1
|
Dujon AM, Boutry J, Tissot S, Meliani J, Miltiadous A, Tokolyi J, Ujvari B, Thomas F. The widespread vulnerability of Hydra oligactis to tumourigenesis confirms its value as a model for studying the effects of tumoural processes on the ecology and evolution of species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175785. [PMID: 39187082 DOI: 10.1016/j.scitotenv.2024.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Tumoural processes, ubiquitous phenomena in multicellular organisms, influence evolutionary trajectories of all species. To gain a holistic understanding of their impact on species' biology, suitable laboratory models are required. Such models are characterised by a widespread availability, ease of cultivation, and reproducible tumour induction. It is especially important to explore, through experimental approaches, how tumoural processes alter ecosystem functioning. The cnidarian Hydra oligactis is currently emerging as a promising model due to its development of both transmissible and non-transmissible tumours and the wide breadth of experiments that can be conducted with this species (at the individual, population, mechanistic, and evolutionary levels). However, tumoural hydras are, so far, only documented in Europe, and it is not clear if the phenomenon is local or widespread. In this study we demonstrate that Australian hydras from two independent river networks develop tumours in the laboratory consisting of interstitial stem cells and display phenotypic alterations (supernumerary tentacles) akin to European counterparts. This finding confirms the value of this model for ecological and evolutionary research on host-tumour interactions.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| | - Justine Boutry
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Jácint Tokolyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Dujon AM, Ujvari B, Tissot S, Meliani J, Rieu O, Stepanskyy N, Hamede R, Tokolyi J, Nedelcu A, Thomas F. The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species. Evol Appl 2024; 17:e13763. [PMID: 39100750 PMCID: PMC11294924 DOI: 10.1111/eva.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jácint Tokolyi
- Department of Evolutionary Zoology, MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research GroupUniversity of DebrecenDebrecenHungary
| | - Aurora Nedelcu
- Department of BiologyUniversity of new BrunswickFrederictonNew BrunswickCanada
| | - Frédéric Thomas
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
3
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
MacDonald N, Raven N, Diep W, Evans S, Pannipitiya S, Bramwell G, Vanbeek C, Thomas F, Russell T, Dujon AM, Telonis-Scott M, Ujvari B. The molecular evolution of cancer associated genes in mammals. Sci Rep 2024; 14:11650. [PMID: 38773187 PMCID: PMC11109183 DOI: 10.1038/s41598-024-62425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.
Collapse
Affiliation(s)
- Nick MacDonald
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Wendy Diep
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Samantha Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Senuri Pannipitiya
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Tracey Russell
- Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Burwood, Burwood, VIC, 3125, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
5
|
Chatsirisupachai K, de Magalhães JP. Somatic mutations in human ageing: New insights from DNA sequencing and inherited mutations. Ageing Res Rev 2024; 96:102268. [PMID: 38490496 DOI: 10.1016/j.arr.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The accumulation of somatic mutations is a driver of cancer and has long been associated with ageing. Due to limitations in quantifying mutation burden with age in non-cancerous tissues, the impact of somatic mutations in other ageing phenotypes is unclear. Recent advances in DNA sequencing technologies have allowed the large-scale quantification of somatic mutations in ageing tissues. These studies have revealed a gradual accumulation of mutations in normal tissues with age as well as a substantial clonal expansion driven mostly by cancer-related mutations. Nevertheless, it is difficult to envision how the burden and stochastic nature of age-related somatic mutations identified so far can explain most ageing phenotypes that develop gradually. Studies across species have also found that longer-lived species have lower somatic mutation rates, though these could be due to selective pressures acting on other phenotypes such as perhaps cancer. Recent studies in patients with higher somatic mutation burden and no signs of accelerated ageing further question the role of somatic mutations in ageing. Overall, with a few exceptions like cancer, recent DNA sequencing studies and inherited mutations do not support the idea that somatic mutations accumulating with age drive ageing phenotypes, and the phenotypic role, if any, of somatic mutations in ageing remains unclear.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, UK.
| |
Collapse
|
6
|
Thomas F, Ujvari B, Dujon AM. [Evolution of cancer resistance in the animal kingdom]. Med Sci (Paris) 2024; 40:343-350. [PMID: 38651959 DOI: 10.1051/medsci/2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cancer is an inevitable collateral problem inherent in the evolution of multicellular organisms, which appeared at the end of the Precambrian. Faced to this constraint, a range of diverse anticancer defenses has evolved across the animal kingdom. Today, investigating how animal organisms, especially those of large size and long lifespan, manage cancer-related issues has both fundamental and applied outcomes, as it could inspire strategies for preventing or treating human cancers. In this article, we begin by presenting the conceptual framework for understanding evolutionary theories regarding the development of anti-cancer defenses. We then present a number of examples that have been extensively studied in recent years, including naked mole rats, elephants, whales, placozoa, xenarthras (such as sloths, armadillos and anteaters) and bats. The contributions of comparative genomics to understanding evolutionary convergences are also discussed. Finally, we emphasize that natural selection has also favored anti-cancer adaptations aimed at avoiding mutagenic environments, for example by maximizing immediate reproductive efforts in the event of cancer. Exploring these adaptive solutions holds promise for identifying novel approaches to improve human health.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| | - Antoine M Dujon
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France - Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| |
Collapse
|
7
|
Masoudi M, Torabi P, Judson-Torres RL, Khodarahmi R, Moradi S. Natural resistance to cancer: A window of hope. Int J Cancer 2024; 154:1131-1142. [PMID: 37860922 DOI: 10.1002/ijc.34766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Parisa Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
