild animals requires understanding how predation and harvest alter the composition of populations. These top-down processes can alter consumer body size and behavior and thus should also have consequences for bottom-up processes because (1) body size is a critical determinant of the amount of nutrients excreted and (2) variation in foraging behavior, which is strongly influenced by predation, can determine the amount and spatial distribution of nutrients. Changes to either are known to affect ecosystem-scale nutrient dynamics, but the consequences of these dynamics on ecosystem processes are poorly understood. We used an individual-based model of an artificial reef (AR) and reef fish in a subtropical seagrass bed to test how fish body size can interact with variation in foraging behavior at the population and individual levels to affect seagrass production in a nutrient-limited system. Seagrass production dynamics can be driven by both belowground (BGPP) and aboveground primary production (AGPP); thus, we quantified ecosystem-scale production via these different mechanistic pathways. We found that (1) populations of small fish generated greater total primary production (TLPP = BGPP + AGPP) than large fish, (2) fish that foraged more increased TLPP more than those that spent time sheltering on ARs, and (3) small fish that foraged more led to greatest increases in TLPP. The mechanism by which this occurred was primarily through increased BGPP, highlighting the importance of cryptic belowground dynamics in seagrass ecosystems. Populations of extremely bold individuals (i.e., foraged significantly more) slightly increased TLPP but strongly affected the distribution of production, whereby bold individuals increased BGPP, while populations of shy individuals increased AGPP. Taken together, these results provide a link between consumer body size, variation in consumer behavior, and primary production-which, in turn, will support secondary production for fisheries. Our study suggests that human-induced changes-such as fishing-that alter consumer body size and behavior will fundamentally change ecosystem-scale production dynamics. Understanding the ecosystem effects of harvest on consumer populations is critical for ecosystem-based management, including the development of ARs for fisheries.
Collapse
Affiliation(s)
- Katrina S. Munsterman
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Maximilian H. K. Hesselbarth
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Biodiversity, Ecology, & Conservation GroupInternational Institute for Applied Systems AnalysisLaxenburgAustria
| | - Jacob E. Allgeier
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Lv C, Shan H, Tian Y, Zhao X, Wen Z, Yin C, Li Z, Su H, Wang W, Chou Q, Li K, Zhang X, Cao T. The dual role of benthic fish: Effects on water quality in the presence and absence of submerged macrophytes. WATER RESEARCH 2024; 267:122466. [PMID: 39303580 DOI: 10.1016/j.watres.2024.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Rebuilding a clear-water state dominated by submerged macrophytes is essential for addressing eutrophication, yet the impact of benthic fish on water quality is complex. We conducted two experiments to explore the interaction of submerged plants and benthic fish on the water quality. Experiment I investigated the water clearing effects of submerged macrophytes with varying coverage (from 0% to 40%) before and after the removal of benthic fish. Experiment II explored the impacts of benthic fish at different densities on aquatic ecosystems with and without submerged macrophytes. The results showed that an increase in submerged macrophytes coverage significantly enhanced the reduction of some major water quality parameters. We assert that the coverage of submerged macrophytes should not be lower than 40% to establish and sustain a clear-water state in shallow lakes. However, benthic fish significantly weaken the ability of submerged macrophytes to improve water quality. Surprisingly, the presence or absence of macrophytes may reverse the role of benthic fish in freshwater ecosystems. When macrophytes are present, benthic fish can cause water quality to deteriorate. Conversely, when macrophytes are absent, benthic fish with a density of ≤ 10 g/m3 can restrict the growth of phytoplankton by directly consuming algae or by disturbing sediments to increase turbidity, thereby potentially improving water quality. But the detrimental effects of benthic fish with higher densities may gradually outweigh their benefits to water clarity. Therefore, the percentage of submerged macrophyte cover in combination with the density of benthic fish play crucial roles in shaping the ecological effects of benthic fish and overall ecosystem dynamics. These findings underscore the importance of understanding ecosystem interactions and have practical implications for the management of shallow lakes.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hang Shan
- College of Life Sciences, Zhejiang University, Hangzhou 310050, China
| | - Yuqing Tian
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Xingchen Zhao
- School of Life Sciences, Henan University, Kaifeng 450002, China
| | - Zihao Wen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengjie Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zheng Li
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; China Geo-Engineering Corporation, Beijing 100093, China
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Weijie Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
López-Sepulcre A, Amaral JR, Gautam N, Mohamed A, Naik S. The eco-evolutionary dynamics of stoichiometric homeostasis. Trends Ecol Evol 2024; 39:1111-1118. [PMID: 39217062 DOI: 10.1016/j.tree.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Stoichiometric homeostasis is the ability of life to maintain inner chemical constancy despite changes in the environment and resources. Organisms can be stoichiometrically homeostatic to different degrees. This variation can be substantial even within species, but is ignored in most studies of ecological stoichiometry. Recent studies suggest that resource limitations are an important selective pressure behind homeostasis, but are contradictory in direction, likely owing to differences in nutrient storage strategies. Understanding the selective pressures underlying stoichiometric homeostasis, and its potential for rapid evolution, are key to predicting eco-evolutionary dynamics. This calls for the development of an evolutionary theory of stoichiometric homeostasis that incorporates rapid evolution, as well as for empirical studies to test the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jeferson R Amaral
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Nimisha Gautam
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Amina Mohamed
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| | - Saismit Naik
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Lu K, Chen Z, He X, Wu H, He F. Slow recovery in trophic structure of restored wetlands in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175803. [PMID: 39197779 DOI: 10.1016/j.scitotenv.2024.175803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Restoration measures have been widely implemented in wetland ecosystems globally to bend the curve of biodiversity loss and restore associated ecological functions. However, assessments of the effectiveness of wetland restoration have predominantly focused on the recovery of taxonomic composition, while few studies have assessed the effectiveness of these efforts from a food web perspective. Here, we incorporated stable isotope approach to investigate trophic structure in natural and restored wetlands in Northeast China. The investigated consumers, including zooplankton, macroinvertebrates, and fish, exhibited lower δ15N and higher δ13C values in restored wetlands than in natural wetlands. Natural wetlands exhibited higher trophic positions and a wider range of trophic levels compared to restored wetlands. Primary consumers in natural wetlands relied more on particulate organic matter (POM, 42.9 % ± 24.1 %), while those in restored wetlands were more dependent on substrate organic matter (SOM, 42.3 % ± 23.9 %). Compared to natural wetlands, isotopic richness was significantly lower in restored wetlands, with smaller isotopic variation (SEAs) in basal resources, aquatic invertebrates, and fish. Our findings reveal that the recovery of trophic structures in restored wetlands lags behind that of taxonomic composition. Future restoration efforts should prioritize enhancing habitat heterogeneity and resource availability to support a diverse range of trophic levels. Monitoring trophic dynamics is essential for assessing the progress of wetland restoration and should be integrated into monitoring schemes.
Collapse
Affiliation(s)
- Kangle Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Zhanyan Chen
- Moutai Institute of Science and Technology, Zunyi, Guizhou 564501, China
| | - Xinhua He
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 95616, USA
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China.
| | - Fengzhi He
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| |
Collapse
|
7
|
Corline NJ, Hotchkiss ER, Badgely B, Strahm BD, Scott DT, McLaughlin DL. Tadpole aggregations create biogeochemical hotspots in wetland ecosystems. J Anim Ecol 2024. [PMID: 39551970 DOI: 10.1111/1365-2656.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Animal waste can contribute substantially to nutrient cycling and ecosystem productivity in many environments. However, little is known of the biogeochemical impact of animal excretion in wetland habitats. Here we investigate the effects of wood frog (Lithobates sylvaticus) tadpole aggregations on nutrient recycling, microbial metabolism and carbon cycling in geographically isolated wetlands. We used a paired mesocosm and field study approach that utilized measurements of tadpole excretion rates, microbial extracellular enzyme activities, and litter degradation. We found a strong relationship between tadpole development and nutrient excretion, demonstrating that ontological changes impact tadpole-mediated nutrient cycling in wetland habitats. Further, the interplay between population-level tadpole excretion and wetland hydrologic conditions increased ambientNH 4 + $$ {\mathrm{NH}}_4^{+} $$ andPO 4 3 - $$ {\mathrm{PO}}_4^{3-} $$ concentrations by 56 and 14 times, respectively, compared to adjacent wetlands without tadpoles. Within our mesocosm study, microbes decreased extracellular enzyme production associated with nitrogen acquisition in response to the presence of tadpole-derived nitrogen. In addition to microbial metabolic responses, tadpole presence enhanced litter breakdown in both mesocosms and wetlands by 7% and 12%, respectively, in comparison to reference conditions. These results provide evidence for the functional and biogeochemical role of tadpole aggregations in wetland habitats, with important implications for ecosystem processes, biodiversity conservation, and ecosystem management.