8
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
9
|
de Magalhães JP. The longevity bottleneck hypothesis: Could dinosaurs have shaped ageing in present-day mammals? Bioessays 2024; 46:e2300098. [PMID: 38018264 DOI: 10.1002/bies.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Korneenko TV, Pestov NB. Oncogenic BRCA1,2 Mutations in the Human Lineage-A By-Product of Sexual Selection? Biomedicines 2023; 12:22. [PMID: 38275383 PMCID: PMC10813183 DOI: 10.3390/biomedicines12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
In this review, we discuss the long-known problem of tissue-specific carcinogenesis in BRCA1 and BRCA2 mutation carriers: while the genes are expressed ubiquitously, increased cancer risk is observed mostly in the breast and ovaries, and to a much lesser extent, in some other tissues such as the prostate or pancreas. We reevaluate hypotheses on the evolutionary origin of these mutations in humans. Also, we align together the reports that at least some great apes have much lower risks of epithelial cancers in general and breast cancer in particular with the fact that humans have more voluminous breast tissue as compared to their closest extant relatives, particularly chimpanzees and bonobos. We conjecture that this disparity may be a consequence of sexual selection, augmented via selection for enhanced lactation. Further, we argue that there is an organ-specific enigma similar to the Peto paradox: breast cancer risk in humans is only minimally correlated with breast size. These considerations lead to the hypothesis that, along with the evolutionary development of larger breasts in humans, additional changes have played a balancing role in suppressing breast cancer. These yet-to-be-discovered mechanisms, while purely speculative, may be valuable to understanding human breast cancer, though they may not be exclusive to the mammary gland epithelial cells. Combining these themes, we review some anti-carcinogenesis preventive strategies and prospects of new interventions against breast cancer.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
11
|
Kapsetaki SE, Basile AJ, Compton ZT, Rupp SM, Duke EG, Boddy AM, Harrison TM, Sweazea KL, Maley CC. The relationship between diet, plasma glucose, and cancer prevalence across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551378. [PMID: 37577544 PMCID: PMC10418110 DOI: 10.1101/2023.07.31.551378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Tufts University, School of Arts and Sciences, Department of Biology, Medford, MA, USA
| | - Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, 427 East Tyler Mall, Arizona State University, Tempe, Arizona, USA
| | - Zachary T Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Elizabeth G Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California Santa Barbara, CA, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Dujon AM, Vincze O, Lemaitre JF, Alix-Panabières C, Pujol P, Giraudeau M, Ujvari B, Thomas F. The effect of placentation type, litter size, lactation and gestation length on cancer risk in mammals. Proc Biol Sci 2023; 290:20230940. [PMID: 37357861 PMCID: PMC10291710 DOI: 10.1098/rspb.2023.0940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Reproduction is a central activity for all living organisms but is also associated with a diversity of costs that are detrimental for survival. Until recently, the cost of cancer as a selective force has been poorly considered. Considering 191 mammal species, we found cancer mortality was more likely to be detected in species having large, rather than low, litter sizes and long lactation lengths regardless of the placentation types. However, increasing litter size and gestation length are not per se associated with an enhanced cancer mortality risk. Contrary to basic theoretical expectations, the species with the highest cancer mortality were not those with the most invasive (i.e. haemochorial) placentation, but those with a moderately invasive (i.e. endotheliochorial) one. Overall, these results suggest that (i) high reproductive efforts favour oncogenic processes' dynamics, presumably because of trade-offs between allocation in reproduction effort and anti-cancer defences, (ii) cancer defence mechanisms in animals are most often adjusted to align reproductive lifespan, and (iii) malignant cells co-opt existing molecular and physiological pathways for placentation, but species with the most invasive placentation have also selected for potent barriers against lethal cancers. This work suggests that the logic of Peto's paradox seems to be applicable to other traits that promote tumorigenesis.
Collapse
Affiliation(s)
- Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Jean-François Lemaitre
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Catherine Alix-Panabières
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Laboratory of Rare Human Circulating Cells (LCCRH), University Hospital of Montpellier, Montpellier, France
| | - Pascal Pujol
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France
| | - Mathieu Giraudeau
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266,CNRS- La Rochelle Université, La Rochelle, France
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Ricci M, Peona V, Boattini A, Taccioli C. Comparative analysis of bats and rodents' genomes suggests a relation between non-LTR retrotransposons, cancer incidence, and ageing. Sci Rep 2023; 13:9039. [PMID: 37270634 DOI: 10.1038/s41598-023-36006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The presence in nature of species showing drastic differences in lifespan and cancer incidence has recently increased the interest of the scientific community. In particular, the adaptations and the genomic features underlying the evolution of cancer-resistant and long-lived organisms have recently focused on transposable elements (TEs). In this study, we compared the content and dynamics of TE activity in the genomes of four rodent and six bat species exhibiting different lifespans and cancer susceptibility. Mouse, rat, and guinea pig genomes (short-lived and cancer-prone organisms) were compared with that of naked mole rat (Heterocephalus glaber) which is a cancer-resistant organism and the rodent with the longest lifespan. The long-lived bats of the genera Myotis, Rhinolophus, Pteropus and Rousettus were instead compared with Molossus molossus, which is one of the organisms with the shortest lifespan among the order Chiroptera. Despite previous hypotheses stating a substantial tolerance of TEs in bats, we found that long-lived bats and the naked mole rat share a marked decrease of non-LTR retrotransposons (LINEs and SINEs) accumulation in recent evolutionary times.
Collapse
Affiliation(s)
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden.
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Padua, Italy
| |
Collapse
|
14
|
Kozlov AP. Carcino-Evo-Devo, A Theory of the Evolutionary Role of Hereditary Tumors. Int J Mol Sci 2023; 24:ijms24108611. [PMID: 37239953 DOI: 10.3390/ijms24108611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A theory of the evolutionary role of hereditary tumors, or the carcino-evo-devo theory, is being developed. The main hypothesis of the theory, the hypothesis of evolution by tumor neofunctionalization, posits that hereditary tumors provided additional cell masses during the evolution of multicellular organisms for the expression of evolutionarily novel genes. The carcino-evo-devo theory has formulated several nontrivial predictions that have been confirmed in the laboratory of the author. It also suggests several nontrivial explanations of biological phenomena previously unexplained by the existing theories or incompletely understood. By considering three major types of biological development-individual, evolutionary, and neoplastic development-within one theoretical framework, the carcino-evo-devo theory has the potential to become a unifying biological theory.
Collapse
Affiliation(s)
- Andrei P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Street, 117971 Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya Street, 195251 St. Petersburg, Russia
| |
Collapse
|
15
|
Abstract
Ageing is inherent to all human beings, yet why we age remains a hotly contested topic. Most mechanistic explanations of ageing posit that ageing is caused by the accumulation of one or more forms of molecular damage. Here, I propose that we age not because of inevitable damage to the hardware but rather because of intrinsic design flaws in the software, defined as the DNA code that orchestrates how a single cell develops into an adult organism. As the developmental software runs, its sequence of events is reflected in shifting cellular epigenetic states. Overall, I suggest that to understand ageing we need to decode our software and the flow of epigenetic information throughout the life course.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
16
|
Archer KR, Groll T, Harvey RJ, Thornton SM, Stidworthy MF, Denk D. Case series: Lymphoid neoplasia in three elasmobranch species. JOURNAL OF FISH DISEASES 2023; 46:273-279. [PMID: 36562278 DOI: 10.1111/jfd.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Elasmobranchs (sharks and rays) are charismatic cartilaginous fish, popular in public aquaria. Almost 200 shark and ray species are listed as threatened by the International Union for Conservation of Nature (IUCN), demonstrating the importance of captive breeding and research programmes. Limited studies investigate diseases of elasmobranchs in captive and free-living environments, and among available literature neoplasia is rarely reported, with even fewer cases of lymphoid neoplasia documented. This article outlines the first reports of lymphoid neoplasia in three elasmobranch species in which haematopoietic neoplasms have not been reported to date. It summarizes signalment, history and histopathologic findings in an undulate ray, Raja undulata (Lacepede), a common smooth-hound, Mustelus mustelus (Linnaeus) and a bat ray, Myliobatis californica (Gill). Lesions were confirmed in a wide range of tissues and evidence of lymphoid leukaemia was seen in two cases. This small-scale review demonstrates that lymphoid neoplasia should be considered as a differential diagnosis in elasmobranchs presenting with lethargy and anorexia and highlights the challenges of immunohistochemical work up.
Collapse
Affiliation(s)
| | - Tanja Groll
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, Munchen, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munchen, Germany
| | | | | | | | - Daniela Denk
- International Zoo Veterinary Group, Keighley, UK
| |
Collapse
|
17
|
Schramm MWJ, Currie S, Lee MT, Livermore LJ, Solanki SP, Mathew RK, Wurdak H, Lorger M, Twelves C, Short SC, Chakrabarty A, Chumas P. Do animal models of brain tumors replicate human peritumoral edema? a systematic literature search. J Neurooncol 2023; 161:451-467. [PMID: 36757526 PMCID: PMC9992038 DOI: 10.1007/s11060-023-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Brain tumors cause morbidity and mortality in part through peritumoral brain edema. The current main treatment for peritumoral brain edema are corticosteroids. Due to the increased recognition of their side-effect profile, there is growing interest in finding alternatives to steroids but there is little formal study of animal models of peritumoral brain edema. This study aims to summarize the available literature. METHODS A systematic search was undertaken of 5 literature databases (Medline, Embase, CINAHL, PubMed and the Cochrane Library). The generic strategy was to search for various terms associated with "brain tumors", "brain edema" and "animal models". RESULTS We identified 603 reports, of which 112 were identified as relevant for full text analysis that studied 114 peritumoral brain edema animal models. We found significant heterogeneity in the species and strain of tumor-bearing animals, tumor implantation method and edema assessment. Most models did not produce appreciable brain edema and did not test for observable manifestations thereof. CONCLUSION No animal model currently exists that enable the investigation of novel candidates for the treatment of peritumoral brain edema. With current interest in alternative treatments for peritumoral brain edema, there is an unmet need for clinically relevant animal models.
Collapse
Affiliation(s)
- Moritz W J Schramm
- School of Medicine, University of Leeds, Leeds, UK.
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK.
| | - Stuart Currie
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
| | - Ming-Te Lee
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
| | - Laurent J Livermore
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| | | | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, UK
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Chris Twelves
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
| | - Susan C Short
- Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Paul Chumas
- Department of Neurosurgery, The General Infirmary at Leeds, Great George Street, Leeds, LS1 3EX, UK
| |
Collapse
|
18
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
19
|
Gouzerh F, Ganem G, Pichevin A, Dormont L, Thomas F. Ability of animals to detect cancer odors. Biochim Biophys Acta Rev Cancer 2023; 1878:188850. [PMID: 36528192 DOI: 10.1016/j.bbcan.2022.188850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The olfactory capacity of animals has long been used by humans to help with various activities, e.g., hunting, detecting mines, locating people, and diagnosing diseases. Cancer is among the leading diseases causing death worldwide. Several recent studies have underscored the benefit of using scent to detect cancer, and this paper will review the studies using animals to detect tumor scents. A large variety of animals have been used for this purpose-dogs, rodents, insects, and nematodes-and have shown their capacity to detect cancer, with a success rate close to 90%. Here we discuss these studies, their methodologies, and the animal models used. Finally, we discuss the medical perspectives for cancer diagnosis using odors.