Collapse
Affiliation(s)
- Nicholas J Corline
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Erin R Hotchkiss
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Brian Badgely
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Brian D Strahm
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Durelle T Scott
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Daniel L McLaughlin
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Kurasawa A, Onishi Y, Koba K, Fukushima K, Uno H. Sequential migrations of diverse fish community provide seasonally prolonged and stable nutrient inputs to a river. SCIENCE ADVANCES 2024; 10:eadq0945. [PMID: 39454001 PMCID: PMC11506132 DOI: 10.1126/sciadv.adq0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Animal migrations transport resources among spatially separate ecosystems, effectively linking them. In freshwater ecosystems, numerous fish species migrate between mainstream rivers or lakes and their tributaries, providing resources and nutrients during their spawning migrations. Multiple migratory species travel to the same destinations and contribute such nutrients, but knowledge remains limited about how the diversity of migratory animals influences the recipient ecosystem. We investigated how migrations of diverse fish community from Lake Biwa, Japan contribute to nutrient inputs in one of the lake's tributary rivers and how they influence the ecosystem. Sequential migration of six fish species continued for 8 months of a year, causing high-level nutrient concentration and primary production. The fish-derived resources were taken up by diverse members of the river community. Our results emphasize the extent to which migrations of diverse animals seasonally extend and stabilize the resource subsidy and how they extend pronounced effects on the recipient ecosystems.
Collapse
Affiliation(s)
- Akira Kurasawa
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Yuji Onishi
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Keitaro Fukushima
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Hiromi Uno
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
- Faculty of Environmental Earth Science, Hokkaido University, N10W5 Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
9
|
Castro GB, Alexandre DS, Bernegossi AC, Bezerra YAF, Fonsêca MC, Zaiat M, Corbi JJ. Long-term exposure of Allonais inaequalis to a mixture of antibiotics in freshwater and synthetic wastewater matrices: Reproduction, recovery, and swimming responses. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11007. [PMID: 38414105 DOI: 10.1002/wer.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
Antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes are widely used in human and veterinary medicine, and their combined occurrence in the aquatic environment is increasing around the world. In parallel, the understanding of how mixtures of these compounds affect non-target species from tropical freshwaters is scarce. Thus, this work aimed to study the long-term reproductive, recovery, and swimming effects of mixtures of 12 antibiotics from three different classes (up to 10 μg L-1 ) added to freshwater (FWM) and synthetic wastewater (SWM) matrices on freshwater worm Allonais inaequalis. Results revealed that at the reproduction level, the exposure to antibiotics in the SWM matrix does not cause a significant toxic effect on species after 10 days. On the other hand, exposures to initial dose mixtures (10 μg L-1 each) in FWM caused a significant reduction of offspring by 19.2%. In addition, recovery bioassays (10 days in an antibiotic-free environment) suggested that A. inaequalis has reduced offspring production due to previous exposure to antibiotic mixtures in both matrices. Furthermore, despite slight variation in swimming speed over treatments, no significant differences were pointed out. Regarding antibiotics in the water matrices after 10-day exposures, the highest concentrations were up to 2.7, 7.8, and 4.2 μg L-1 for antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes, respectively. These findings suggest that a species positioned between primary producers and secondary consumers may experience late reproductive damage even in an antibiotic-free zone, after previous 10-day exposure to antibiotic mixtures. PRACTITIONER POINTS: A mixture of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in freshwater affects the offspring production of A. inaequalis after 10 days. After the 10-day antibiotic exposure, the reproduction of A. inaequalis remains affected in an antibiotic-free environment over the recovery period. The swimming speed of the worms does not change after 10 days of exposure to the antibiotic mixture. The concentration of dissolved solids can limit the natural degradation of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Gleyson B Castro
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - David S Alexandre
- Nucleus of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Aline C Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Yohanna A F Bezerra
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mateus C Fonsêca
- Laboratory of Biological Processes, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Juliano J Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
10
|
Fu H, Ge Y, Cai G, Deng J, Liu H, Wu A, Li Y, Li W, Yuan G, Jeppesen E. Weakened casual feedback loops following intensive restoration efforts and climate changes in a large shallow freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169601. [PMID: 38159751 DOI: 10.1016/j.scitotenv.2023.169601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton biomass exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton biomass and environmental factors from 2000 to 2017 could be classified into two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton biomass)-driven enhancement loops promoting the response of the phytoplankton biomass, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalanced groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased- like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yili Ge
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Guojun Cai
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianmin Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huanyao Liu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Aiping Wu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzhi Li
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Erik Jeppesen
- Department of Bioscience and Centre for Water Technology/WATEC, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, PR China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, PR China
| |
Collapse
|
11
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
12
|
Grunberg RL, Braat M, Bolnick DI. Elemental content of a host-parasite relationship in the threespine stickleback. Oecologia 2024; 204:427-437. [PMID: 37358647 PMCID: PMC11633046 DOI: 10.1007/s00442-023-05405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Megan Braat
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
13
|
Downs KN, Kelly PT, Ascanio A, Vanni MJ. Ontogenetic variation in the ecological stoichiometry of 10 fish species during early development. Ecology 2023; 104:e4176. [PMID: 37782823 DOI: 10.1002/ecy.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023]
Abstract
The chemical composition and stoichiometry of vertebrate bodies changes greatly during ontogeny as phosphorus-rich bones form, but we know little about the variation among species during early development. Such variation is important because element ratios in animal bodies influence which element limits growth and how animals contribute to nutrient cycling. We quantified ontogenetic variation from embryos through 2-3 months of age in 10 species of fish in six different families, ranging in adult size from 73 to 720 mm in length. We measured whole-body concentrations (percentage of dry mass) and ratios of carbon (C), nitrogen (N), and phosphorus (P) as fish developed. We also quantified whole-body concentrations of calcium (Ca), because Ca should reflect bone development, and RNA, which can be a major pool of body P. To account for interspecific differences in adult size, we also examined how trends changed with relative size, defined as body length divided by adult length. Ontogenetic changes in body composition and ratios were relatively similar among species and were more similar when expressed as a function of relative size compared to age. Body P increased rapidly in all species (likely because of bone development) from embryos until individuals were ~5%-8% of adult size. Body N also increased, while body C, C:N, C:P, and N:P all decreased over this period. Body Ca increased with development but was more variable among species. Body RNA was low in embryos, increased rapidly in young larvae, then decreased as fish reached 5%-8% of adult size. After fish were about 5%-8% of adult size, changes in body composition were relatively slight for all elements and ratios. These results reveal a consistency in the dynamics of body stoichiometry during early ontogeny, presumably because of similar constraints on the allocation of elements to bones and other body pools. Because most changes occur when individuals are <1 month old (<10% of adult size for that species), early ontogenetic variation in body stoichiometry may be especially important for growth limitation of individuals and ecosystem-level nutrient cycling.