Collapse
Affiliation(s)
- Flora Gouzerh
- Centre de Recherches Écologiques et Évolutives sur le Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224- CNRS 5290- Université de Montpellier, 34394 Montpellier, France; Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France.
| | - Guila Ganem
- Institut des Sciences de l'Evolution, ISEM, Université Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Anaïs Pichevin
- Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France
| | - Frédéric Thomas
- Centre de Recherches Écologiques et Évolutives sur le Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224- CNRS 5290- Université de Montpellier, 34394 Montpellier, France
| |
Collapse
|
20
|
Maciak S. Cell size, body size and Peto's paradox. BMC Ecol Evol 2022; 22:142. [PMID: 36513976 PMCID: PMC9746147 DOI: 10.1186/s12862-022-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Carcinogenesis is one of the leading health concerns afflicting presumably every single animal species, including humans. Currently, cancer research expands considerably beyond medicine, becoming a focus in other branches of natural science. Accumulating evidence suggests that a proportional scale of tumor deaths involves domestic and wild animals and poses economical or conservation threats to many species. Therefore, understanding the genetic and physiological mechanisms of cancer initiation and its progression is essential for our future action and contingent prevention. From this perspective, I used an evolutionary-based approach to re-evaluate the baseline for debate around Peto's paradox. First, I review the background of information on which current understanding of Peto's paradox and evolutionary concept of carcinogenesis have been founded. The weak points and limitations of theoretical modeling or indirect reasoning in studies based on intraspecific, comparative studies of carcinogenesis are highlighted. This is then followed by detail discussion of an effect of the body mass in cancer research and the importance of cell size in consideration of body architecture; also, I note to the ambiguity around cell size invariance hypothesis and hard data for variability of cell size across species are provided. Finally, I point to the new research area that is driving concepts to identify exact molecular mechanisms promoting the process of tumorigenesis, which in turn may provide a proximate explanation of Peto's paradox. The novelty of the approach proposed therein lies in intraspecies testing of the effect of differentiation of cell size/number on the probability of carcinogenesis while controlling for the confounding effect of body mass/size.
Collapse
Affiliation(s)
- Sebastian Maciak
- grid.25588.320000 0004 0620 6106Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, K. Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
21
|
Surmik D, Słowiak-Morkovina J, Szczygielski T, Kamaszewski M, Kalita S, Teschner EM, Dróżdż D, Duda P, Rothschild BM, Konietzko-Meier D. An insight into cancer palaeobiology: does the Mesozoic neoplasm support tissue organization field theory of tumorigenesis? BMC Ecol Evol 2022; 22:143. [PMID: 36513967 PMCID: PMC9746082 DOI: 10.1186/s12862-022-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neoplasms are common across the animal kingdom and seem to be a feature plesiomorphic for metazoans, related with an increase in somatic complexity. The fossil record of cancer complements our knowledge of the origin of neoplasms and vulnerability of various vertebrate taxa. Here, we document the first undoubted record of primary malignant bone tumour in a Mesozoic non-amniote. The diagnosed osteosarcoma developed in the vertebral intercentrum of a temnospondyl amphibian, Metoposaurus krasiejowensis from the Krasiejów locality, southern Poland. RESULTS A wide array of data collected from gross anatomy, histology, and microstructure of the affected intercentrum reveals the tumour growth dynamics and pathophysiological aspects of the neoplasm formation on the histological level. The pathological process almost exclusively pertains to the periosteal part of the bone composed from a highly vascularised tissue with lamellar matrix. The unorganised arrangement of osteocyte lacunae observed in the tissue is characteristic for bone tissue types connected with static osteogenesis, and not for lamellar bone. The neoplastic bone mimics on the structural level the fast growing fibrolamellar bone, but on the histological level develops through a novel ossification type. The physiological process of bone remodelling inside the endochondral domain continued uninterrupted across the pathology of the periosteal part. CONCLUSIONS Based on the results, we discuss our case study's consistence with the Tissue Organization Field Theory of tumorigenesis, which locates the causes of neoplastic transformations in disorders of tissue architecture.
Collapse
Affiliation(s)
- Dawid Surmik
- grid.11866.380000 0001 2259 4135Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Justyna Słowiak-Morkovina
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Tomasz Szczygielski
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Maciej Kamaszewski
- grid.13276.310000 0001 1955 7966Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Sudipta Kalita
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Elżbieta M. Teschner
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany ,grid.107891.60000 0001 1010 7301Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| | - Dawid Dróżdż
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Piotr Duda
- grid.11866.380000 0001 2259 4135Faculty of Exact and Technical Sciences, University of Silesia, Będzińska 39, 41-200 Sosnowiec, Poland
| | - Bruce M. Rothschild
- grid.420557.10000 0001 2110 2178Carnegie Museum of Natural History, 4400 Forbes Ave, Pittsburgh, PA 15215 USA
| | - Dorota Konietzko-Meier
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| |
Collapse
|
22
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
23
|
Pepke ML, Eisenberg DTA. On the comparative biology of mammalian telomeres: Telomere length co-evolves with body mass, lifespan and cancer risk. Mol Ecol 2022; 31:6286-6296. [PMID: 33662151 DOI: 10.1111/mec.15870] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023]
Abstract
Telomeres, the short repetitive DNA sequences that cap the ends of linear chromosomes, shorten during cell division and are implicated in senescence in most species. Telomerase can rebuild telomeres but is repressed in many mammals that exhibit replicative senescence, presumably as a tumour suppression mechanism. It is therefore important to understand the co-evolution of telomere biology and life-history traits that has shaped the diversity of senescence patterns across species. Gomes et al. previously produced a large data set on telomere length (TL), telomerase activity, body mass and lifespan among 57 mammal species. We re-analysed their data using the same phylogenetic multiple regressions and with several additional analyses to test the robustness of the findings. We found substantial inconsistencies in our results compared to Gomes et al.'s. Consistent with Gomes et al. we found an inverse association between TL and lifespan. Contrary to the analyses in Gomes et al., we found a generally robust inverse association between TL and mass, and only weak nonrobust evidence for an association between telomerase activity and mass. These results suggest that shorter TL may have been selected for in larger and longer lived species, probably as a mechanism to suppress cancer. We support this hypothesis by showing that longer telomeres predict higher cancer risk across 22 species. Furthermore, we find that domesticated species have longer telomeres. Our results call into question past interpretations of the co-evolution of telomere biology and life-history traits and stress the need for careful attention to model construction.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, Seattle, WA, USA.,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Muacevic A, Adler JR, Dewani D. The International Ovarian Tumor Analysis-Assessment of Different Neoplasias in the Adnexa (IOTA-ADNEX) Model Assessment for Risk of Ovarian Malignancy in Adnexal Masses. Cureus 2022; 14:e31194. [PMID: 36505142 PMCID: PMC9728190 DOI: 10.7759/cureus.31194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancers are one of the major leading causes of death across the world. In addition to many challenges to diagnose the disease, it is also hard to predict the type of cancer with effective tools and technology. Many attempts have been made to diagnose ovarian malignancies using ultrasonography, MRI, and CT scans, but seldom will they give the clinician a clear understanding of cancer's type and stage. It is of utmost importance to understand the mass peri-operatively, which will help the clinicians to decide on the course of management mortality. With technological advancements, many predictive models have come into the picture. Many of those were dependent on the Serum CA-125 markers. With ultrasonography machine usage, the International Ovarian Tumor Analysis (IOTA) group has developed a Simple Rules model, Logistic Regression (LR) models, and, most recently, the IOTA-assessment of different neoplasias in the adnexa (IOTA-ADNEX) model. It has been found to be effective and reliable among all the tools developed in the past. The ADNEX predicts the type of cancer (benign or malignant) and stages of cancer (borderline, Stage I, Stages II-IV, and secondary metastatic). These models can be used for people who are coming with persistent adnexal masses in the ovarian region, para ovarian region, or in the tubes and are recommended for the surgeries. The model is developed by a team of clinicians and statisticians, based on ultrasound and clinical data. This article reviews the IOTA-ADNEX model as a tool for predicting ovarian malignancies in people coming with adnexal masses, especially in comparison with other methods and models. It also tests its effectiveness in the hands of experienced technicians and non-expert technicians.
Collapse
|
25
|
Duneau D, Buchon N. Gut cancer increases the risk of Drosophila being preyed upon by hunting spiders. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Nair NU, Cheng K, Naddaf L, Sharon E, Pal LR, Rajagopal PS, Unterman I, Aldape K, Hannenhalli S, Day CP, Tabach Y, Ruppin E. Cross-species identification of cancer resistance-associated genes that may mediate human cancer risk. SCIENCE ADVANCES 2022; 8:eabj7176. [PMID: 35921407 PMCID: PMC9348801 DOI: 10.1126/sciadv.abj7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo mammals' data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may mediate human cancer risk.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Lamis Naddaf
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Elad Sharon
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Lipika R. Pal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Padma S. Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research–Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Corresponding author. (N.U.N.); (K.C.); (Y.T.); (E.R.)
| |
Collapse
|
27
|
Qiu J, Yang Y, Kong J, Cao Y, Liu Y, Luo H, Cao X. Quantification of pharmacokinetic profiles of a recombinant canine PD-1 fusion protein by validated sandwich ELISA method. Front Vet Sci 2022; 9:951176. [PMID: 35990262 PMCID: PMC9382074 DOI: 10.3389/fvets.2022.951176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Tumors are becoming a serious threat to the quality of life of human and dogs. Studies have shown that tumors have caused more than half of the deaths in older dogs. Similar to human, dogs will develop various and highly heterogeneous tumors, but there are currently no viable therapies for them. In human, immunotherapy has been used widely and considered as an effective treatment for tumors by immune checkpoint targets, which are also expressed on canine tumors, suggesting that immunotherapy may be a potential treatment for canine tumors. In this work, we developed a sandwich ELISA method to detect the concentration of recombinant canine PD-1 fusion protein in canine serum and investigated pharmacokinetics in canines after intravenous infusion administration. After being validated, the ELISA method showed an excellent linear relationship in 25.00–3,200.00 ng/ml in serum, and the R2 was more than 0.99 with four-parameter fitting. The precision and accuracy of intra-assay and inter-assay at the five different concentrations met the requirements of quantitative analysis. At the same time, no hook effect was observed at the concentration above ULOQ, and the stability was good under different predicted conditions with accuracy > 80%. The pharmacokinetic study in dogs has shown that the recombinant canine PD-1 fusion protein exhibited a typical biphasic PK profile after intravenous infusion administration, and the linear pharmacokinetic properties were observed between 1.00 and 12.00 mg/kg. Meanwhile, the T1/2 after intravenous infusion administration with non-compartmental analysis was about 5.79 days.