Collapse
Affiliation(s)
- Kelsea N Downs
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Nair P, Miller CM, Fuiman LA. Tracing exploitation of egg boons: an experimental study using fatty acids and stable isotopes. J Exp Biol 2023; 226:jeb246247. [PMID: 37909269 DOI: 10.1242/jeb.246247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Coordinated spawning of marine animals releases millions of planktonic eggs into the environment, known as egg boons. Eggs are rich in essential fatty acids and may be an important lipid subsidy to egg consumers. Our aim was to validate the application of fatty acid and stable isotope tracers of egg consumption to potential egg consumers and to confirm egg consumption by the selected species. We conducted feeding experiments with ctenophores, crustaceans and fishes. We fed these animals a common diet of Artemia or a commercial feed (Otohime) and simulated egg boons for half of them by intermittently supplementing the common diet with red drum (Sciaenops ocellatus) eggs for 10-94 days. Controls did not receive eggs. Fatty acid profiles of consumers fed eggs were significantly different from those of controls 24 h after the last egg-feeding event. Consumers took on fatty acid characteristics of eggs. In fishes and ctenophores, fatty acid markers of egg consumption did not persist 2-5 days after the last egg-feeding event, but markers of egg consumption persisted in crustaceans for at least 5-10 days. Additionally, consumption of eggs, which had high values of δ15N, led to δ15N enrichment in crustaceans and a fish. We conclude that fatty acids and nitrogen stable isotope can be used as biomarkers of recent egg consumption in marine animals, validating their use for assessing exploitation of egg boons in nature.
Collapse
Affiliation(s)
- Parvathi Nair
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Cambria M Miller
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Lee A Fuiman
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
15
|
Musin G, Torres MV, Carvalho DDA. Consumer-driven nutrient recycling of freshwater decapods: Linking ecological theories and application in integrated multitrophic aquaculture. PLoS One 2023; 18:e0262972. [PMID: 37883508 PMCID: PMC10602317 DOI: 10.1371/journal.pone.0262972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2023] [Indexed: 10/28/2023] Open
Abstract
The Metabolic Theory of Ecology (MTE) and the Ecological Stoichiometry Theory (EST) are central and complementary in the consumer-driven recycling conceptual basis. The understanding of physiological processes of organisms is essential to explore and predict nutrient recycling behavior, and to design integrated productive systems that efficiently use the nutrient inputs through an adjusted mass balance. We fed with fish-feed three species of decapods (prawn, anomuran, crab) from different families and with aquacultural potential to explore the animal-mediated nutrient dynamic and its applicability in productive systems. We tested whether body mass, body elemental content, and feeds predict N and P excretion rates and ratios within taxa. We also verified if body content scales allometrically with body mass within taxa. Finally, we compared the nutrient excretion rates and body elemental content among taxa. N excretion rates of prawns and anomurans were negatively related to body mass, emphasizing the importance of MTE. Feed interacted with body mass to explain P excretion of anomurans and N excretion of crabs. Body C:N content positively scaled with body mass in prawns and crabs. Among taxa, prawns mineralised more N and N:P, and less P, and exhibited higher N and C body content (and lower C:N) than the other decapods. Body P and N:P content were different among all species. Body content and body mass were the main factors that explained the differences among taxa and influence the role of crustaceans as nutrient recyclers. These features should be considered to select complementary species that efficiently use feed resources. Prawns need more protein in feed and might be integrated with fish of higher N-requirements, in contrast to crabs and anomurans. Our study contributed to the background of MTE and EST through empirical data obtained from decapods and it provided insightful information to achieve more efficient aquaculture integration systems.
Collapse
Affiliation(s)
- Gabriela Musin
- Instituto Nacional de Limnología, CONICET and Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Victoria Torres
- Centro de Investigaciones Científicas y Transferencia Tecnológica a la Producción, CONICET, Diamante, Entre Ríos, Argentina
- Facultad de Ciencia y Técnica, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | | |
Collapse
|
16
|
Gilbert L, Jeanniard-du-Dot T, Authier M, Chouvelon T, Spitz J. Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling. Nat Commun 2023; 14:5823. [PMID: 37726276 PMCID: PMC10509247 DOI: 10.1038/s41467-023-41532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Defecation by large whales is known to fertilise oceans with nutrients, stimulating phytoplankton and ecosystem productivity. However, our current understanding of these processes is limited to a few species, nutrients and ecosystems. Here, we investigate the role of cetacean communities in the worldwide biological cycling of two major nutrients and six trace nutrients. We show that cetaceans release more nutrients in mesotrophic to eutrophic temperate waters than in oligotrophic tropical waters, mirroring patterns of ecosystem productivity. The released nutrient cocktails also vary geographically, driven by the composition of cetacean communities. The roles of small cetaceans, deep diving cetaceans and baleen whales differ quantitatively and functionally, with contributions of small cetaceans and deep divers exceeding those of large whales in some areas. The functional diversity of cetacean communities expands beyond their role as top predators to include their role as active nutrient vectors, which might be equally important to local ecosystem dynamics.
Collapse
Affiliation(s)
- Lola Gilbert
- Centre for Biological Studies of Chizé, UMR 7372 La Rochelle University - CNRS, La Rochelle, France
- Pelagis Observatory, UAR 3462 La Rochelle University - CNRS, La Rochelle, France
| | | | - Matthieu Authier
- Pelagis Observatory, UAR 3462 La Rochelle University - CNRS, La Rochelle, France
| | - Tiphaine Chouvelon
- Pelagis Observatory, UAR 3462 La Rochelle University - CNRS, La Rochelle, France
- Ifremer, Chemical Contamination of Marine Ecosystems Unit, Nantes, France
| | - Jérôme Spitz
- Centre for Biological Studies of Chizé, UMR 7372 La Rochelle University - CNRS, La Rochelle, France.
- Pelagis Observatory, UAR 3462 La Rochelle University - CNRS, La Rochelle, France.
| |
Collapse
|
17
|
El-Sabaawi RW, Lemmen KD, Jeyasingh PD, Declerck SAJ. SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S109-S126. [PMID: 37840025 DOI: 10.1111/ele.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 10/17/2023]
Abstract
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KULeuven, Leuven, Belgium
| |
Collapse
|
18
|
Herzog C, Reeves JT, Ipek Y, Jilling A, Hawlena D, Wilder SM. Multi-elemental consumer-driven nutrient cycling when predators feed on different prey. Oecologia 2023; 202:729-742. [PMID: 37552361 DOI: 10.1007/s00442-023-05431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.
Collapse
Affiliation(s)
- Colton Herzog
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA.
| | - Jacob T Reeves
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Yetkin Ipek
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, USA
| | - Dror Hawlena
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shawn M Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
19
|
Balik JA, Greig HS, Taylor BW, Wissinger SA. Consequences of climate-induced range expansions on multiple ecosystem functions. Commun Biol 2023; 6:390. [PMID: 37037978 PMCID: PMC10085988 DOI: 10.1038/s42003-023-04673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Climate-driven species range shifts and expansions are changing community composition, yet the functional consequences in natural systems are mostly unknown. By combining a 30-year survey of subalpine pond larval caddisfly assemblages with species-specific functional traits (nitrogen and phosphorus excretion, and detritus processing rates), we tested how three upslope range expansions affected species' relative contributions to caddisfly-driven nutrient supply and detritus processing. A subdominant resident species (Ag. deflata) consistently made large relative contributions to caddisfly-driven nitrogen supply throughout all range expansions, thus "regulating" the caddisfly-driven nitrogen supply. Whereas, phosphorus supply and detritus processing were regulated by the dominant resident species (L. externus) until the third range expansion (by N. hostilis). Since the third range expansion, N. hostilis's relative contribution to caddisfly-driven phosphorus supply increased, displacing L. externus's role in regulating caddisfly-driven phosphorus supply. Meanwhile, detritus processing contributions became similar among the dominant resident, subdominant residents, and range expanding species. Total ecosystem process rates did not change throughout any of the range expansions. Thus, shifts in species' relative functional roles may occur before shifts in total ecosystem process rates, and changes in species' functional roles may stabilize processes in ecosystems undergoing change.
Collapse
Affiliation(s)
- Jared A Balik
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA.
- Departments of Biology and Environmental Science, Allegheny College, Meadville, PA, 16335, USA.
| | - Hamish S Greig
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Brad W Taylor
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Scott A Wissinger
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Departments of Biology and Environmental Science, Allegheny College, Meadville, PA, 16335, USA
| |
Collapse
|
20
|
Oliveira-Cunha P, McIntyre PB, Neres-Lima V, Caliman A, Moreira-Ferreira B, Zandonà E. Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community. Sci Rep 2022; 12:14844. [PMID: 36050417 PMCID: PMC9436996 DOI: 10.1038/s41598-022-19149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ecological Stoichiometry (ES) and the Metabolic Theory of Ecology (MTE) are the main theories used to explain consumers’ nutrient recycling. ES posits that imbalances between an animal’s body and its diet stoichiometry determine its nutrient excretion rates, whereas the MTE predicts that excretion reflects metabolic activity arising from body size and temperature. We measured nitrogen, phosphorus and N:P excretion, body N:P stoichiometry, body size, and temperature for 12 fish species from a Brazilian stream. We fitted competing models reflecting different combinations of ES (body N:P, armor classification, diet group) and MTE (body size, temperature) variables. Only body size predicted P excretion rates, while N excretion was predicted by body size and time of day. N:P excretion was not explained by any variable. There was no interspecific difference in size-scaling coefficients neither for N nor for P. Fitted size scaling coefficients were lower than the MTE prediction of 0.75 for N (0.58), and for P (0.56). We conclude that differences in nutrient excretion among species within a shared environment primarily reflect contrasts in metabolic rates arising from body size, rather than disparities between consumer and resource stoichiometry. Our findings support the MTE as the primary framework for predicting nutrient excretion rates.
Collapse
Affiliation(s)
- Priscila Oliveira-Cunha
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.
| | - Peter B McIntyre
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Vinicius Neres-Lima
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande Do Norte, Natal, RN, Brazil
| | - Beatriz Moreira-Ferreira
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Eugenia Zandonà
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, RJ, CEP 20550-013, Brazil.,Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Species-specific traits predict whole-assemblage detritus processing by pond invertebrates. Oecologia 2022; 199:951-963. [PMID: 35980489 DOI: 10.1007/s00442-022-05239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/10/2022] [Indexed: 10/15/2022]
Abstract
Functional trait diversity determines if ecosystem processes are sensitive to shifts in species abundances or composition. For example, trait variation suggests detritivores process detritus at different rates and make different contributions to whole-assemblage processing, which could be sensitive to compositional shifts. Here, we used a series of microcosm experiments to quantify species-specific coarse and fine particulate organic matter (CPOM and FPOM) processing for ten larval caddisfly species and three non-caddisfly species in high-elevation wetlands. We then compared trait-based models including life history, dietary, and extrinsic traits to determine which traits explained interspecific variation in detritus processing. Finally, we compared processing by mixed caddisfly assemblages in microcosms and natural ponds to additive predictions based on species-specific processing to determine if single-species effects are additive in multi-species assemblages. We found considerable interspecific variation in biomass-specific CPOM (13-fold differences) and FPOM (8-fold differences) processing. Furthermore, on a mass-specific basis, amphipods, chironomids, and caddisflies processed similar amounts of detritus, suggesting non-shredder taxa could process more than previously recognized. Trait models including dietary percent detritus, development rate, body size, and wetland hydroperiod explained 81 and 57% of interspecific variation in CPOM and FPOM processing, respectively. Finally, species-specific additive predictions were strikingly similar to mixed-assemblage processing in microcosms and natural ponds, with the largest difference being a 15% overestimate. Thus, additivity of species-specific processing suggests single-species rates may be useful for understanding functional consequences of shifting assemblages, and a trait-based approach to predicting species-specific processing could support generating additive predictions of whole-assemblage processing.
Collapse
|
22
|
Masese FO, Fuss T, Bistarelli LT, Buchen-Tschiskale C, Singer G. Large herbivorous wildlife and livestock differentially influence the relative importance of different sources of energy for riverine food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154452. [PMID: 35278569 DOI: 10.1016/j.scitotenv.2022.154452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In many regions of the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences for terrestrial-aquatic ecosystem connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of energy supplying aquatic food webs along rivers: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. In Afromontane-savanna landscapes, the shifting numbers of large mammalian wildlife present a physical continuum whose ecological implications for rivers is not clearly understood. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the fractional contribution of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial organic matter and nutrients mediated by large mammalian herbivores (LMH), both wildlife and livestock, in its middle and lower reaches. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns in the fractional contribution of allochthonous organic matter from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous energy from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential energy sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The fractional contribution of different sources of energy for macroinvertebrates along the river did not follow predictions of the RCC and RPM. First, the fractional contribution of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, periphyton was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous sources of energy through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.
Collapse
Affiliation(s)
- Frank O Masese
- University of Eldoret, Department of Fisheries and Aquatic Science, P.O. Box 1125-30100, Eldoret, Kenya; Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Thomas Fuss
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Lukas Thuile Bistarelli
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Caroline Buchen-Tschiskale
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany; Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straβe 84, 15374 Müncheberg, Germany
| | - Gabriel Singer
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
23
|
Benkwitt CE, Carr P, Wilson SK, Graham NAJ. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc Biol Sci 2022; 289:20220195. [PMID: 35538790 PMCID: PMC9091852 DOI: 10.1098/rspb.2022.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mobile consumers are key vectors of cross-ecosystem nutrients, yet have experienced population declines which threaten their ability to fill this role. Despite their importance and vulnerability, there is little information on how consumer biodiversity, in addition to biomass, influences the magnitude of nutrient subsidies. Here, we show that both biomass and diversity of seabirds enhanced the provisioning of nutrients across tropical islands and coral reefs, but their relative influence varied across systems. Seabird biomass was particularly important for terrestrial and near-shore subsidies and enhancing fish biomass, while seabird diversity was associated with nutrient subsidies further offshore. The positive effects of diversity were likely driven by high functional complementarity among seabird species in traits related to nutrient storage and provisioning. However, introduced rats and non-native vegetation reduced seabird biomass and diversity, with rats having a stronger effect on biomass and vegetation having a stronger effect on diversity. Accordingly, the restoration of cross-ecosystem nutrient flows provided by seabirds will likely be most successful when both stressors are removed, thus protecting both high biomass and diversity. Recognizing the importance of mobile consumer diversity and biomass, and their underlying drivers, is a necessary step to conserving these species and the ecosystem functions they provide.
Collapse
Affiliation(s)
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London NW1 4RY, UK,Chagos Conservation Trust, 23 The Avenue, Sandy, Beds SG19 1ER, UK
| | - Shaun K. Wilson
- Marine Science Program, Department of Biodiversity Conservation and Attractions, Kensington, Western Australia, Australia,Oceans Institute, University of Western Australia, Crawly, Western Australia, Australia
| | | |
Collapse
|
24
|
Washko S, Willby N, Law A. How beavers affect riverine aquatic macroinvertebrates: a review. PeerJ 2022; 10:e13180. [PMID: 35509966 PMCID: PMC9059751 DOI: 10.7717/peerj.13180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background As ecosystem engineers, the construction of dams by beavers alters stream habitat physically and biologically, making them a species of interest for habitat restoration. Beaver-created habitat changes affect a wide range of aquatic invertebrate species. However, despite numerous individual studies of how beavers affect aquatic macroinvertebrate assemblages, there has been no evaluation of the consensus of these effects across studies. Methodology We collated and examined studies comparing beaver-created ponds to nearby lotic reaches to determine general trends in aquatic macroinvertebrate richness, density, biomass, and functional composition between habitats. From this evidence, we highight knowledge gaps in how beaver activity affects aquatic macroinvertebrates. Results Overall, in the majority of studies, aquatic macroinvertebrate richness was higher in nearby lotic reaches compared to beaver-created ponds, but richness at coarser scales (gamma diversity) increased with the addition of beaver ponds due to increased habitat heterogeneity. Functional feeding group (FFG) patterns were highly context-dependent, though predator taxa were generally more abundant in beaver ponds than adjacent lotic reaches. Site-specific geomorphological changes, coupled with dam or riparian zone characteristics and resulting differences in basal food resources likely shape other FFG responses. Conclusions We identify a lack of long-term studies at single or multiple sites and conclude that fine-scale approaches may improve our understanding of the dynamics of macroinvertebrates within the freshwater realm and beyond. Due to the context-dependent nature of each study, further systematic studies of beaver engineering effects across a wider variety of environmental conditions and wetland types will also help inform land and species management decisions, such as where to prioritize protection of beaver habitats in the face of a global freshwater biodiversity crisis, or where to restore beaver populations to deliver maximum benefit.