Collapse
Affiliation(s)
- Jicheng Qiu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuxin Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jingyuan Kong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuying Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Haoshu Luo
- College of Biological Sciences, China Agricultural University, Beijing, China
- Beijing VJTBio Co., LTD., Beijing, China
| | - Xingyuan Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
- Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Xingyuan Cao
| |
Collapse
|
28
|
Gregor KM, Lakemeyer J, IJsseldijk LL, Siebert U, Wohlsein P. Spontaneous neoplasms in harbour porpoises Phocoena phocoena. DISEASES OF AQUATIC ORGANISMS 2022; 149:145-154. [PMID: 35735234 DOI: 10.3354/dao03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Harbour porpoises are widely distributed in the North Atlantic and represent the most abundant cetacean species in the North and Baltic Seas. Spontaneous neoplasms are relatively rarely reported in cetaceans, and only little is known about neoplasia in harbour porpoises. Thus, archival material was reviewed for spontaneous neoplasms in harbour porpoises recorded during post-mortem examinations between 1999 and 2018. Neoplasms were identified in 7 adult porpoises: 6 animals originating from the North and Baltic Seas and investigated as part of German and Dutch systematic health monitoring programs, and 1 porpoise from Greenlandic waters. The tumours were of different histogenetic origins and further characterised by histology and immunohistochemistry. One individual had a neoplasia in the digestive tract (adenocarcinoma, n = 1); 4 animals, in the genital tract (Sertoli cell tumour, n = 1; genital leiomyoma/fibroleiomyoma, n = 3); and 2 porpoises, in endocrine organs (adrenal adenoma, n = 2). This is the first report of an adenocarcinoma in the liver, a testicular Sertoli cell tumour and adrenocortical adenomas in harbour porpoises. The cause of the tumorigenesis in examined cases remains undetermined. The involvement of endogenous factors, including mutation of cell cycle regulating genes, such as the tumour-suppressor gene p53, cannot be ruled out. The aetiopathogenetic significance of exogenous factors, such as infectious agents like liver flukes or anthropogenic factors, including persistent organic pollutants, should be the subject of future investigations.
Collapse
Affiliation(s)
- K M Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
29
|
Marongiu F, DeGregori J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol Oncol 2022; 16:3238-3258. [PMID: 35726685 PMCID: PMC9490148 DOI: 10.1002/1878-0261.13275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Aging represents the major risk factor for the development of cancer and many other diseases. Recent findings show that normal tissues become riddled with expanded clones that are frequently driven by cancer‐associated mutations in an aging‐dependent fashion. Additional studies show how aged tissue microenvironments promote the initiation and progression of malignancies, while young healthy tissues actively suppress the outgrowth of malignant clones. Here, we discuss conserved mechanisms that eliminate poorly functioning or potentially malignant cells from our tissues to maintain organismal health and fitness. Natural selection acts to preserve tissue function and prevent disease to maximize reproductive success but these mechanisms wane as reproduction becomes less likely. The ensuing age‐dependent tissue decline can impact the shape and direction of clonal somatic evolution, with lifestyle and exposures influencing its pace and intensity. We also consider how aging‐ and exposure‐dependent clonal expansions of “oncogenic” mutations might both increase cancer risk late in life and contribute to tissue decline and non‐malignant disease. Still, we can marvel at the ability of our bodies to avoid cancers and other diseases despite the accumulation of billions of cells with cancer‐associated mutations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Italy
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
30
|
Potievskii MB, Shegai PV, Kaprin AD. Prospects for the Application of Methods of Evolutionary Biology in Oncology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Huang J, Zhong Y, Makohon-Moore AP, White T, Jasin M, Norell MA, Wheeler WC, Iacobuzio-Donahue CA. Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Rep 2022; 39:110771. [PMID: 35508134 DOI: 10.1016/j.celrep.2022.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022] Open
Abstract
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Collapse
Affiliation(s)
- Jinlong Huang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin P Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Travis White
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
32
|
Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis 2022; 9:1234-1247. [PMID: 35873035 PMCID: PMC9293697 DOI: 10.1016/j.gendis.2022.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
|
33
|
Bhattacharjee S, Ceri Davies D, Holland JC, Holmes JM, Kilroy D, McGonnell IM, Reynolds AL. On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. J Anat 2022; 240:429-446. [PMID: 34693516 PMCID: PMC8819042 DOI: 10.1111/joa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of many factors, including climate change, unrestricted population growth, widespread deforestation and intensive agriculture, a new pattern of diseases in humans is emerging. With increasing encroachment by human societies into wild domains, the interfaces between human and animal ecosystems are gradually eroding. Such changes have led to zoonoses, vector-borne diseases, infectious diseases and, most importantly, the emergence of antimicrobial-resistant microbial strains as challenges for human health. Now would seem to be an opportune time to revisit old concepts of health and redefine some of these in the light of emerging challenges. The One Health concept addresses some of the demands of modern medical education by providing a holistic approach to explaining diseases that result from a complex set of interactions between humans, environment and animals, rather than just an amalgamation of isolated signs and symptoms. An added advantage is that the scope of One Health concepts has now expanded to include genetic diseases due to advancements in omics technology. Inspired by such ideas, a symposium was organised as part of the 19th International Federation of Associations of Anatomists (IFAA) Congress (August 2019) to investigate the scope of One Health concepts and comparative anatomy in contemporary medical education. Speakers with expertise in both human and veterinary anatomy participated in the symposium and provided examples where these two disciplines, which have so far evolved largely independent of each other, can collaborate for mutual benefit. Finally, the speakers identified some key concepts of One Health that should be prioritised and discussed the diverse opportunities available to integrate these priorities into a broader perspective that would attempt to explain and manage diseases within the scopes of human and veterinary medicine.