Collapse
Affiliation(s)
- Susan Washko
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Nigel Willby
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Alan Law
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
25
|
Hopper GW, Buchanan JK, Sánchez González I, Kubala ME, Bucholz JR, Lodato MB, Lozier JD, Atkinson CL. Little clams with big potential: nutrient release by invasive Corbicula fluminea can exceed co-occurring freshwater mussel (Unionidae) assemblages. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Guo L, Zhao L, Ye J, Ji Z, Tang JJ, Bai K, Zheng S, Hu L, Chen X. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife 2022; 11:73869. [PMID: 35190027 PMCID: PMC8863371 DOI: 10.7554/elife.73869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
Whether species coculture can overcome the shortcomings of crop monoculture requires additional study. Here, we show how aquatic animals (i.e. carp, crabs, and softshell turtles) benefit paddy ecosystems when cocultured with rice. Three separate field experiments and three separate mesocosm experiments were conducted. Each experiment included a rice monoculture (RM) treatment and a rice-aquatic animal (RA) coculture treatment; RA included feed addition for aquatic animals. In the field experiments, rice yield was higher with RA than with RM, and RA also produced aquatic animal yields that averaged 0.52–2.57 t ha-1. Compared to their corresponding RMs, the three RAs had significantly higher apparent nitrogen (N)-use efficiency and lower weed infestation, while soil N contents were stable over time. Dietary reconstruction analysis based on 13C and 15N showed that 16.0–50.2% of aquatic animal foods were from naturally occurring organisms in the rice fields. Stable-isotope-labeling (13C) in the field experiments indicated that the organic matter decomposition rate was greater with RA than with RM. Isotope 15N labeling in the mesocosm experiments indicated that rice used 13.0–35.1% of the aquatic animal feed-N. All these results suggest that rice-aquatic animal coculture increases food production, increases N-use efficiency, and maintains soil N content by reducing weeds and promoting decomposition and complementary N use. Our study supports the view that adding species to monocultures may enhance agroecosystem functions. Monoculture, where only one type of crop is grown to the exclusion of any other organism, is a pillar of modern agriculture. Yet this narrow focus disregards how complex inter-species interactions can increase crop yield and biodiversity while decreasing the need for fertilizers or pesticides. For example, many farmers across Asia introduce carps, crabs, turtles or other freshwater grazers into their rice paddies. This coculture approach yields promising results but remains poorly understood. In particular, it is unclear how these animals’ behaviours and biological processes benefit the ecosystem. To examine these questions, Guo, Zhao et al. conducted three separate four-year field experiments; they compared rice plots inhabited by either carp, mitten crabs or Chinese softshell turtles with fields where these organisms were not present. With animals, the rice paddies had less weeds, better crop yields and steady levels of nitrogen (a natural fertiliser) in their soil. These ecosystems could breakdown organic matter faster, use it better and had a reduced need for added fertilizer. While animal feed was provided in the areas that were studied, carp, crabs and turtles obtained up to half their food from the field itself, eating weeds, algae and pests and therefore reducing competition for the crops. This work helps to understand the importance of species interactions, showing that diversifying monocultures may boost yields and make agriculture more sustainable.
Collapse
Affiliation(s)
- Liang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lufeng Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junlong Ye
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijun Ji
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Jun Tang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Keyu Bai
- Bioversity International, Maccarese, Italy
| | - Sijun Zheng
- Bioversity International, Maccarese, Italy.,Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liangliang Hu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Uno H, Fukushima K, Kawamura M, Kurasawa A, Sato T. Direct and indirect effects of amphidromous shrimps on nutrient mineralization in streams in Japan. Oecologia 2022; 198:493-505. [DOI: 10.1007/s00442-022-05119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
28
|
Disease‐mediated nutrient dynamics: Coupling host‐pathogen interactions with ecosystem elements and energy. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Atkinson CL, Forshay KJ. Community patch dynamics governs direct and indirect nutrient recycling by aggregated animals across spatial scales. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla L. Atkinson
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Kenneth J. Forshay
- Robert S. Kerr Environmental Research Center Office of Research and Development United States Environmental Protection Agency Ada OK USA
| |
Collapse
|
30
|
Sommer NR, Ferraro KM. An interest‐based rights ethic for wildlife management and applications to behavioral training. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Nathalie R. Sommer
- Yale School of the Environment New Haven Connecticut USA
- Yale Law School: Law, Animal and Ethics Program New Haven Connecticut USA
| | - Kristy M. Ferraro
- Yale School of the Environment New Haven Connecticut USA
- Yale Law School: Law, Animal and Ethics Program New Haven Connecticut USA
| |
Collapse
|
31
|
Moi DA, Romero GQ, Jeppesen E, Kratina P, Alves DC, Antiqueira PAP, Teixeira de Mello F, Figueiredo BRS, Bonecker CC, Pires APF, Braghin LSM, Mormul RP. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversity, and ecosystem multifunctionality. J Anim Ecol 2021; 91:551-565. [PMID: 34954827 DOI: 10.1111/1365-2656.13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversity and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12-year period during which the lake has displayed all the three states (clear, turbid, and shaded) to investigate how species richness, functional diversity of fish and zooplankton, ecosystem multifunctionality, and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production, and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and functional diversity) and multifunctionality is affected by regime shifts. We showed that species richness and the functional diversity of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass, and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between functional diversity and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic and functional diversity of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.
Collapse
Affiliation(s)
- Dieison A Moi
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), Department of Biology (DBI), Center of Biological Sciences (CCB), State University of Maringá (UEM), Brazil
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, DK-8600, Silkeborg, Denmark.,Sino-Danish Centre for Education and Research (SDC), Beijing, China.,Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| | - Pavel Kratina
- School of Biological and Behavioral Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Diego C Alves
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), Department of Biology (DBI), Center of Biological Sciences (CCB), State University of Maringá (UEM), Brazil.,Departamento de Estatística, Centro de Ciências Exatas, Universidade Estadual de Maringa´, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Pablo A P Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Franco Teixeira de Mello
- Departamento de Ecología y Gestión Ambiental CURE, Universidad de la República, Tacuarembó s/n, Maldonado, Uruguay
| | - Bruno R S Figueiredo
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Claudia C Bonecker
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), Department of Biology (DBI), Center of Biological Sciences (CCB), State University of Maringá (UEM), Brazil
| | - Aliny P F Pires
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Louizi S M Braghin
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), Department of Biology (DBI), Center of Biological Sciences (CCB), State University of Maringá (UEM), Brazil
| | - Roger P Mormul
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), Department of Biology (DBI), Center of Biological Sciences (CCB), State University of Maringá (UEM), Brazil
| |
Collapse
|
32
|
Dutton CL, Subalusky AL, Sanchez A, Estrela S, Lu N, Hamilton SK, Njoroge L, Rosi EJ, Post DM. The meta-gut: community coalescence of animal gut and environmental microbiomes. Sci Rep 2021; 11:23117. [PMID: 34848778 PMCID: PMC8633035 DOI: 10.1038/s41598-021-02349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
All animals carry specialized microbiomes, and their gut microbiota are continuously released into the environment through excretion of waste. Here we propose the meta-gut as a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and alter biogeochemical processes mediated by microbes. We demonstrate this dynamic in the hippopotamus (hippo) and the pools they inhabit. We used natural field gradients and experimental approaches to examine fecal and pool water microbial communities and aquatic biogeochemistry across a range of hippo inputs. Sequencing using 16S RNA methods revealed community coalescence between hippo gut microbiomes and the active microbial communities in hippo pools that received high inputs of hippo feces. The shared microbiome between the hippo gut and the waters into which they excrete constitutes a meta-gut system that could influence the biogeochemistry of recipient ecosystems and provide a reservoir of gut microbiomes that could influence other hosts. We propose that meta-gut dynamics may also occur where other animal species congregate in high densities, particularly in aquatic environments.
Collapse
Affiliation(s)
- Christopher L Dutton
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Amanda L Subalusky
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Alvaro Sanchez
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Nanxi Lu
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Stephen K Hamilton
- W.K. Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | | | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT, 06511, USA
| |
Collapse
|
33
|
Antiqueira PAP, Petchey OL, Rezende F, Machado Velho LF, Rodrigues LC, Romero GQ. Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems. J Anim Ecol 2021; 91:428-442. [PMID: 34808001 DOI: 10.1111/1365-2656.13640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems. We used natural microecosystems (tank-bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro-organisms, (b) aquatic macro-organisms and (c) terrestrial predators (i.e. via cross-ecosystem effects). The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web-building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro- or macro-organisms but did positively affect the abundance of web-building terrestrial predators. These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.
Collapse
Affiliation(s)
- Pablo Augusto P Antiqueira
- Laboratório de Interações Multitróficas e Biodiversidade, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Felipe Rezende
- Laboratório de Interações Multitróficas e Biodiversidade, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Felipe Machado Velho
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPELIA)/PEA/CCB, Universidade Estadual de Maringá (UEM), Maringá, Brazil.,Instituto Cesumar de Ciência e Tecnolgia - ICETI. Universidade Cesumar - UniCesumar- PPGTL, Maringá, Brazil
| | - Luzia Cleide Rodrigues
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPELIA)/PEA/CCB, Universidade Estadual de Maringá (UEM), Maringá, Brazil
| | - Gustavo Quevedo Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
34
|
Evangelista C, Dupeu J, Sandkjenn J, Pauli BD, Herland A, Meriguet J, Vøllestad LA, Edeline E. Ecological ramifications of adaptation to size-selective mortality. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210842. [PMID: 34754498 PMCID: PMC8493199 DOI: 10.1098/rsos.210842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/10/2021] [Indexed: 05/28/2023]
Abstract
Size-selective mortality due to harvesting is a threat to numerous exploited species, but how it affects the ecosystem remains largely unexplored. Here, we used a pond mesocosm experiment to assess how evolutionary responses to opposite size-selective mortality interacted with the environment (fish density and light intensity used as a proxy of resource availability) to modulate fish populations, prey community composition and ecosystem functions. We used medaka (Oryzias latipes) previously selected over 10 generations for small size (harvest-like selection; small-breeder line) or large size (large-breeder line), which displayed slow somatic growth and early maturity or fast somatic growth and late maturity, respectively. Large-breeder medaka produced more juveniles, which seemed to grow faster than small-breeder ones but only under high fish density. Additionally, large-breeder medaka had an increased impact on some benthic prey, suggesting expanded diet breadth and/or enhanced foraging abilities. As a consequence, increased light stimulated benthic algae biomass only in presence of large-breeder medaka, which were presumably better at controlling benthic grazers. Aggregated effect sizes at the community and ecosystem levels revealed that the ecological effects of medaka evolution were of similar magnitude to those induced by the environment and fish introduction. These findings indicate the important environmental dependency of evolutionary response to opposite size-selective mortality on higher levels of biological organizations.
Collapse
Affiliation(s)
- Charlotte Evangelista
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Julia Dupeu
- Sorbonne Université, CNRS, INRAE, IRD, Université Paris Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, France
| | - Joakim Sandkjenn
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Beatriz Diaz Pauli
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Biological Science, University of Bergen, Bergen, Norway
| | - Anders Herland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jacques Meriguet
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS, Saint-Pierre-lès-Nemours, France
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Leif Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric Edeline
- Sorbonne Université, CNRS, INRAE, IRD, Université Paris Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, France
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus-Ouest, Rennes, France
| |
Collapse
|
35
|
Animal-Driven Nutrient Supply Declines Relative to Ecosystem Nutrient Demand Along a Pond Hydroperiod Gradient. Ecosystems 2021. [DOI: 10.1007/s10021-021-00679-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ellis-Soto D, Ferraro KM, Rizzuto M, Briggs E, Monk JD, Schmitz OJ. A methodological roadmap to quantify animal-vectored spatial ecosystem subsidies. J Anim Ecol 2021; 90:1605-1622. [PMID: 34014558 DOI: 10.1111/1365-2656.13538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022]
Abstract
Energy, nutrients and organisms move over landscapes, connecting ecosystems across space and time. Meta-ecosystem theory investigates the emerging properties of local ecosystems coupled spatially by these movements of organisms and matter, by explicitly tracking exchanges of multiple substances across ecosystem borders. To date, meta-ecosystem research has focused mostly on abiotic flows-neglecting biotic nutrient flows. However, recent work has indicated animals act as spatial nutrient vectors when they transport nutrients across landscapes in the form of excreta, egesta and their own bodies. Partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem theory. Furthermore, while animals may be viewed as important mediators of ecosystem functions, better integration of tools is needed to develop predictive insights of their relative roles and impacts on diverse ecosystems. We present a methodological roadmap that explains how to do such integration by discussing how to combine insights from movement, foraging and ecosystem ecology to develop a coherent understanding of animal-vectored nutrient transport on meta-ecosystems processes. We discuss how the slate of newly developed technologies and methods-tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing-that when integrated have the potential to advance the quantification of animal-vectored nutrient flows and increase the predictive power of meta-ecosystem theory. We demonstrate that by integrating novel and established tools of animal ecology, ecosystem ecology and remote sensing, we can begin to identify and quantify animal-mediated nutrient translocation by large animals. We also provide conceptual examples that show how our proposed integration of methodologies can help investigate ecosystem impacts of large animal movement. We conclude by describing practical advancements to understanding cross-ecosystem contributions of animals on the move. Understanding the mechanisms by which animals shape ecosystem dynamics is important for ongoing conservation, rewilding and restoration initiatives around the world, and for developing more accurate models of ecosystem nutrient budgets. Our roadmap will enable ecologists to better qualify and quantify animal-mediated nutrient translocation for animals on the move.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | | | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| | - Emily Briggs
- School of the Environment, Yale University, New Haven, CT, USA.,Department of Anthropology, Yale University, New Haven, CT, USA
| | - Julia D Monk
- School of the Environment, Yale University, New Haven, CT, USA
| | | |
Collapse
|
37
|
Sharitt CA, González MJ, Williamson TJ, Vanni MJ. Nutrient excretion by fish supports a variable but significant proportion of lake primary productivity over 15 years. Ecology 2021; 102:e03364. [PMID: 33834475 DOI: 10.1002/ecy.3364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/05/2022]
Abstract
Animals play an important and sometimes overlooked role in nutrient cycling. The role of animals in nutrient cycling is spatially and temporally variable, but few studies have evaluated the long-term importance of animal-mediated nutrient cycling in meeting nutrient demand by primary producers. We quantified the proportion of phytoplankton nutrient (phosphorus, P) demand met by excretion by gizzard shad (Dorosoma cepedianum) in a eutrophic reservoir where this species dominates fish biomass. From 2000 to 2014, gizzard shad excretion supported a variable proportion of phytoplankton P demand, averaging 7-27% among years over the growing season (spring and summer). Temporal patterns emerged, as gizzard shad consistently supported a higher proportion of demand during summer (mean 31%) than spring (8%). In spring, the proportion of demand met from gizzard shad excretion was best predicted by gizzard shad population biomass, stream discharge, and temperature. In summer, this proportion was best predicted only by biomass of the young-of-year (YOY) gizzard shad. Thus, variation in YOY shad biomass significantly alters nutrient supply, and future studies should explore the long-term role of animal population dynamics in nutrient cycling. Our study shows that several years of data are needed to perform a critical evaluation of the importance of animals in meeting ecosystem nutrient demand.