Collapse
Affiliation(s)
| | - D. Ceri Davies
- Human Anatomy UnitDepartment of Surgery and CancerImperial College LondonLondonUK
| | - Jane C. Holland
- Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | | | - David Kilroy
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Imelda M. McGonnell
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Alison L. Reynolds
- School of Veterinary MedicineUniversity College DublinDublinIreland
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| |
Collapse
|
34
|
Blackshaw S. Why Has the Ability to Regenerate Following CNS Injury Been Repeatedly Lost Over the Course of Evolution? Front Neurosci 2022; 16:831062. [PMID: 35185460 PMCID: PMC8854365 DOI: 10.3389/fnins.2022.831062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
While many vertebrates can regenerate both damaged neurons and severed axons in the central nervous system (CNS) following injury, others, including all birds and mammals, have lost this ability for reasons that are still unclear. The repeated evolutionary loss of regenerative competence seems counterintuitive, and any explanation must account for the fact that regenerative competence is lost in both cold-blooded and all warm-blooded clades, that both injury-induced neurogenesis and axonal regeneration tend to be lost in tandem, and that mammals have evolved dedicated gene regulatory networks to inhibit injury-induced glia-to-neuron reprogramming. Here, different hypotheses that have been proposed to account for evolutionary loss of regenerative competence are discussed in the light of new insights obtained into molecular mechanisms that control regeneration in the central nervous system. These include pleiotropic effects of continuous growth, enhanced thyroid hormone signaling, prevention of neoplasia, and improved memory consolidation. Recent evidence suggests that the most compelling hypothesis, however, may be selection for greater resistance to the spread of intra-CNS infections, which has led to both enhanced reactive gliosis and a loss of injury-induced neurogenesis and axonal regeneration. Means of testing these hypotheses, and additional data that are urgently needed to better understand the evolutionary pressures and mechanisms driving loss of regenerative competence, are also discussed.
Collapse
Affiliation(s)
- Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Seth Blackshaw,
| |
Collapse
|
35
|
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol 2022; 39:msab369. [PMID: 34971383 PMCID: PMC8837823 DOI: 10.1093/molbev/msab369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel "ape-specific" enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
37
|
Boutry J, Mistral J, Berlioz L, Klimovich A, Tökölyi J, Fontenille L, Ujvari B, Dujon AM, Giraudeau M, Thomas F. Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149923. [PMID: 34487898 DOI: 10.1016/j.scitotenv.2021.149923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 05/25/2023]
Abstract
While it is often assumed that oncogenic processes in metazoans can influence species interactions, empirical evidence is lacking. Here, we use the cnidarian Hydra oligactis to experimentally explore the consequences of tumor associated phenotypic alterations for its predation ability, relationship with commensal ciliates and vulnerability to predators. Unexpectedly, hydra's predation ability was higher in tumorous polyps compared to non-tumorous ones. Commensal ciliates colonized preferentially tumorous hydras than non-tumorous ones, and had a higher replication rate on the former. Finally, in a choice experiment, tumorous hydras were preferentially eaten by a fish predator. This study, for the first time, provides evidence that neoplastic growth has the potential, through effect(s) on host phenotype, to alter biotic interactions within ecosystems and should thus be taken into account by ecologists.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| | - Juliette Mistral
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Laurent Berlioz
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | | | - Jácint Tökölyi
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura Fontenille
- AZELEAD, 377 Rue du Professeur Blayac, 34080 Montpellier, France
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Vazquez JM, Pena MT, Muhammad B, Kraft M, Adams LB, Lynch VJ. Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife 2022; 11:82558. [PMID: 36480266 PMCID: PMC9810328 DOI: 10.7554/elife.82558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch, 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: (1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; (2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; (3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and (4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer-resistant group of mammals.
Collapse
Affiliation(s)
- Juan Manuel Vazquez
- Department of Integrative Biology, Valley Life Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Baaqeyah Muhammad
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Morgan Kraft
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| |
Collapse
|
39
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
40
|
Vincze O, Colchero F, Lemaître JF, Conde DA, Pavard S, Bieuville M, Urrutia AO, Ujvari B, Boddy AM, Maley CC, Thomas F, Giraudeau M. Cancer risk across mammals. Nature 2022; 601:263-267. [PMID: 34937938 PMCID: PMC8755536 DOI: 10.1038/s41586-021-04224-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.
Collapse
Affiliation(s)
- Orsolya Vincze
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France.
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary.
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
| | - Jean-Francois Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1; CNRS,UMR5558, Villeurbanne, France
| | - Dalia A Conde
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Samuel Pavard
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | - Margaux Bieuville
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | - Araxi O Urrutia
- Instituto de Ecologia, UNAM, Mexico City, Mexico
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
41
|
Dujon AM, Vittecoq M, Bramwell G, Thomas F, Ujvari B. Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine M. Dujon
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Marion Vittecoq
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
- Tour du Valat Research Institute for the Conservation of Mediterranean Wetlands Arles France
| | - Georgina Bramwell
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
- MIVEGECUniversity of MontpellierCNRSIRD Montpellier France
| | - Beata Ujvari
- Geelong School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC) Montpellier France
| |
Collapse
|
42
|
Abstract
Analogies between placentation, in particular the behavior of trophoblast cells, and cancer have been noted since the beginning of the twentieth century. To what degree these can be explained as a consequence of the evolution of placentation has been unclear. In this review, we conclude that many similarities between trophoblast and cancer cells are shared with other, phylogenetically older processes than placentation. The best candidates for cancer hallmarks that can be explained by the evolution of eutherian placenta are mechanisms of immune evasion. Another dimension of the maternal accommodation of the placenta with an impact on cancer malignancy is the evolution of endometrial invasibility. Species with lower degrees of placental invasion tend to have lower vulnerability to cancer malignancy. We finally identify several areas in which one could expect to see coevolutionary changes in placental and cancer biology but that, to our knowledge, have not been explored. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Günter P Wagner
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Storrs, Connecticut, USA;
| | - Anasuya Dighe
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Andre Levchenko
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
43
|
Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021; 10:pathogens10101295. [PMID: 34684244 PMCID: PMC8540842 DOI: 10.3390/pathogens10101295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Several cancer risk factors (exposure to ultraviolet-B, pollution, toxins and pathogens) have been identified for wildlife, to form a “cancer risk landscape.” However, information remains limited on how the spatiotemporal variability of these factors impacts the prevalence of cancer in wildlife. Here, we evaluated the cancer risk landscape at 49 foraging sites of the globally distributed green turtle (Chelonia mydas), a species affected by fibropapillomatosis, by integrating data from a global meta-analysis of 31 publications (1994–2019). Evaluated risk factors included ultraviolet light exposure, eutrophication, toxic phytoplanktonic blooms, sea surface temperature, and the presence of mechanical vectors (parasites and symbiotic species). Prevalence was highest in areas where nutrient concentrations facilitated the emergence of toxic phytoplankton blooms. In contrast, ultraviolet light exposure and the presence of parasitic and/or symbiotic species did not appear to impact disease prevalence. Our results indicate that, to counter outbreaks of fibropapillomatosis, management actions that reduce eutrophication in foraging areas should be implemented.
Collapse
|
44
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
45
|
Cai Z, He Y, Liu S, Xue Y, Quan H, Zhang L, Gao YQ. Hierarchical dinucleotide distribution in genome along evolution and its effect on chromatin packing. Life Sci Alliance 2021; 4:4/8/e202101028. [PMID: 34168075 PMCID: PMC8321668 DOI: 10.26508/lsa.202101028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
It describes how hierarchical CpG distribution on the genomes of species change in the evolution and the correlation with the chromatin structure. Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.
Collapse
Affiliation(s)
- Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Ling Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
46
|
Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Sci Rep 2021; 11:12483. [PMID: 34127736 PMCID: PMC8203631 DOI: 10.1038/s41598-021-91909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.
Collapse
|
47
|
Marquardt S, Pavlopoulou A, Takan I, Dhar P, Pützer BM, Logotheti S. A Systems-Based Key Innovation-Driven Approach Infers Co-option of Jaw Developmental Programs During Cancer Progression. Front Cell Dev Biol 2021; 9:682619. [PMID: 34150777 PMCID: PMC8207138 DOI: 10.3389/fcell.2021.682619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer acquires metastatic potential and evolves via co-opting gene regulatory networks (GRN) of embryonic development and tissue homeostasis. Such GRNs are encoded in the genome and frequently conserved among species. Considering that all metazoa have evolved from a common ancestor via major macroevolutionary events which shaped those GRNs and increased morphogenetic complexity, we sought to examine whether there are any key innovations that may be consistently and deterministically linked with metastatic potential across the metazoa clades. To address tumor evolution relative to organismal evolution, we revisited and retrospectively juxtaposed seminal laboratory and field cancer studies across taxa that lie on the evolutionary lineage from cnidaria to humans. We subsequently applied bioinformatics to integrate species-specific cancer phenotypes, multiomics data from up to 42 human cancer types, developmental phenotypes of knockout mice, and molecular phylogenetics. We found that the phenotypic manifestations of metastasis appear to coincide with agnatha-to-gnathostome transition. Genes indispensable for jaw development, a key innovation of gnathostomes, undergo mutations or methylation alterations, are aberrantly transcribed during tumor progression and are causatively associated with invasion and metastasis. There is a preference for deregulation of gnathostome-specific versus pre-gnathostome genes occupying hubs of the jaw development network. According to these data, we propose our systems-based model as an in silico tool the prediction of likely tumor evolutionary trajectories and therapeutic targets for metastasis prevention, on the rationale that the same genes which are essential for key innovations that catalyzed vertebrate evolution, such as jaws, are also important for tumor evolution.
Collapse
Affiliation(s)
- Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Athanasia Pavlopoulou
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Işıl Takan
- İzmir Biomedicine and Genome Center, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Prabir Dhar
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M. Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
48
|
The evolution of multicellularity and cancer: views and paradigms. Biochem Soc Trans 2021; 48:1505-1518. [PMID: 32677677 DOI: 10.1042/bst20190992] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Conceptually and mechanistically, the evolution of multicellularity required the integration of single cells into new functionally, reproductively and evolutionary stable multicellular individuals. As part of this process, a change in levels of selection occurred, with selection at the multicellular level overriding selection at the cell level. The stability of multicellular individuals is dependent on a combination of mechanisms that supress within-group evolution, by both reducing the occurrence of somatic mutations as well as supressing somatic selection. Nevertheless, mutations that, in a particular microenvironment, confer mutant lineages a fitness advantage relative to normal somatic cells do occur, and can result in cancer. This minireview highlights several views and paradigms that relate the evolution of multicellularity to cancer. As a phenomenon, cancer is generally understood as a failure of multicellular systems to suppress somatic evolution. However, as a disease, cancer is interpreted in different frameworks: (i) a breakdown of cooperative behaviors underlying the evolution of multicellularity, (ii) a disruption of molecular networks established during the emergence of multicellularity to impose constraints on single-celled units, or (iii) an atavistic state resulting from reactivating primitive programs that originated in the earliest unicellular species. A number of assumptions are common in all the views relating cancer as a disease to the evolution of multicellularity. For instance, cancer is considered a reversal to unicellularity, and cancer cells are thought to both resemble unicellular organisms and benefit from ancestral-like traits. Nevertheless, potential limitations of current paradigms should be acknowledged as different perspectives can provide novel insights with potential therapeutic implications.
Collapse
|
49
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
50
|
Dujon AM, Ujvari B, Thomas F. Cancer risk landscapes: A framework to study cancer in ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142955. [PMID: 33109371 DOI: 10.1016/j.scitotenv.2020.142955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a family of diseases that has been documented in most metazoan species and ecosystems. Human induced environmental changes are increasingly exposing wildlife to carcinogenic risk factors, and negative repercussions on ecosystems and on the conservation of endangered species are already been observed. It is therefore of key importance to understand the spatiotemporal variability of those risk factors and how they interact with the biosphere to mitigate their effects. Here we introduce the concept of cancer risk landscape that can be applied to understand how species are exposed to, interact with, and modify cancer risk factors. With this publication we aim to provide a framework in order to stimulate a discussion on how to mitigate cancer-causing risk factors.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France.
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France
| | - Frédéric Thomas
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France
| |
Collapse
|