Collapse
Affiliation(s)
- Carrie Ann Sharitt
- Department of Biology, Miami University, 501 East High Street, Oxford, Ohio, 45056, USA
| | - María J González
- Department of Biology, Miami University, 501 East High Street, Oxford, Ohio, 45056, USA
| | - Tanner J Williamson
- Department of Biology, Miami University, 501 East High Street, Oxford, Ohio, 45056, USA
| | - Michael J Vanni
- Department of Biology, Miami University, 501 East High Street, Oxford, Ohio, 45056, USA
| |
Collapse
|
38
|
Knapp DD, Smith LL, Atkinson CL. Larval anurans follow predictions of stoichiometric theory: implications for nutrient storage in wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniel D. Knapp
- Department of Biological Sciences The University of Alabama 1325 Science and Engineering Complex Tuscaloosa Alabama 35487 USA
- Jones Center at Ichauway 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Lora L. Smith
- Jones Center at Ichauway 3988 Jones Center Drive Newton Georgia 39870 USA
| | - Carla L. Atkinson
- Department of Biological Sciences The University of Alabama 1325 Science and Engineering Complex Tuscaloosa Alabama 35487 USA
| |
Collapse
|
39
|
Leduc AOHC, Thomas SA, Bassar RD, López-Sepulcre A, MacNeill K, El-Sabaawi R, Reznick DN, Flecker AS, Travis J. The experimental range extension of guppies (Poecilia reticulata) influences the metabolic activity of tropical streams. Oecologia 2021; 195:1053-1069. [PMID: 33738525 DOI: 10.1007/s00442-021-04884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
The ecological consequences of biological range extensions reflect the interplay between the functional characteristics of the newly arrived species and their recipient ecosystems. Teasing apart the relative contribution of each component is difficult because most colonization events are studied retrospectively, i.e., after a species became established and its consequences apparent. We conducted a prospective experiment to study the ecosystem consequences of a consumer introduction, using whole-stream metabolism as our integrator of ecosystem activity. In four Trinidadian streams, we extended the range of a native fish, the guppy (Poecilia reticulata), by introducing it over barrier waterfalls that historically excluded it from these upper reaches. To assess the context dependence of these range extensions, we thinned the riparian forest canopy on two of these streams to increase benthic algal biomass and productivity. Guppy's range extension into upper stream reaches significantly impacted stream metabolism but the effects depended upon the specific stream into which they had been introduced. Generally, increases in guppy biomass caused an increase in gross primary production (GPP) and community respiration (CR). The effects guppies had on GPP were similar to those induced by increased light level and were larger in strength than the effects stream stage had on CR. These results, combined with results from prior experiments, contribute to our growing understanding of how consumers impact stream ecosystem function when they expand their range into novel habitats. Further study will reveal whether local adaptation, known to occur rapidly in these guppy populations, modifies the ecological consequences of this species introduction.
Collapse
Affiliation(s)
- Antoine O H C Leduc
- Post-Graduation Program in Ecology, Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, RN, 59014002, Brazil. .,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Steven A Thomas
- School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall Room 403, Lincoln, NE, 68583, USA
| | - Ronald D Bassar
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Andrés López-Sepulcre
- CNRS UMR 7618, Institute of Ecology and Environmental Sciences Paris (iEES), Université Sorbonne, 4 Place Jussieu, 75252, Paris, France.,Department of Biological and Environmental Sciences, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland
| | - Keeley MacNeill
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Rana El-Sabaawi
- Department of Biology, University of Victoria, STN CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada
| | - David N Reznick
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
40
|
Hopper GW, Chen S, Sánchez González I, Bucholz JR, Lu Y, Atkinson CL. Aggregated filter‐feeders govern the flux and stoichiometry of locally available energy and nutrients in rivers. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Garrett W. Hopper
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Shuo Chen
- Department of Geological Sciences University of Alabama Tuscaloosa AL USA
| | | | - Jamie R. Bucholz
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - YueHan Lu
- Department of Geological Sciences University of Alabama Tuscaloosa AL USA
| | - Carla L. Atkinson
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| |
Collapse
|
41
|
Invasive mussels regulate nutrient cycling in the largest freshwater ecosystem on Earth. Proc Natl Acad Sci U S A 2021; 118:2100275118. [PMID: 33547254 DOI: 10.1073/pnas.2100275118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Benthic invaders control the phosphorus cycle in the world's largest freshwater ecosystem. Proc Natl Acad Sci U S A 2021; 118:2008223118. [PMID: 33495360 DOI: 10.1073/pnas.2008223118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The productivity of aquatic ecosystems depends on the supply of limiting nutrients. The invasion of the Laurentian Great Lakes, the world's largest freshwater ecosystem, by dreissenid (zebra and quagga) mussels has dramatically altered the ecology of these lakes. A key open question is how dreissenids affect the cycling of phosphorus (P), the nutrient that limits productivity in the Great Lakes. We show that a single species, the quagga mussel, is now the primary regulator of P cycling in the lower four Great Lakes. By virtue of their enormous biomass, quagga mussels sequester large quantities of P in their tissues and dramatically intensify benthic P exchanges. Mass balance analysis reveals a previously unrecognized sensitivity of the Great Lakes ecosystem, where P availability is now regulated by the dynamics of mussel populations while the role of the external inputs of phosphorus is suppressed. Our results show that a single invasive species can have dramatic consequences for geochemical cycles even in the world's largest aquatic ecosystems. The ongoing spread of dreissenids across a multitude of lakes in North America and Europe is likely to affect carbon and nutrient cycling in these systems for many decades, with important implications for water quality management.
Collapse
|
43
|
Moi DA, Romero GQ, Antiqueira PAP, Mormul RP, Teixeira de Mello F, Bonecker CC. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieison A. Moi
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | - Gustavo Q. Romero
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Pablo A. P. Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity Department of Animal Biology Institute of Biology University of Campinas (UNICAMP) Campinas Brazil
| | - Roger P. Mormul
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| | | | - Claudia C. Bonecker
- Graduate Program in Ecology of Inland Water Ecosystems Department of Biology State University of Maringá Maringá Brazil
| |
Collapse
|
44
|
Filter-feeders have differential bottom-up impacts on green and brown food webs. Oecologia 2021; 195:187-198. [PMID: 33389154 DOI: 10.1007/s00442-020-04821-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Nutrient recycling by consumers can strongly impact nutrient availability for autotrophic and heterotrophic microbes, thus impacting functions such as primary production and decomposition. Filter-feeding freshwater mussels form dense, multispecies assemblages in aquatic ecosystems and have been shown to play a critical role in nutrient cycling. Mussel excretion can enhance benthic primary production and influence algal species composition. However, the role of mussels in brown or detritus-based food webs and species-specific differences has received considerably less attention. Here, using mesocosm experiments, we assessed how three species of freshwater mussels that occupy three different phylogenetic tribes influenced benthic algal accrual, ecosystem metabolism, cotton strip decomposition, leaf litter (Acer saccharum) decomposition, and litter-associated fungal biomass measured as ergosterol. Additionally, we measured mussel excretion and biodeposition rates and assessed the stoichiometry (C:N, C:P, and N:P) of the benthic algae, cotton strips, and leaf litter. In comparison to controls without mussels, generally, mussel treatments had higher benthic algal biomass composed of more diatoms, higher gross primary productivity and net ecosystem production rates, and higher cotton strip tensile strength loss, but there was not a difference in ecosystem respiration rates, leaf litter decomposition rates, or fungal biomass. Benthic algae had lower C:N and higher N:P in mussel treatment tanks and cotton strip C:N was lower in mesocosms with mussels. Our results suggest that nutrient regeneration by mussels most strongly regulates green food webs, with some impacts to brown food webs, suggesting that consumers have interactive effects on microbial functioning in freshwaters.
Collapse
|
45
|
Lopez JW, Parr TB, Allen DC, Vaughn CC. Animal aggregations promote emergent aquatic plant production at the aquatic–terrestrial interface. Ecology 2020; 101:e03126. [DOI: 10.1002/ecy.3126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan W. Lopez
- Department of Biology University of Oklahoma Norman Oklahoma73019USA
- Oklahoma Biological Survey University of Oklahoma Norman Oklahoma73019USA
| | - Thomas B. Parr
- Department of Biology University of Oklahoma Norman Oklahoma73019USA
- Oklahoma Biological Survey University of Oklahoma Norman Oklahoma73019USA
| | - Daniel C. Allen
- Department of Biology University of Oklahoma Norman Oklahoma73019USA
| | - Caryn C. Vaughn
- Department of Biology University of Oklahoma Norman Oklahoma73019USA
- Oklahoma Biological Survey University of Oklahoma Norman Oklahoma73019USA
| |
Collapse
|
46
|
Atkinson CL, van Ee BC, Pfeiffer JM. Evolutionary history drives aspects of stoichiometric niche variation and functional effects within a guild. Ecology 2020; 101:e03100. [PMID: 32443181 DOI: 10.1002/ecy.3100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
Functional traits are characteristics of an organism that represents how it interacts with its environment and can influence the structure and function of ecosystems. Ecological stoichiometry provides a framework to understand ecosystem structure and function by modeling the coupled flow of elements (e.g. carbon [C], nitrogen [N], phosphorus [P]) between consumers and their environment. Animals tend to be homeostatic in their nutrient requirements and preferentially sequester the element in shortest supply relative to demand, and release relatively more of the element in excess. Tissue stoichiometry is an important functional trait that allows for predictions among the elemental composition of animals, their diet, and their waste products, with important effects on the cycling and availability of nutrients in ecosystems. Here, we examined the tissue stoichiometric niches (C:N:P) and nutrient recycling stoichiometries (N:P) of several filter-feeding freshwater mussels in the subfamily Ambleminae. Despite occupying the same functional-feeding group and being restricted to a single subfamily-level radiation, we found that species occupied distinct stoichiometric niches and that these niches varied, in part, as a function of their evolutionary history. The relationship between phylogenetic divergence and functional divergence suggests that evolutionary processes may be shaping niche complementarity and resource partitioning. Tissue and excretion stoichiometry were negatively correlated as predicted by stoichiometric theory. When scaled to the community, higher species richness and phylogenetic diversity resulted in greater functional evenness and reduced functional dispersion. Filter-feeding bivalves are an ecologically important guild in freshwater ecosystems globally, and our study provides a more nuanced view of the stoichiometric niches and ecological functions performed by this phylogenetically and ecologically diverse assemblage.
Collapse
Affiliation(s)
- Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Brian C van Ee
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - John M Pfeiffer
- National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| |
Collapse
|
47
|
Lin Q, Chen Q, Peng L, Xiao L, Lei L, Jeppesen E. Do bigheaded carp act as a phosphorus source for phytoplankton in (sub)tropical Chinese reservoirs? WATER RESEARCH 2020; 180:115841. [PMID: 32422412 DOI: 10.1016/j.watres.2020.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Stocking of bigheaded carp (mainly Hypophthalmichthys nobilis and H. molitrix) is commonly used in (sub)tropical Chinese reservoirs to control phytoplankton, but with ambiguous results. Whether these carp act as a phosphorus (P) source or sink for phytoplankton is debated. We compared the trophic structures in twenty-three reservoirs with different nutrient concentrations in the flood season (after bigheaded carp introduction) with the dry season (after bigheaded carp harvesting). Fish biomass was positively related to TP, and the slope of the relationship showed no difference between seasons. Bigheaded carp harvesting exceeded the amount introduced, which may explain an observed lower intercept of the relationship and fish biomass to the TP ratio in the dry season. Fish predation pressure on zooplankton (fish: zooplankton biomass ratio as a proxy) was highest in the flood season and increased with TP in both seasons. Accordingly, zooplankton grazing effect on phytoplankton (zooplankton: phytoplankton biomass ratio as a proxy) decreased with fish biomass. Furthermore, both the zooplankton biomass and the zooplankton: phytoplankton biomass ratio were among the lowest reported in the literature for the nutrient range studied. Fish grazing effect on phytoplankton (fish: phytoplankton biomass ratio as a proxy) was also highest in the flood season and decreased with TP in both seasons. Nanoplankton was the dominant phytoplankton group in oligotrophic to mesotrophic reservoirs, while filamentous cyanobacteria dominated in eutrophic reservoirs. Chlorophyll a increased with TP and fish biomass, whereas the yield of chlorophyll a per TP (Chla: TP ratio) increased with fish biomass. Accordingly, both chlorophyll a and the Chla: TP ratio were highest in the flood season. We conclude that bigheaded carp act as P sink at the ecosystem level but as P source for phytoplankton, and enhance the yield of chlorophyll a per TP and thus eutrophication.
Collapse
Affiliation(s)
- Qiuqi Lin
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Qinghang Chen
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Liang Peng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lijuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lamei Lei
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
48
|
Strayer DL. Non-native species have multiple abundance-impact curves. Ecol Evol 2020; 10:6833-6843. [PMID: 32724554 PMCID: PMC7381559 DOI: 10.1002/ece3.6364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
The abundance-impact curve is helpful for understanding and managing the impacts of non-native species. Abundance-impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance-impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance-impact curve is determined jointly by a non-native species and the ecosystem it invades, so that a species may have multiple abundance-impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance-impact curves. To the extent that ecosystem characteristics determine the abundance-impact curve, abundance-impact curves based on horizontal designs (space-for-time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance-impact curve when considering the impacts of non-native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non-native species affect ecosystems and reduce uncertainty around the effects of management of populations of non-native species.
Collapse
Affiliation(s)
- David L. Strayer
- Cary Institute of Ecosystem StudiesMillbrookNYUSA
- Graham Sustainability InstituteUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
49
|
|
50
|
Krill vs salps: dominance shift from krill to salps is associated with higher dissolved N:P ratios. Sci Rep 2020; 10:5911. [PMID: 32246093 PMCID: PMC7125175 DOI: 10.1038/s41598-020-62829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/18/2020] [Indexed: 12/04/2022] Open
Abstract
Pronounced atmospheric and oceanic warming along the West Antarctic Peninsula (WAP) has resulted in abundance shifts in populations of Antarctic krill and Salpa thompsoni determined by changes in the timing of sea-ice advance, the duration of sea-ice cover and food availability. Krill and salps represent the most important macrozooplankton grazers at the WAP, but differ profoundly in their feeding biology, population dynamics and stoichiometry of excretion products with potential consequences for the relative availability of dissolved nitrogen and phosphorus. Alternation of the dissolved nutrient pool due to shifts in krill and salp densities have been hypothesized but never explicitly tested by using observational data. We therefore used the Palmer LTER dataset in order to investigate whether the dominance of either grazer is related with the observed dissolved nitrogen:phosphorus (N:P) ratios at the WAP. Across the whole sampling grid, the dominance of salps over krill was significantly correlated to higher concentrations of both N and P as well as a higher N:P ratios. Using actual long-term data, our study shows for the first time that changes in key grazer dominance may have consequences for the dynamics of dissolved nitrogen and phosphorus at the WAP.
Collapse
|